Clarifying sustainable food technology futures through technacy genre theory

Angela Turner, Southern Cross University
Kurt W Seemann, Southern Cross University
Checking your Typeset Proof

Multi-Authorered Papers
In the case of multi-authored papers, authors are advised to collaborate when checking the typeset proof. One author should be nominated to either accept or submit corrections on behalf of all of the authors of the paper.
We can only accept one set of revisions, or one acceptance of the typeset proof, from the nominated author. Once an author approves the typeset proof further revisions may not be requested.

Replying to us
After you review the typeset proof, you need to click on the ‘Author Verify Typeset Proof’ button (available at the link you downloaded the typeset proof from). You will then need to select the appropriate option to proceed.

Option 1: Accept Typeset Proof
To be selected when your paper is ready for publication
- Please thoroughly check the typeset proof before accepting it. You will not have further opportunities to make additional changes after the typeset proof has been accepted.
- Once you have accepted the typeset proof of your paper it will be ready to be published. You will be notified when your paper has been published and given instructions on how to access the published version.

Option 2: Request Resubmission of Typeset Proof
To be selected when your paper requires corrections
- Please see section on ‘Documenting your Corrections’.
- The typesetter will receive notification of your requested corrections. Once the corrections have been completed you will be notified of the availability of a revised typeset proof for your approval.

Bibliographical Details
Please note that full bibliographical details (issue and page numbers) will not be available until final publication of your paper. Once your paper has been published you will be able to obtain these details. We will notify you as soon as your paper is published.
Checklist for Reviewing the Typeset Proof

We recommend that you print the typeset proof and proofread it slowly and with great care. Request that a colleague also proofread your paper as they may notice errors that you may miss due to your familiarity with the content.

Remember to check your typeset proof for:
- Completeness: inclusion of all text, figures, illustrations and tables
- Correct title and subtitle
- Correct authorship and order of authors
- Current affiliation details
- Heading levels
- Position and size of illustrations and figures
- Matching of captions to illustrations and figures
- Position of tables
- Presentation of quotes
- Presentation of equations
- Footnotes and footnote numbering
- Inclusion of acknowledgements
- References and reference style
- Typesetting or conversion errors

Please check the Journal Standard Style prior to requesting changes to style as we adhere to standard presentation requirements for all papers to ensure consistency throughout the Journal.

It is important that all of your corrections (and those of your co-authors if applicable) are submitted to us in one communication.

Please note that careful proofreading is solely your responsibility.
Journal Standard Style

Order of the Paper:
1. Cover page
2. Copyright/imprint page
3. Paper: title/subtitle; author names with affiliation; abstract; keywords; body of paper; acknowledgement (if applicable); reference list; appendix (if any); about the author section
4. Journal colophon

Journal Standard Style:
- Paper title/subtitle and all headings appear in Title Case whereby only definite and indefinite articles (e.g. ‘the’ and ‘a’), conjunctions (e.g. ‘and’), and prepositions (e.g. ‘in’, ‘of’ etc.) appear in lower case.
- No italics in titles and subtitles.
- Affiliation of the author will include only the name of the author, university or organization name and country. Honorifics are not included.
- Abstract will appear in italics as a single paragraph.
- No italics included in the keyword list.
- No footnotes attached to title/subtitle, authors or the abstract.
- The first paragraph of the paper will appear in floating style - first three words appear in capital case and bold.
- Footnotes within tables have separate numbering to that of the footnotes within the paper.
- Hyphenation cannot be altered.
- No underline will be included.
- Figure captions are centred below the figure. The figure number and caption appear on the same line.
- Table titles appear above the table, left justified, in bold. The table number and table title appear on the same line.
- About the Author section: The honorific will reflect in this section. Contact details such as email addresses will not be included.
Documenting your Corrections

Changes to the Abstract
If you wish to make changes to the abstract of your paper please provide the revised abstract either as a Word document (if there are also changes to the text), or by entering it in the text box provided when you select Option 2.

Additional Authors
If you need to add a co-author we require the following information for each additional author to be added:
1. Name of the co-author
2. Affiliation details
3. Email address of the co-author (Mandatory)
4. Short Biography (limit of 30 words)
5. Long Biography (limit of 200 words one paragraph only)

Corrections to Text
If you have changes to the text please complete these in the Word version of your paper available at the link where you downloaded this PDF (or an existing word version). You can then upload the revised document for typesetting by selecting Option 2.

Corrections to Style:
You will need to clearly indicate all corrections in the following manner:

1. Page Number - paragraph number - line number - correction to be made
 eg:
 1. Page 4 - last paragraph, line 4, please put a comma after Tom in the sentence Mary, Tom, Jane and her friends...

The page number is the actual page of the PDF. As the paper has not been paginated yet, no numbers appear on the pages.

Submitting Corrections
Click the ‘Author Verify Typeset Proof” button (available at the link you downloaded the typeset proof from) and select Option 2.

Option 2: Request Resubmission of Typeset Proof
- Please upload the corrected Word document, or add your instructions for corrections in the text box provided
- Note that you can only upload one document, and this document must contain all of the corrections (and those of your co-authors if applicable).

The typesetter will receive notification of your requested corrections. Once the corrections have been completed you will be notified of the availability of a revised typeset proof for your approval.
Clarifying Food Education toward Innovation and Design for the Global Green New Deal

Angela Turner and Kurt Seemann
Clarifying Food Education toward Innovation and Design for the Global Green New Deal

Angela Turner, Southern Cross University, Australia
Kurt Seemann, Swinburne University of Technology, Australia

Abstract: There is an increasing need for food and beverage industries to develop a culture of innovation and sustainability around food practices. The increase in world population and demands of consumers contribute to the development of a diverse suite of food capabilities, and remains a significant issue in relation to climate change and staff education. For businesses it is important to develop new concepts and processes that combine purpose and contextual factors in association with sustainability knowledge and the choice of food hospitality tools, techniques, and materials for meal design. Technacy genre theory is explored as a framework applicable to the level of kitchen systems and skills that allows for sustainable and effective understandings of technological practice and innovation for a range of green new deal hospitality capabilities.

Keywords: Food and Beverage Industry, Climate Change, Staff Education, Innovation, Sustainability, Technacy Genre Theory

Introduction

HUMAN BEINGS AND the natural world are on a collision course. Human activities inflict harsh and often irreversible damage on the environment and on critical resources. If not checked, many of our current practices put at serious risk the future that we wish for human society and the plant and animal kingdoms, and may so alter the living world that it will be unable to sustain life in the manner that we know. Fundamental changes are urgent if we are to avoid the collision our present course will bring about – “World Scientists’ Warning to Humanity signed by more than 1,600 scientists, including 102 Nobel laureates, from 70 countries” (Meadows, Randers & Meadows, 2004, p. 15).

This paper raises the issue of sustainability and highlights the need to explore the role carbon knowledge associated with technology choice can play in promoting best practice in restaurants and food outlets. The objective is to advance literature in understanding the dynamics between supply and demand for staff so that they are appropriately skilled within a food supply chain that seeks better ecological balance in the industry. The backdrop to this paper draws on literature that explores the relationship between economics, ethics, climate change, and how these elements influence regional economies.

While the design and methods of Food Hospitality and Tourism industries are slowly reconciling their ecological responsibilities (Gossling, Garrod, Aall, Hille, & Peeters, 2011), the climate imperative adds a new design, social, technical and accordingly, a new educational dimension to the challenges before the sector. Meadows, Meadows & Randers (1972) projected the scenario of global instability through resource overshoot if practices were to con-
continue unchanged in a context where world consumption of food production resources continue
to rise, aided by growth in industrial methods that raise pollution management challenges. More recently the Stern Review (2007) commissioned by the United Kingdom Government presented the current scenario as having reached our sustainable limit. The thrust of the review projected the impact climate change will continue to have on a global scale through greenhouse gas (GHG) emissions caused by human activity. Scientists are quick to discern the greenhouse effect is a natural ecological phenomenon that protects the planet against extremities of cold and heat. Cook (2010) clarifies nature as a planet manager that balances natural emissions through giving off CO₂ and absorbing CO₂ (via sequestration) as part of the biological carbon cycle. However, while GHG emissions and sequestration processes are natural cycles, the additional production of GHGs associated with human population growth and our means of production has both added a higher than historically seen burden of GHG emissions into the natural cycle of sequestration. We are still heavily reliant on fossil fueled technologies, and are reducing key natural sequestration processes due in part to our accelerated equatorial deforestation. Our means of food production with high demand for growing beef and land clearing for monoculture have also compounded the challenge for the natural sequestration of GHG emissions. Meadows et al., (2004) painted a bleak picture between the ecological footprint of humanity and the carrying capacity of Earth requiring more than one Earth by the year 2000, with extreme weather conditions unfolding through anthropogenic global warming (Berners-Lee, Howard, Moss, Kaivanto, & Scott, 2010; Stern, 2007; United States Environmental Protection Agency, 2010).

Emerging green ideas of global market significance to the Food Hospitality and Tourism industry, such as the United Nations Environment Programme, ought now be considered as part of a new foundation to the sectors’ business plan (United Nations Environment Programme, 2011). The ‘Global Green New Deal’ represents a new era of green collar jobs that demand skills, knowledge and awareness development in food sustainability and innovation. Renewable energy, industry, transportation, building, agriculture and forestry sectors are areas, if fostered well through effective policy design, provide investment and incentives to reduce carbon dependency, create jobs, protect ecosystems and alleviate poverty (United Nations Environment Programme, 2008, 2009a). This initiative draws on the Stern Review (2007) that aimed to stimulate economic recovery through the reduction of fossil fuel emissions and emission-intensive goods and services, while also improving energy efficiency by switching to technologies and design of processes that produce fewer emissions and lower the carbon intensity of production. In the southern hemisphere, The Garnaut Climate Change Review Update (2011), commissioned by the Australian Government, declared an immediate shift in the ‘business as usual’ thinking and practice. The CO₂ emissions for Australia are nearly twice the Organisation for Economic Cooperation and Development’s (OECD, 2010) average and more than four times the world average (per capita). This is largely due to the high usage of coal in electricity generation and agricultural emissions from machinery (Commonwealth of Australia, 2009; Garnaut, 2011). The review warned that without mitigating energy dependence of fossil fuels, Australia would contradict the carbon reduction trend being led by other developed countries and as a result contribute significantly toward global warming. The main challenge for the Australian economy is that the mining sector forms the backbone of the country’s economic structure, with the most carbon intensive export earner being coal: coal exports in Australia represents 54% of the total Australian production of energy worth $24 billion in 2007–2008 (Commonwealth of Australia, 2009;
NSW Greens, 2010). The country’s reliance on fossil fuels as an export faces an exceptionally high cost of mitigation and as such has been an ongoing contentious political issue. Conversely, Australia’s climate and geographic landscape offers exceptionally rich resources for renewable energy: solar, geothermal and wind (Garnaut, 2008). This natural abundance of renewable energy sources in Australia has raised the debate to expand research and development into a post mining, lower carbon structural shift in the nation’s economy. This would open up opportunities to improve economic growth through new ‘green’ market prospects that involve low-carbon energy technologies and other low-carbon goods and services.

From the time we wake up in the morning to a cup of coffee until we toast another day at sundown, the food and beverage industry plays a vital role in the lives of billions of people every day. Over the years, social and economic trends have had an impact on the industry, but ultimately it is the environment—which has been largely undervalued to date—that will decide the industry’s future (Lonescu-Somers & Steger, 2008, p. xvi)

The Food Hospitality and Tourism industry is a sector that is recognized as a noted consumer of energy and producer of GHG emissions due mainly to the technology systems it uses or relies upon to bring food and service to the market. The sector contributes approximately 5% to global GHG emissions (Dwyer, Forsyth, Spurr, & Hoque, 2010). It is also ecosystem dependent and as such is vulnerable to climate change due to extreme weather patterns, which have the capacity to affect tourist flow and spending (ibid). The overarching message from the literature is one of a global collective undertaking to slow down global warming. The significance the Food Hospitality and Tourism industry can contribute through the carbon footprint of menus for example would represent a starting point for planning sustainable food practice in mitigating fossil fuelled CO$_2$ emissions.

The international community is taking concerted action against climate change around a commonly agreed framework led by the United Nations. This UN framework will seek to establish a long-term post-Kyoto roadmap with rapid deployment and targeted milestones. The tourism sector has an important place in that framework, given its global economic and social value, its role in sustainable development and its strong relationships with climate (World Tourism Organisation and United Nations Environment Programme, 2008, p. 13).

‘Carbon footprint’ is a commonly used expression that refers to carbon emissions or greenhouse gas emissions resulting from global production and consumption of goods and services. For the Food Hospitality and Tourism industry, defining an overall picture of carbon emission is not easily defined due to the varied interpretations across the industry’s multifaceted structure. These involve three core sectors: 1) Transport-aviation, road, rail, boat; 2) Food and Beverage-café, restaurant & retail food outlets; and 3) Hotel-accommodation (Becken & Patterson, 2006; Dwyer, et al., 2010; Hoque, et al., 2010).

As with many sectors, the link between Tourism and Climate is only now drawing more detailed attention in the literature and practice of the sectors operations. Until the Djerba Declaration was implemented through the World Tourism Organisation (WTO) in 2003, the relationship between tourism and climate change was vague or not recognized. The planning of food as a highly interconnected sustainable system has an important role to play in reducing
the carbon footprint but has remained a largely neglected area by many individual tourism destinations and businesses (Becken & Patterson, 2006; Dwyer, et al., 2010; Pothukuchi & Kaufman, 2000; White, 2007; Yang, 2010). A five-year survey of the Food and Beverage industry by Lonesue-Somers and Steger (2008) concluded that although managers acknowledged the importance of sustainability, they were uncertain of profitable outcomes with no measurable or tangible criteria for which to base any decision making upon. In this context, the biggest challenge will be nurturing a new habit of mind or ‘psychological adaptation’ for managers and workers in the economics of green skilling through the process of innovation (Reser and Gifford (2010). Although the science of measuring a food carbon footprint in detail is still in the early stages of development (Andrews, 2010; S Gaballa & Abraham, 2007; S Gaballa & Cranley, 2008; Harrington, 2008), the push toward green jobs opens up opportunities to educate and produce clever and creative people in promoting best practice in restaurants and food outlets.

Method

White (2007) argues policy frameworks do not consider a ‘systems-based’ approach for the reduction of carbon intensity, particularly in food production and consumption. Dwyer et al (2010) for example proposed a direct and indirect tool to measure a complete picture of tourism’s carbon footprint, while Becken and Patterson (2006) applied a bottom-up analysis involving industry and tourist analysis, and a top-down analysis using environmental accounting. Hoque et al., (2010) outlined a method to estimate carbon footprint based on a production and expenditure approach. All methods are adequate in a ‘whole industry’ context but fall short in the capacity to measure the carbon footprint in the restaurant and food outlet services specifically based on their form or typology of food processing practices. This paper proposes a contemporary research tool that identifies essential structures of technology knowledge as a ‘nested system’ capable of mapping key elements of the carbon footprint across different industries based on the typology (also referred to as genre) of technology systems practiced in the hospitality sector.

Recent research undertaken in Australia tested the empirical merits of Technacy Genre Theory through a nation wide survey of industry food technology and secondary school food technology perceptions about their form of practice in the profession. The research was modeled upon an existing critical theory known as Technacy Genre Theory (Seemann, 2009). The fundamental praxis of Technacy considers access and equity and ensures that social and environmental inputs are considered equally valid parts in decision-making processes for technological activities (Australian Science Technology and Engineering Council, 1996; Liew, Chang, & Yalvac, in press; Northern Territory Curriculum Corporation, 2009; Northern Territory Government, 2003; Seemann cited in Fleer and Jane, 2004; Seemann, 2000a, 2000b, 2003, 2004a, 2006b, 2009; Seemann & Talbot, 1995; Turner, 2010a, 2010b; Turner & Seemann, 2010; Walker, 2000).

In the Australian study noted above, perception grids (Provost, Martin, Hannan, Bath, & Lipp, 2007) were used to help clarify a dispute between school based teacher views of what constitutes the typology of learning known as Food Technology, and the wider food profession view of the same expression. The point of difference to be tested was framed as identical terms, referring to two different genres of food knowledge, purpose and technical practice: that is, to detect the degree of difference between two forms of food genre to help isolate
the cause of confusion in the sector. The context of this need for clarification was based on
the concern expressed by the wider food sector in Australia that while-ever the school view
of food knowledge was unaligned with the wider sector’s view, there remained a key imped-
iment to effectively educate society of the need to coherently redress such challenges as food
security, food innovations and technical system changes in efforts to adapt to the impact of
climate change. A clearer view of the forms of food technical practice can facilitate strategies
towards food innovation and education from a common conceptual base while simultaneously
servicing the diverse study and practice of food in the sector.

Technacy Genre Theory was selected as the conceptual framework to identify and measure
inter-relationships and subtle differences between typologies of technology practice assumed
under the banner of Food Technology. The degree of association between two forms of food
practice was defined by an index (noted hereafter as the Technacy Genre Index) of correlation
between three key elements identified under Technacy Theory. These three elements have
previously been argued to be core and systemic across all forms of technical practice
(Seemann, 2003). The core Technacy elements include the type of knowledge and techniques
embodied by the individual (summarized as their Agency); the technical systems and tools
used (summarized as Tool Systems); and the material ingredients transformed and consumed
(summarized as the Materials or eco-resource used in processes). A key advantage of the
Technacy Theory approach was its necessary inclusion of ecology and technical systems as
part of the human knowledge underpinning the processing of food. Of particular theoretical
interest was that the Technacy Genre Index could detect a high degree of association between
two hypothesised genres. The indexing system was able to demonstrate both: 1) The existence
of Technacy Genre systems [the existence of technology types by the comparative measures
of the Technacy Genre perception index] and 2) that the process of Genre identification
clarified how Food Technology portrayed in schools, was both qualitatively and systemically
different to the wider professional expectations of the same. Guided by Technacy Genre
Theory, perceptions were gathered around contextual and goal oriented aspects of practice,
with a specific interest in:

1. Human elements of practice (e.g. agency, knowledge, techniques, values, social organi-
isation)
2. Tool elements of practice (e.g. enabling technical devices and systems)
3. Material or ecological elements of practice (e.g. consumable ingredients, properties,
aesthetics, impact on ecology).

The above three elements represent, according to Technacy Theory, both resources and
constraints evident in all forms of technological practice (Seemann, 2003, 2009). Each element
exists in a dependent relationship with the other elements of practice, and is defined via the
purpose and context of application. The study also aimed to gauge relative attention given
to goals concerning sustainability, economic trends and innovation capacity building as these
areas remain topical in the wider context of the field of food technology research and emerging
world concerns. In understanding these dynamics, the framework identified meta-inferences,
perceptions and measured inter-relationships and subtle differences between typologies (genre) of technology practice for Food Technology.
Findings and Discussion

The research found that secondary schools and the wider profession of food technologists used the same labels of ‘food technology’ for food studies, but that their content and practice were significantly and substantially different. That this difference was so statistically and qualitatively different it was apparent there were two different genres of food practice at play, but being confused in educational discourse as being the same.

Thematic analysis of text for understanding the reasons why Food Technology should be taught in schools was framed using the Technacy Genre headings. Figures 1, 2 and 3 show the dominant knowledge and practice for teaching ‘food technology’ in schools between secondary teachers and the wider profession of food technologists; the higher the number, the more participants registered their orientation towards the theme shown. The qualitative findings suggest teachers are more connected to social life skills, cooking and nutrition, while food technologists focused much more on food science innovation research, design and food quality.

Figure 1: Knowledge

Figure 2: Tools
A quantitative result through a Pearson’s 3x3 correlation matrix shows there is a very strong three-way interdependent pattern, as predicted in Technacy Genre theory. Figure 4 statistically validates that teachers perceived priority systems of Food Technology knowledge significantly differently to the wider professional community of food technologists. Knowledge-Tools (n=382, r=.823, p<.000, 2-tailed); Knowledge-Ingredients (n=382, r=.742, p<.000, 2-tailed); and, Tools-Ingredients (n=382, r=.790, p<.000, 2-tailed).
The ability of Technacy Genre Theory to effectively identify differences in forms of technical capabilities provides a key method for planning skills required to shift food hospitality education towards the global green new deal for the sector.

Proprietors of restaurants, food outlets and working staff need to be well educated in the complexities of the systemic form or genres of food preparation practices. Each form of food processing necessitates an ecological and technical choice that impacts on the carbon footprint of that process. In the food industry, technological activity involves nearly everything undertaken or made that involves the system of human agency, tools chosen for food transformation and material/ecological ingredients of food preparation. Further, the minimum genre system of food agency, food tools, and food ingredients, appear to act as interdependent systems: change one of these and a change is observed to occur in the other two systems to form a genre variation. If the purpose of the restaurant menu is changed to suit a lower carbon emission target, then the elements of the genre system have also been observed to change. If the purpose of the menu is changed to offer lower carbon footprint meals, the restaurateur can anticipate a need to also change key aspects of the tools and technical systems they use, the food ingredients stocked in storage, and the knowledge and techniques required to prepare and transform that food. For example, electric tools and equipment, ingredients and knowledge are Technacy elements a chef can control. As a professional collective, hospitality food sectors can also control the technology suppliers market by demanding lower carbon footprint tools and equipment for food design. Changes in tool use also produces new processes and techniques. Although locally sourced foods mitigate ‘food miles’, ingredient choice is now a key consideration in mitigating carbon emissions where meat and cheese are now considered high carbon foods (Steinfeld, et al., 2007).

Conclusion

This paper highlighted that the Food Hospitality and Tourism sector is both a contributor to climate change emissions, as well as a sector that can take climate change action to manage and reduce those emissions. While the literature includes research at a sector wide basis for how food production and preparation can reduce its greenhouse gas emissions, there has been little research published to guide how the technical forms of food preparation practice can be more carefully conceptualized to guide change at the food preparation level of the process. The conceptual and systemic framework of Technacy Genre Theory, by its method of embedding food practice in an interdependent ecological, technical and capability system, offers the restaurateur a new way to anticipate how systemic changes in food practice can be organized towards a greener form of operations. The restaurateur can also anticipate that ideas such as marking meals on the menu with a green rating, will mostly likely, in accord with the genre theory discussed, also demand a systemic change in food preparation, kitchen equipment used and food ingredients purchased for the menu. Technacy Genre Theory offers a useful conceptual framework to guide the food hospitality sector in the process of planning their systems towards a lower carbon footprint service.
References

Angela Turner

Angela’s research interest concerns food education, food sustainability, and food innovation research (regional foods and food education research). Her industry affiliation with the Australian Institute Food Science and Technology Incorporated aligns as a common interest to improve the direction of food technology curriculums in secondary schooling. Her affiliation interest with the Centre for Tourism, Leisure and Work involves regional food sustainability and food innovation research. Her doctoral thesis explores the evolution of food curriculum studies in New South Wales, Australia, and to what extent food technology in education is well placed to meet emerging policy and economic demand for food innovation expertise in the industry. A particular focus involves technacy genre theory as a conceptual tool to identify and measure inter-relationships and subtle differences between typologies of technology practices for food technology.

Prof. Kurt Seemann

Dr. Seemann’s research investigates the relationship between people, technology, and the environment as a complex adaptive system. The scale of his research has been focused at two levels: the human scale of holistic technology education and processes of innovation, and the larger societal scale of systems driving and defining the sustainability of human settlements.
Editors
Bill Cope, University of Illinois at Urbana-Champaign, USA

Editorial Advisory Board
Claire Drummond, Social Health Science; Flinders Prevention, Promotion, & Primary Health Care, School of Medicine, Flinders University, Sturt Campus, AU
Kristen Harrison, Department of Communication, Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, USA
Debra Stern, Health Professions Division, College of Allied Health and Nursing, Physical Therapy Department, Nova Southeastern University, USA

Please visit the Journal website at http://food-studies.com/ for further information about the Journal or to subscribe.
Food Studies Community
This knowledge community is brought together by a common interest to explore new possibilities for sustainable food production and human nutrition. Our aim is to consider the dimensions of a ‘new green revolution’ that will meet our human needs in a more effective, equitable and sustainable way in the twenty-first century. The community interacts through an innovative, annual face-to-face conference, as well as year-round virtual relationships in a weblog, peer reviewed journal and book series—exploring the affordances of the new digital media. Members of this knowledge community include academics, teachers, administrators, policy makers and practitioners in food communities.

Conference
Members of the Food Studies Community meet at Food Studies: An Interdisciplinary Conference, held annually in different locations around the world, each selected for the particular role education is playing in social, cultural and economic change. In 2011, the Conference was held at the University of Nevada Las Vegas, Las Vegas NV, USA, and in 2012, the Conference will be held at the University of Illinois, Champaign, USA.

Online presentations can be viewed on YouTube.

Publishing
The Food Studies Community enables members to publish through three mediums. First, by participating in the Food Conference, community members can enter a world of journal publication unlike the traditional academic publishing forums—a result of the responsive, non-hierarchical and constructive nature of the peer review process. Food Studies: An Interdisciplinary Journal provides a framework for double-blind peer review, enabling authors to publish into an academic journal of the highest standard.

The second publication medium is through the book series Food Studies, publishing cutting edge books on education in print and electronic formats. Publication proposals and manuscript submissions are welcome.

The third major publishing medium is our news blog, constantly publishing short news updates from the Food Studies Community, as well as major developments in the field of education.
Common Ground Publishing Journals

<table>
<thead>
<tr>
<th>AGING</th>
<th>ARTS</th>
</tr>
</thead>
</table>
| Aging and Society: An Interdisciplinary Journal
Website: www.Arts-Journal.com |

<table>
<thead>
<tr>
<th>BOOK</th>
<th>CLIMATE CHANGE</th>
</tr>
</thead>
</table>
| The International Journal of the Book
Website: www.Book-Journal.com | The International Journal of Climate Change:
Impacts and Responses
Website: www.Climate-Journal.com |

<table>
<thead>
<tr>
<th>CONSTRUCTED ENVIRONMENT</th>
<th>DESIGN</th>
</tr>
</thead>
</table>
| The International Journal of the Constructed Environment
Website: www.ConstructedEnvironment.com/journal | Design Principles and Practices:
An International Journal
Website: www.Design-Journal.com |

<table>
<thead>
<tr>
<th>DIVERSITY</th>
<th>FOOD</th>
</tr>
</thead>
</table>
| The International Journal of Diversity in Organizations, Communities and Nations
Website: www.Diversity-Journal.com | Food Studies: An Interdisciplinary Journal
Website: http://Food-Studies.com/journal/ |

<table>
<thead>
<tr>
<th>GLOBAL STUDIES</th>
<th>HEALTH</th>
</tr>
</thead>
</table>
| The Global Studies Journal
Website: www.GlobalStudiesJournal.com | The International Journal of Health, Wellness and Society
Website: www.HealthandSociety.com/journal |

<table>
<thead>
<tr>
<th>HUMANITIES</th>
<th>IMAGE</th>
</tr>
</thead>
</table>
| The International Journal of the Humanities
Website: www.OntheImage.com/journal |

<table>
<thead>
<tr>
<th>LEARNING</th>
<th>MANAGEMENT</th>
</tr>
</thead>
</table>
| The International Journal of Learning.
Website: www.Management-Journal.com |

<table>
<thead>
<tr>
<th>MUSEUM</th>
<th>RELIGION AND SPIRITUALITY</th>
</tr>
</thead>
</table>
| The International Journal of the Inclusive Museum
Website: www.Religion-Journal.com |

<table>
<thead>
<tr>
<th>SCIENCE IN SOCIETY</th>
<th>SOCIAL SCIENCES</th>
</tr>
</thead>
</table>
| The International Journal of Science in Society
Website: www.ScienceinSocietyJournal.com | The International Journal of Interdisciplinary Social Sciences
Website: www.SocialSciences-Journal.com |

<table>
<thead>
<tr>
<th>SPACES AND FLOWS</th>
<th>SPORT AND SOCIETY</th>
</tr>
</thead>
</table>
Website: www.SpacesJournal.com | The International Journal of Sport and Society
Website: www.sportandsociety.com/journal |

<table>
<thead>
<tr>
<th>SUSTAINABILITY</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
</table>
| The International Journal of Environmental, Cultural, Economic and Social Sustainability
Website: www.Sustainability-Journal.com | The International Journal of Technology, Knowledge and Society
Website: www.Technology-Journal.com |

<table>
<thead>
<tr>
<th>UBIQUITOUS LEARNING</th>
<th>UNIVERSITIES</th>
</tr>
</thead>
</table>
| Ubiquitous Learning: An International Journal
Website: www.ubi-learn.com/journal/ | Journal of the World Universities Forum
Website: www.Universities-Journal.com |

For subscription information please contact subscriptions@commongroundpublishing.com