Skip to main content
Effect of light on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa
Environmental Science & Technology
  • M Fujii, University of New South Wales
  • TC Dang, University of New South Wales
  • Andrew L Rose, Southern Cross University
  • T Omura, Tohoku University
  • TD Waite, University of New South Wales
Document Type
Publication Date
Peer Reviewed

Visible light was observed to induce reductive dissociation of organically complexed Fe and dramatically increase the short-term uptake rate of radiolabeled Fe by Microcystis aeruginosa PCC7806 in Fraquil* medium buffered by a single metal chelator, ethylenediaminetetraacetic acid (EDTA). Only wavelengths Fe(II) production combined with a significant decrease in 55Fe uptake rate in the presence of ferrozine (a strong ferrous iron chelator) confirmed that photogenerated unchelated Fe(II) was the major form of Fe taken up by M. aeruginosa under the conditions examined. Mathematical modeling based on unchelated Fe(II) uptake by concentration gradient dependent passive diffusion of Fe(II) through nonspecific transmembrane channels (porins) could account for the magnitude of Fe uptake and a variety of other observations such as the effect of competing ligands on Fe uptake. Steady-state uptake rates indicated that M. aeruginosa acquires Fe predominantly during the light cycle. This study confirms that Fe photochemistry has a dominant impact on Fe acquisition and growth by M. aeruginosa in EDTA-buffered culture medium.

Citation Information

Fujii, M, Dang, TC, Rose, AL, Omura, T & Waite, TD 2011, 'Effect of light on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa', Environmental Science & Technology, vol. 45, no. 4, pp. 1391-1398.

Published version available from: