Skip to main content
Management Recommendations Based on Matrix Projection Models: The Importance of Considering Biological Limits
Faculty Publications in the Biological Sciences
  • Joan Lubben, University of Nebraska - Lincoln
  • Brigitte Tenhumberg, University of Nebraska - Lincoln
  • Andrew J Tyre, University of Nebraska at Lincoln
  • Richard Rebarber, University of Nebraska - Lincoln
Date of this Version
Published in Biological Conservation 141:2 (February 2008), pp. 517–523; doi: 10.1016/j.biocon.2007.11.003 Copyright © 2007 Elsevier Ltd. Used by permission.
Matrix population models are a common tool for evaluating different management strategies. In general, under deterministic analyses, management strategies are recommended that improve those matrix transitions that are most sensitive or elastic with respect to the asymptotic population growth rate, λ. These recommendations usually ignore the biological limit for these transitions. In this paper we use the endangered Serengeti cheetah (Acinonyx jubatus) as a case study to illustrate that ignoring biological limits leads to a recommendation that will not always achieve the desired goal of an asymptotic population growth rate, λ ≥ 1. We estimate the survivorships of adult cheetahs in captivity using cheetah studbook data, which is a conservative estimate of the biological limit for the adult survivorship of wild cheetahs. Our analysis suggests that adult survival sharply decreases after 8.5 years. In addition, captive cheetahs older than 18 years do not reproduce. We modify a previously published population projection matrix to include the effect of senescence on survival and fecundity. Our model suggests that increasing adult survivorship alone is not sufficient to reverse population decline. However, an additional small increase in newborn survival is likely to result in a viable cheetah population. We show these conclusions hold even in the presence of relatively large parameter perturbations.
Citation Information
Joan Lubben, Brigitte Tenhumberg, Andrew J Tyre and Richard Rebarber. "Management Recommendations Based on Matrix Projection Models: The Importance of Considering Biological Limits" (2008)
Available at: