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Abstract. We give a deterministic polynomial-time algorithm that com-
putes a nontrivial rational point on an elliptic curve over a finite field,
given a Weierstrass equation for the curve. For this, we reduce the prob-
lem to the task of finding a rational point on a curve of genus zero.

1 Introduction

Elliptic curves over finite fields have been in the centre of attention of cryptog-
raphers since the invention of ECC, and in that of number theorists for a much
longer time. It is not very hard to show that, unless the base field is extremely
small, such curves always have rational points other than O, the point at in-
finity. However, it is a different question how to construct such rational points
efficiently.

Until now, this was possible only using an obvious probabilistic method:
given an equation for the curve, substitute random values for all coordinates
but one and see if the remaining univariate equation can be solved for the last
coordinate. If so, a probabilistic polynomial factorisation algorithm will give
the last coordinate and a rational point has been found. The challenge for a
deterministic algorithm has been up at least since 1985, when R. Schoof posed
it in [8].

In a recent publication [11], however, M. Ska lba proved that, given a cubic
polynomial f(x) = x3 + Ax +B over a field F with characteristic unequal to 2
or 3, with A 6= 0, we have the identity

f(X1(t2))f(X2(t2))f(X3(t2)) = U(t)2 (1)

for some nonconstant univariate rational functions X1, X2, X3, U over F . Such
functions are given explicitly in his paper [11, Theorem 1]. We do not reproduce
them here, as both their degree and their coefficients are large; if X1X2X3 =
N/D for coprime polynomialsN andD in F [t], then degN ≤ 26 and degD ≤ 25,
depending on the characteristic of F .



Now assume that F is a finite field and that the curve E is defined over F by
the equation y2 = f(x), with f as above. The multiplicative group F

∗ is cyclic,
and therefore, as Ska lba notes, if we specialise t in (1) to some value t0 in F, we
find that at least one of the f(Xi(t

2
0)) is a square in F

∗. However, no efficient
deterministic algorithm is known to date to take the square root.

In this paper, we show how to go on from this point to obtain a complete
efficient deterministic algorithm for constructing rational points on curves given
by cubic Weierstrass equations over finite fields. We will reprove Ska lba’s result
to obtain, for the case of finite fields of odd characteristic, a parametrisation as
in (1) that is invertible as a rational map (Lemmas 6 and 7 below).

The construction of this parametrisation in the case of odd characteristic
rests on the ability to solve deterministically and efficiently equations of the
form

ax2 + by2 = c (2)

over finite fields, for which an algorithm will be given in Section 2 (Theorem 4).
In Section 2, we also give a deterministic algorithm that, given nonzero ele-

ments a0, a1, a2 in a finite field such that their product is the square of a given
element, computes a square root of one of them, in polynomial time. It is clear
that such an algorithm is the missing step to construct a rational point on E,
when an equation of the form (1) is given.

An analogon of (1) for finite fields of characteristic 2 will be used to obtain
a point finding algorithm for elliptic curves in this case as well.

The main result is as follows:

Theorem 1. There exists a deterministic algorithm that, given a finite field F

of q elements and a cubic Weierstrass equation f(x, y) over F:

(i) detects if f(x, y) is singular, and if so, computes the singular points and gives
a rational parametrisation of all rational points on the curve f(x, y) = 0;

(ii) if f(x, y) is nonsingular and |F| > 5, computes an explicit rational map ρ
from the affine line over F to an affine threefold V that is given explicitly in
terms of the coefficients of f ;

(iii) given a rational point on the threefold V , computes a rational point on the
elliptic curve E : f(x, y) = 0, in such a way that at least (q − 4)/8 rational
points on E are obtained from the image of the map ρ, and at least (q−4)/3
if F has characteristic 2;

and performs all these tasks in time polynomial in log q.

From the proofs in this paper, such an algorithm can be explicitly con-
structed; the running time of this algorithm is not much worse than that of a
probabilistic point generation algorithm. We plan to give an explicit algorithm,
with detailed running time bounds, in a forthcoming publication.

After Section 2 on how to solve diagonal quadratic equations, we give some
generalities on Weierstrass equations in Section 3 and show how to parametrise
the solutions of a singular Weierstrass equation in Section 4. The nonsingular
case, where the given equation indeed defines an elliptic curve, is split into two



cases: in Section 5, we prove Theorem 1 for base fields of odd characteristic,
whereas base fields of characteristic 2 are considered in Section 6.

Acknowledgement. We would like to thank our respective advisors Eric Bach
and Hendrik Lenstra for helpful discussions.

2 Quadratic equations

Before turning to cubic equations, we first give the necessary algorithms for
solving quadratic equations. Theorem 3 is concerned with taking square roots,
while Theorem 4 is about equations of the form (2). These results, which are
taken from the second author’s Ph.D. thesis [12], are new and deterministic
efficient algorithms have been unknown to date.

We write v2(a) to denote the number of factors 2 in a nonzero integer a; if a
is a nonzero element of a finite field F, we write ord(a) to denote the order of a
in the multiplicative group F

∗.

Lemma 2. There exists a deterministic algorithm that, given a finite field F of
q elements, and nonzero elements a and z of F such that either

(i) v2(orda) < v2(ord z), or
(ii) orda is odd,

computes a square root of a, in time polynomial in log q.

Proof. We construct a deterministic adaptation of the Tonelli-Shanks algorithm;
for the latter, see Section 1.5.1 in [5], for example.

It is easy to prove that to compute a square root of a nonzero element a ∈ F,
it is sufficient to have a generator z of the 2-Sylow subgroup of F

∗. Usually,
such a generator is obtained by guessing a nonsquare element n and computing
z = nu, where we write q − 1 = 2e · u such that u is an odd integer; this is the
only probabilistic part of the Tonelli-Shanks algorithm.

The proof is as follows: au is in the 2-Sylow subgroup, and hence there exists
an integer k such that zk = au. The integer k is even if and only if a is a square
in F; furthermore, it is clear that zk/2 is a square root of au, and from a square
root of au it is easy to compute a square root of a, because u is odd and hence
au+1 is an obvious square. Thus, the real task of the Tonelli-Shanks algorithm
is the computation of the integer k.

However, the only thing that is used about z is the fact that

au = zk

for some even integer k; and for such a k to exist, it is only necessary that either
au = 1, or the group generated by au inside 2-Syl F

∗ is strictly contained in
the group generated by z. But these conditions correspond to our assumptions
v2(orda) = 0 and v2(ord a) < v2(ord z), respectively. Therefore, if instead of a
2-Sylow subgroup generator we use any element whose order contains enough



factors 2, the Tonelli-Shanks algorithm as given in [5] works just as well, while
the nondeterministic part of guessing a nonsquare element is eliminated. �

Theorem 3. There exists a deterministic algorithm that, given a finite field F

of q elements, and nonzero elements a0, a1, a2, b of F such that a0a1a2 = b2,
returns an i in {0, 1, 2} and a square root of ai, in time polynomial in log q.

Proof. After changing the order of the ai, we may assume that v2(orda0) ≥
v2(orda1) ≥ v2(ord a2). If v2(ord a0) > v2(orda1), then by Lemma 2 we may use
a0 as a substitute for a 2-Sylow subgroup generator, and compute a square root
of a1; and if v2(ord a1) > v2(ord a2), the same holds for a1 and a2.

Thus, consider the case where v2(orda0) = v2(ord a1) = v2(orda2). Then
it follows that, say, a0a1 has fewer factors 2 in its order than a2, and we can
compute

√
a0a1; but by the given relation among the ai, we have a0a1 = a2/b

2,
and we compute a square root of a2. �

Theorem 4. There exists a deterministic algorithm that, given a finite field F

of q elements, and nonzero elements a, b, c of F, computes x, y ∈ F such that

ax2 + by2 = c.

Proof. We may of course assume that c = 1. Now if v2(ord(a)) > v2(ord(b)), we
can use the algorithm in Lemma 2 to take a square root of b, and the problem is
solved by taking x = 0 and y = 1/

√
b; and analogously if b has the larger order.

If v2(ord(a)) = v2(ord(b)) =def w, we distinguish three cases: w = 0, w = 1, and
w > 1.

If w = 0, then we can still compute square roots of both a and b by means
of Lemma 2, and we are done. If w > 1, then v2(ord(−ab)) < w, so that, after
computing

√
−ab, we may assume b = −a. The equation ax2 − ay2 = 1 is easily

solved by putting x+ y = 1 and x− y = 1/a and solving the linear system.
The case w = 1 is the hardest. Both −a and −b have odd order, so we may

take their square roots by Lemma 2 and obtain the equation −x2 − y2 = 1. One
sees that this is equivalent to

x2 + y2 + z2 = 0.

For this, we developed a fast algorithm in Section 5.5 of [12]. A slower, but
also deterministic, algorithm for this problem can be found in [4], and also the
algorithm given in the second proof of Corollary 1 in [11] can be adapted to this
case, by using Lemma 2. �

Remarks. It is well known that (2) is always solvable; this follows already from
the fact that the cardinalities of the sets {ax2 | x ∈ F} and {c− by2 | y ∈ F} add
up to more than q, and therefore these sets must meet.

The algorithm for solving (2) given above is a special case of the main algo-
rithm from [12]; this algorithm can solve diagonal equations of the form

a1x
n
1 + . . .+ anx

n
n = b



over finite fields.
In finite fields of characteristic 2, the above results are trivial, since all el-

ements have odd order. However, over such fields many quadratic equations
cannot be reduced to the diagonal form (2), and this yields new difficulties. We
refer to Section 6 for a discussion of this case.

3 Weierstrass equations

Let F be a finite field, let q be its number of elements, and let E be the affine
curve given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (3)

where the ai are in F. The curve E also has one point at infinity, with homoge-
neous coordinates (0 : 1 : 0), which is called O.

If E is nonsingular, then the projective closure Ẽ of E is a smooth projective
curve of genus 1 over F with a specified rational point, so it is an elliptic curve
over F, and every elliptic curve over F may be given in this way [10, Proposition
III.3.1]. The set of rational points on Ẽ has a natural abelian group structure,
with the point O as identity element.

We will be interested in methods to construct rational points on Ẽ other
than O, or to show that no other points exist. By Hasse’s bound [10, V.1.4], we
know that the number N of rational points on Ẽ satisfies

|q + 1 −N | ≤ 2
√
q.

From this, it is easily verified that Ẽ has at least 2 rational points whenever
q ≥ 5. On the other hand, if q ≤ 4, curves over F exist with only the trivial
rational point O, such as the curve y2 = x3 − x − 1 over F3, and the curve
y2 + y = x3 + α over F4 = F2(α).

Normal forms. The equation (3) may be simplified depending on the character-
istic of the base field. We give these forms in detail as we will use their properties
later on; these formulas are given in Section III.1 and Appendix A of [10].

If the characteristic of F is not 2 or 3, then a linear change of coordinates
transforms (3) into

y2 = x3 +Bx+ C =def f(x). (4)

For this form of the equation, the important associated quantities ∆ (the dis-
criminant) and j (the j-invariant) are easily computed: we have

∆ = −16(4B3 + 27C2), j = −1728(4B)3/∆.

Now E is singular if and only if ∆ = 0, and thus if and only if the right hand
side f(x) of (4) has a repeated zero; it has j-invariant 0 if and only if ∆ 6= 0 and
B = 0.



In characteristic 3, we must admit a third coefficient; we can transform (3)
into

y2 = x3 +Ax2 +Bx+ C =def f(x), (5)

with associated quantities

∆ = A2B2 −A3C −B3, j = A2/∆.

Again, E is singular if and only if f has a double zero. Also, we find that for a
nonsingular equation we have j = 0 if and only if A = 0.

In characteristic 2, no coefficient of (3) can be omitted in all cases. However,
we can obtain one of the following two normal forms, depending on whether a1

is zero:

Y 2 + a3Y = X3 + a4X + a6 if a1 = 0 initially, (6)

Y 2 +XY = X3 + a2X
2 + a6 if a1 6= 0 initially. (7)

In these normal forms, we have ∆ = (a3)4 and ∆ = a6, respectively, which gives
an easy criterion for singularity of E. Furthermore, for nonsingular equations,
the two cases correspond to j being respectively zero or nonzero.

4 Singular Weierstrass equations

For completeness, we show how to detect deterministically whether E is singular
and, if it is, how to find points on it. We continue to assume that F is a finite
field, although the only thing we really use in this section is the assumption that
the base field is perfect.

If the singularity test is positive, the projective closure Ẽ has genus 0 and
a unique singular point, which is rational over F provided F is perfect. We can
use this point to find a rational parametrisation of all nonsingular points on
E. It follows that the construction of rational points on a singular E is easy.
Furthermore, the constructions given below give rise to efficient deterministic
algorithms, whenever the operations of the field F are deterministically and
efficiently computable, including the operation of taking a pth root if char F = p.

We distinguish the cases of characteristic equal to 2 and unequal to 2.

Odd characteristic. Let char F be unequal to 2, and let E be given by y2 = f(x)
for some cubic polynomial f over F. If f has a double zero x2, then (x2, 0) is the
unique singular point on E. Such a double zero must be in F, as f has degree 3,
and also the third zero of f must be rational.

Let d = gcd(f, f ′), where f ′ is the derivative of f . If d is constant, then f
does not have a double zero and E is nonsingular. If d is linear, then its unique
zero gives the double zero x2. If d is quadratic, then char F 6= 3 and f has a triple
zero, which is equal to the unique zero of the linear polynomial d′, the derivative
of d. If d is cubic, then char F = 3 and f has a triple zero x2 = 3

√
C = C3

m−1

,
where m is the order of 3 modulo |F| − 1.



Assume E is singular; by an F-linear change of variables, we may assume
that the singularity is at (0, 0), and hence E is given by y2 = x3 +Ax2 for some
A ∈ F. Now we parametrise E by projecting lines from the singular point: any
such line has the form y = `x with ` ∈ F, and it intersects E twice in (0, 0) and
once more in (`2 − A, `3 − A`). This provides a rational parametrisation of E,
which is clearly computable efficiently and deterministically.

Characteristic 2. Now let char F be 2, and let E be given by the generic cubic
Weierstrass equation (3). We have ∂

∂y = a1x + a3, and hence E can be singular
in two ways.

The first is to have a1 = a3 = 0; we get ∂
∂x = x2 + a4, and the singular point

will be (
√
a4,

√
a6), which we move to (0, 0) by a translation. We have already

seen that the equation becomes y2 = x3 +Ax2 for some A ∈ F. We parametrise
E just as in the case of characteristic not 2, and find that ` 7→ (`2 +A, `3 +A`)
is a rational parametrisation, computable efficiently and deterministically.

The second has a1 6= 0, and there we may assume a3 = a4 = 0 and a1 = 1
by linear substitutions; by the equation 0 = ∂

∂x = y + x2, we find that E has a
singularity at (0, 0) if and only if in addition a6 = 0, and that E is nonsingular
otherwise. Assume E is singular; we now get the equation y2+xy = x3+Ax2, for
some A ∈ F. The same way of parametrising shows that ` 7→ (`2 +`+A, `3+`2 +
A`) is a rational parametrisation, computable efficiently and deterministically.

Remark. For a singular Weierstrass equation, there even exists a parametrisation
that is also a group homomorphism, but this map uses another affine patch of the
equation and need not always be defined over the base field F (see Proposition
2.5 in [10]).

5 Elliptic curves in odd characteristic

In this section, we prove Theorem 1 under the assumption that the base field F

is a finite field of odd characteristic and that E is the curve given by a nonsin-
gular Weierstrass equation (4) or (5). In particular, we let f be a cubic monic
polynomial over F without double zeros. The considerations up to Lemma 7 in
fact work over any field of characteristic not 2.

Let V denote the threefold

f(x1)f(x2)f(x3) = y2, (8)

which, geometrically speaking, is the quotient of E × E × E by the action of a
Klein 4-group of automorphisms, namely those automorphisms that act as −1
on two components and as the identity on the third. We will obtain an explicit
birational map from the affine line to a curve on V ; see Lemmas 6 and 7 below.

Let R = F[x]/(f) be the residue class ring of polynomials over F modulo f ;
as f has no multiple zeros, the ring R is a finite étale algebra over F (cf. [3],
Section V.6, especially Theorem 4 in V.6.7, and Section V.8). We denote by θ
the class of x modulo f ; thus θ generates R as an F-algebra. If g is a polynomial



in F[x] of degree d, then the homogenisation ghom ∈ F[x, y] of g is defined to be
ydg(x/y).

Lemma 5. For any u, v, w ∈ F satisfying u+ v + w +A = 0, we have

f(u)f(v)f(w) = (uv + uw + vw −B)3f

(

uvw + C

uv + uw + vw −B

)

. (9)

Proof. Let φ : F
3 → R be the map sending (u, v, w) to (u− θ)(v− θ)(w− θ). For

any u, v, w ∈ F, we have

φ(u, v, w) = uvw − (uv + uw + vw)θ + (u+ v + w)θ2 − θ3

= (uvw + C) − (uv + uw + vw −B)θ + (u + v + w +A)θ2, (10)

because f(θ) = 0.
Let HA be the subspace of F

3 of triples (u, v, w) satisfying u+v+w+A = 0.
Then φ maps HA into the subspace Rlin of R of elements that are linear in θ.
Now if α− βθ ∈ Rlin, with α, β ∈ F, then we have

NormR/F(α− βθ) = fhom(α, β) = β3f

(

α

β

)

. (11)

In particular, Norm(α − θ) = f(α). Thus by taking norms, equation (10) is
mapped to (9). �

Remark. The formula in the Lemma is a bit misleading in the sense that u, v, w
will not perform the same functions as x1, x2, x3 in (8).

Lemma 6. Put h(u, v) = u2 + uv + v2 +A(u+ v) +B, and define

S : y2h(u, v) = −f(u), (12)

ψ : (u, v, y) 7→
(

v, −A− u− v, u+ y2, f(u+ y2)h(u, v) y−1
)

. (13)

Then ψ is a rational map from the surface S to V that is invertible on its image.

Proof. We break the symmetry in (9) by putting w = −A − u − v. We find
uv+ uw+ vw−B = −u2 − uv− v2 −A(u+ v)−B = −h(u, v), and uvw+C =
u(uv + uw + vw −B) + u2(−v − w) + uB + C = −uh(u, v) + f(u).

Now let (u, v, y) be a rational point on S such that f(u) 6= 0; it follows that
y 6= 0 and h(u, v) 6= 0, as well. Then applying Lemma 5 with u, v, and −A−u−v
and using the equation of S twice gives us

f(v)f(−A−u−v)y2 = h(u, v)2f

(−uh(u, v) + f(u)

−h(u, v)

)

= h(u, v)2f(u+y2). (14)

We multiply by f(u+ y2) and divide by y2 to see that we have a rational point
on the threefold V .

From the definition of the map, it is clear that u, v, y can be computed from
the image of (u, v, y) on V , so that ψ is invertible on its image. �



Lemma 7. There exists a deterministic algorithm that, given a finite field F of
q elements, where q is odd, a nonsingular cubic Weierstrass equation y2 = f(x)
over F, and an element u ∈ F such that

f(u) 6= 0 and 3

4
u2 + 1

2
Au+B − 1

4
A2 6= 0,

computes a rational map
φ : A

1 → S

defined over F that is invertible on its image, in time polynomial in log q. Here
the surface S is as defined in (12).

Proof. Note that we may assume A = 0 whenever char F 6= 3; this could facilitate
reading the proof.

We fix a u ∈ F that satisfies the requirements given above; then the equation
(12) of the surface S specialises to a nondegenerate quadratic equation

[

y(v + 1

2
u+ 1

2
A)

]2
+

[

3

4
u2 + 1

2
Au+B − 1

4
A2

]

y2 = −f(u), (15)

which is of the form (2) for the variables z = y(v + 1

2
u+ 1

2
A) and y.

Now use Theorem 4 to compute a rational point (z0, y0) on (15), and let
t 7→ (α(t), β(t)) be the corresponding rational parametrisation of the conic (15),
still for the variables (z, y) (see [9, Sect. 1.2] or [6, Sect. 1.1]). We have v =
z/y − u/2 −A/2; therefore the map

φ : t 7→
(

u,
α(t)

β(t)
− u

2
− A

2
, β(t)

)

(16)

parametrises all rational points on S with the given u-coordinate, except (u, z0/y0−
u/2 −A/2, y0), because this point corresponds to t = ∞. �

After having given the ingredients of the construction of rational points on
the threefold V , we ask ourselves how many rational points will be found in this
way. The bound of (q − 4)/16 given by Lemma 9 can probably be improved.

Definition 8. We define two points P = (x1, x2, x3, y) and P ′ = (x′1, x
′

2, x
′

3, y
′)

on V to be disjoint if the sets {x1, x2, x3} and {x′1, x′2, x′3} are disjoint.

Lemma 9. Let F be a finite field of q elements, let u0 ∈ F satisfy the require-
ments of Lemma 7, and let φ : A

1 → S be the corresponding map. Let ψ be the
map from Lemma 6.

Then there is a subset T ⊆ F of cardinality at least (q − 4)/16, such that for
all distinct t, t′ ∈ T , the points ψ ◦ φ(t) and ψ ◦ φ(t′) are disjoint.

Proof. Let u0 be as in the Lemma; we fix it for the whole proof. The corre-
sponding map φ is well-defined except perhaps in two values of t where β(t) = 0,
and two others where (α(t), β(t)) lies at infinity. It follows that the image of φ
contains at least q − 4 points.



Let ψ : S → V be the map from Lemma 6; for two points P = (u0, v, y) and
P ′ = (u0, v

′, y′) on S, we want to find sufficient conditions for ψ(P ) and ψ(P ′),
or, equivalently, the sets {v,−A−u0−v, u0+y2} and {v′,−A−u0−v′, u0+y′2},
to be disjoint.

Note that v 7→ −A − u − v and y 7→ −y are automorphisms of S; these
automorphisms generate a Klein 4-group G. If P and P ′ share an orbit under G,
then ψ(P ) and ψ(P ′) cannot be disjoint. Note there is at most one orbit under
G for any given value of y2, as u = u0 is assumed to be fixed.

Assume now ψ(P ) and ψ(P ′) are not disjoint. A case-by-case analysis shows
that y′2 is equal to one of y2, v − u0, −A − 2u0 − v, or −f(u0)/h(u, u + y2),
where (12) is used to derive the last option.

Let us define a graph on the set of G-orbits on S with u = u0 by putting
an edge between two distinct orbits X and X ′ if there are non-disjoint points
P ∈ ψ(X) and P ′ ∈ ψ(X ′). The above reasoning shows that in this graph,
every vertex has at most three neighbours. We want to find a maximal set Σ
of pairwise nonadjacent vertices, meaning that if X 6= X ′ ∈ Σ, then all points
in ψ(X) are disjoint from all points in ψ(X ′). Such a set Σ can be constructed
greedily by selecting any vertex, adding it to Σ, deleting it and its neighbours
with all the incident edges from the graph, and repeating this process until no
vertices remain. As we include at least every fourth G-orbit, and as the orbits
contain at most 4 points, we see that at least a fraction of 1/16 of the points in
the image of φ have pairwise disjoint images under ψ. �

Proof of Theorem 1 (odd characteristic). Let F be a finite field of cardinality
greater than 5, so that there exists some u ∈ F satisfying the conditions of
Lemma 7; we fix such a u for the rest of the proof.

We first show how to compute rational points on the elliptic curve E, which
we assume to be given by an equation y2 = f(x), for some cubic polynomial
f with no double roots. By composing the maps ψ from Lemma 6 and φ from
Lemma 7, we can compute rational points on the threefold V . Then, given a
rational point P = (x1, x2, x3, y) on V , we apply the algorithm from Theorem
3 to f(xi) for i = 1, 2, 3 to compute a square root c of f(xi) for, say, i = i0.
Having done this, we see that (xi0 , c) is a rational point on the elliptic curve E.

The next question is whether two different points on V can lead to the same
point on E. This is rather subtle; it is even the case that one point on V can
lead to several points on E, for example when f(xi) has odd order for i = 1, 2, 3.
However, it is clear that if two points on V are disjoint in the sense defined above,
then they can only give rise to different points on E. Indeed, the x-coordinate
of the point on E computed from P = (x1, x2, x3, y) is either x1, x2, or x3. We
can therefore use Lemma 9 to show that, if we let the argument t of ψ ◦ φ run
through all of F, then at least (q−4)/16 valid x-coordinates of points on E follow
from the obtained rational points on V . This gives (q − 4)/8 rational points on
E, as claimed. �

Remark. It is an interesting question whether the surface S given in Lemma
6 is rational over the ground field F. This question is addressed in [7], for any



base field of characteristic different from 2. If we homogenise the equation for
S given in (15), we obtain a diagonal ternary quadratic form over the function
field F(u), whose coefficients have degrees 0, 2, and 3. Using the notation and
definitions given in [7], we see that the equation has minimal index 6 if we use
the weights (3, 2, 1) for the variables, whereas a rational surface of this form must
have index at most 3 for some weight vector. Therefore, unless some factors of
the discriminant of the equation are removable, S is not rational over F.

6 Elliptic curves in characteristic 2

In this section we complete the proof of Theorem 1 under the assumption that
the characteristic of the base field F is 2 and that E is given by a nonsingular
Weierstrass equation.

Recall that by [10, Appendix A] we know that E has a Weierstrass equation
of one of two following forms:

Y 2 + a3Y = X3 + a4X + a6 if j(E) = 0,
Y 2 +XY = X3 + a2X

2 + a6 if j(E) 6= 0.

In the case when F is finite of order 2r, let Tr stand for the trace map from
F to F2, which is defined by

TrF/F2
(x) := x+ x2 + x2

2

+ · · · + x2
r−1

.

For motivation, consider the problem of finding rational points on

Y 2 + Y = f(X).

Lemma 10. If f is linear in X, then there exists a deterministic polynomial-
time algorithm that returns a point of Y 2 + Y = f(X) over a finite field F.

Proof. It is well known that the valid X-coordinates are exactly x ∈ F satisfying
Tr(f(x)) = 0 [2, Sect. 6.6]. First precompute a ∈ F such that Tr(f(a)) = 1.
Since x 7→ Tr(f(x)) is a linear map over F2, we can deterministically compute
the required a using linear algebra. Now, one of x or x + a must be a valid
X-coordinate.

Given such an x, it remains to solve for Y . Here we have an advantage over
the case of odd characteristic in that there exist deterministic polynomial-time
algorithms for solving quadratics ([2, Chap. 6], [1, Sect. 7.4]). �

For more general f , the new idea is to look for points on the threefold

f(x1) + f(x2) + f(x3) = y2 + y .

Elements of the form y2 +y are exactly those in Ker(Tr), and form an index two
subgroup of F

+. Thus one of the three terms must itself be of the form y2 + y.



With this in mind, we define

g(x) = x−2 · (x3 + a2x
2 + a6), and

h(x) = x3 + a4x+ a6 .

Now let V1 and V2 be threefolds given by the equations

V1 : g(x) + g(y) + g(z) = w2 + w

V2 : h(x) + h(y) + h(z) = w2 + a3w .

These have the same geometric definition as the threefold V given in the previous
section.

As in the odd characteristic case, we will construct a computable rational
map from a parametrisable surface to the appropriate threefold. Once we have
a point on the threefold it will be easy to get rational points on E. The surfaces
we need are given by the equations

S1 : x+ y + xy(x + y)−1 + a2 = w2 + w

S2 : x2y + y2x+ a6 = w2 + a3w .

Lemma 11. Let F be a field of characteristic 2. There exist rational maps φ1 :
S1 → V1 and φ2 : S2 → V2 over F which are invertible on their images, given by

φ1 : (x, y, w) 7→ (x, y, xy(x + y)−1, w)
φ2 : (x, y, w) 7→ (x, y, x+ y, w) .

Proof. First consider φ1, the map that will be used in the case when j(E) 6= 0.
Recall that g(x) = x+ a2 + a6x

−2. We have

g(x) + g(y) + g

(

xy

x+ y

)

= x+ y +
xy

x+ y
+ 3a2 + a6

(

1

x
+

1

y
+
x+ y

xy

)2

= x+ y +
xy

x+ y
+ a2

= w2 + w

since (x, y, w) is a point on S1. Hence (x, y, xy(x + y)−1, w) is a point on V1.

Next consider φ2, the map that will be used when j(E) = 0. We have

h(x) + h(y) + h(x+ y) = x3 + a4x+ y3 + a4y + (x+ y)3 + a4(x+ y) + 3a6

= x2y + y2x+ a6

= w2 + a3w

since (x, y, w) is a point on S2.
Note that given a point in the image of one of these maps we can trivially find

its preimage on the surface, so that both maps are invertible on their images. �



Remark. A useful geometric interpretation of these maps is that the image of φ1

is contained in the intersection of V1 with x−1 + y−1 + z−1 = 0, while the image
of φ2 is contained in the intersection of V2 with x+ y + z = 0.

These maps now play a critical role in the following main theorem.

Theorem 12. There exists a deterministic polynomial-time algorithm that, given
a finite field F of characteristic 2 with more than 4 elements and an elliptic curve
E over F, computes a nontrivial rational point on E.

Proof. There are two cases to consider, since E can either have j-invariant zero
or nonzero. In both cases our strategy is to deterministically find points on the
appropriate surface, map them to the threefold, and from there get a point on
E.

First assume that j(E) 6= 0. For arbitrary c the equation

x+ y +
xy

x+ y
= c

is equivalent to the genus 0 curve C : x2 + y2 + xy + c(x+ y) = 0 except when
x = y. However, if (x, y) is a point on C with x = y then it must be the point
(0, 0), so not much is lost. We have the generic solution (0, c) and from this get
all points of C through the rational parametrisation

y = tx+ c

x =
tc

1 + t+ t2
.

Thus we have a family of rational points on S1 parametrised by t and w which
can be mapped to points on V1 via φ1. It now remains to compute rational points
of E.

For a ∈ F
∗ consider the set

{u2 + au | u ∈ F}.

This set is an additive subgroup of F
+ of index 2, so if g(x) + g(y) + g(z) =

w2 +w then at least one of g(x), g(y), g(z) is itself of the form u2 + u. Discover
which it is, call it x, and deterministically solve the quadratic to find u. From
u2 + u = x−2(x3 + a2x

2 + a6) we now have

(ux)2 + x(ux) = x3 + a2x
2 + a6

and hence a point on E.

Suppose instead that j(E) = 0. We wish to compute points on S2. Taking
y = u2, we transform the equation for S2 as following:

xy(x+ y) + a6 = w2 + a3w

x2u2 + au4 + a6 = w2 + a3w

a3xu+ xu4 + a6 = (w + xu)2 + a3(w + xu) .



Now, choose y and compute its square root u (possible deterministically
since squaring is an automorphism). There are at most four bad choices of y
to avoid, corresponding to the roots of u4 + a3u. If u4 + a3u 6= 0, the equation
x(a3u + u4) + a6 = z2 + a3z is linear in x and hence for any given z, we easily
compute the unique value for x. Now the point (x, y, z + xu) is a point on S2,
which we map to V2 via φ2.

It remains to find a point on E. Mirroring the argument in the previous case,
one of h(x), h(y), and h(z) has the form u2 + a3u. Discover which it is, call it x,
and solve the quadratic u2 + a3u = h(x) for u. Output (x, u) as a rational point
on E. �

Remark. This argument can be generalised to work over any perfect characteris-
tic 2 field, but only gives an algorithm when the maps u 7→ u2 and u 7→ u2 + au
are algorithmically invertible.

An important question to analyze is how many of the F-rational points of E are
obtained by this algorithm. The next theorem will demonstrate that the number
is quite large, in particular at least a constant proportion. We define disjointness
for points on V1 as in Definition 8.

Theorem 13. Let F be a finite field of order q = 2r with q > 4. The number of
disjoint points of V1 that arise from Theorem 12 is at least (q − 4)/6.

Proof. Throughout, assume that the parameter w from Theorem 12 is fixed.
Allowing different values could improve the bound, but that analysis has not yet
been done.

It was noted before that S1 can be transformed into a genus 0 curve C :
x2 + y2 + xy + c(x + y) = 0, with C having only gained the point (0, 0). Let
C′(F) be the points of C except for (0, 0), (c, 0), and (0, c).

It can easily be confirmed that if (x, y) is a point on C′, then σ1(x, y) =
(x, xy(x + y)−1) and σ2(x, y) = (y, x) are points on C′. We conclude that the
group G = 〈σ1, σ2〉 acts on C′(F), is isomorphic to Sym(3), and splits the points
of C′ into orbits of size 6. For the last statement, note that x = y implies
(x, y) = (0, 0) and y = xy(x+ y)−1 implies y = 0. Thus the stabiliser in Sym(3)
of any point has index 6, giving an orbit of size 6.

Any coordinate only appears in its orbit, and each orbit yields the same set
(x, y, xy(x+y)−1). Thus each orbit when mapped via φ1 yields a disjoint point
on V1.

It remains to count the number of orbits. If r is odd, t2 + t+ 1 is irreducible
over F and hence all t ∈ F are valid. Thus C has q+1 points, but after discarding
(0, 0), (c, 0), and (0, c) we are left with (q − 2)/6 orbits. If r is even, t2 + t + 1
splits and hence there are q − 2 valid t, leaving us with (q − 4)/6 orbits. �

Remark. We note that the case with j(E) = 0 yields a similar bound, since
fixing w in S2 yields a curve of genus 0 that also breaks up into orbits of size 6,
each element of the orbit resulting in the same triples (x, y, x+ y).



Proof of Theorem 1 (even characteristic). Let F be a finite field of order q = 2r

with q > 4, and let E be a nonsingular elliptic curve over F. From Theorem
12 we obtain a deterministic polynomial-time algorithm that computes points
on E. From Theorem 13 we see that this algorithm results in at least (q − 4)/6
disjoint points on the threefold. This yields at least (q − 4)/6 x-coordinates of
E, and hence at least (q − 4)/3 points of E.

This completes the proof of Theorem 1. �

Remark. If F is too small we simply check all pairs (x, y) ∈ F
2 and obtain the

set E(F). This also holds for F of odd characteristic.
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