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ABSTRACT

Topic models provide a powerful tool for analyzing large
text collections by representing high dimensional data in a
low dimensional subspace. Fitting a topic model given a set
of training documents requires approximate inference tech-
niques that are computationally expensive. With today’s
large-scale, constantly expanding document collections, it is
useful to be able to infer topic distributions for new doc-
uments without retraining the model. In this paper, we
empirically evaluate the performance of several methods for
topic inference in previously unseen documents, including
methods based on Gibbs sampling, variational inference, and

anew method inspired by text classification. The classification-

based inference method produces results similar to iterative
inference methods, but requires only a single matrix multi-
plication. In addition to these inference methods, we present
SparseLDA, an algorithm and data structure for evaluat-
ing Gibbs sampling distributions. Empirical results indicate
that SparseLDA can be approximately 20 times faster than
traditional LDA and provide twice the speedup of previously
published fast sampling methods, while also using substan-
tially less memory.
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1. INTRODUCTION

Statistical topic modeling has emerged as a popular method
for analyzing large sets of categorical data in applications
from text mining to image analysis to bioinformatics. Topic
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models such as latent Dirichlet allocation (LDA) [3] have the
ability to identify interpretable low dimensional components
in very high dimensional data. Representing documents as
topic distributions rather than bags of words reduces the ef-
fect of lexical variability while retaining the overall semantic
structure of the corpus.

Although there have recently been advances in fast infer-
ence for topic models, it remains computationally expensive.
Full topic model inference remains infeasible in two common
situations. First, data streams such as blog posts and news
articles are continually updated, and often require real-time
responses in computationally limited settings such as mobile
devices. In this case, although it may periodically be possi-
ble to retrain a model on a snapshot of the entire collection
using an expensive “offline” computation, it is necessary to
be able to project new documents into a latent topic space
rapidly. Second, large scale collections such as information
retrieval corpora and digital libraries may be too big to pro-
cess efficiently. In this case, it would be useful to train a
model on a random sample of documents, and then project
the remaining documents into the latent topic space inde-
pendently using a MapReduce-style process. In both cases
there is a need for accurate, efficient methods to infer topic
distributions for documents outside the training corpus. We
refer to this task as “inference”, as distinct from “fitting”
topic model parameters from training data.

This paper has two main contributions. First, we present
a new method for topic model inference in unseen documents
that is inspired by techniques from discriminative text clas-
sification. We evaluate the performance of this method and
several other methods for topic model inference in terms of
speed and accuracy relative to fully retraining a model. We
carried out experiments on two datasets, NIPS and Pubmed.
In contrast to Banerjee and Basu [1], who evaluate different
statistical models on streaming text data, we focus on a sin-
gle model (LDA) and compare different inference methods
based on this model. Second, since many of the methods we
discuss rely on Gibbs sampling to infer topic distributions,
we also present a simple method, SparseL.LDA, for efficient
Gibbs sampling in topic models along with a data structure
that results in very fast sampling performance with a small
memory footprint. SparseLDA is approximately 20 times
faster than highly optimized traditional LDA and twice the
speedup of previously published fast sampling methods [7].

2. BACKGROUND

A statistical topic model represents the words in docu-
ments in a collection W as mixtures of T “topics,” which



are multinomials over a vocabulary of size V. Each docu-
ment d is associated with a multinomial over topics 64. The
probability of a word type w given topic ¢ is represented by
@w|t- We refer to the complete VxT matrix of topic-word
probabilities as . The multinomial parameters 64 and ¢
are drawn from Dirichlet priors with parameters o and (3
respectively. In practice we use a symmetric Dirichlet with
[ = .01 for all word types and a T-dimensional vector of
distinct positive real numbers for . Each token w; in a
given document is drawn from the multinomial for the topic
represented by a discrete hidden indicator variable z;.
Fitting a topic model given a training collection W in-
volves estimating both the document-topic distributions, 64,
and the topic-word distributions, ®. MAP estimation in this
model is intractable due to the interaction between these
terms, but relatively efficient MCMC and variational meth-
ods are widely used [4, 3]. Both classes of methods can
produce estimates of ®, which we refer to as ®. In the case
of collapsed Gibbs sampling, the Markov chain state consists
of topic assignments z for each token in the training corpus.
An estimate of P(w|t) can be obtained from the predictive
distribution of a Dirichlet-multinomial distribution:

n ﬁ"—nw\t
¢w|t =

where n,,|; is the number of tokens of type w assigned to
topic t and n.y =3, N

The task of topic model inference on unseen documents
is to infer 6 for a document d not included in W. The
likelihood function for 6 is

(1)
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where ny|q is the total number of tokens in the document

assigned to topic ¢t. Even with a fixed estimate o, MAP
estimation of 6 is intractable due to the large number of
discrete hidden variables z. Sections 3 through 5 present
an array of approximate inference methods that estimate 6,
which are empirically evaluated in the remaining sections of
the paper.

3. SAMPLING-BASED INFERENCE

We evaluate three different sampling-based inference meth-
ods for LDA. Gibbs sampling is an MCMC method that in-
volves iterating over a set of variables z1, 22, ...2,, sampling
each z; from P(z|z\;,w). BEach iteration over all variables
is referred to as a Gibbs sweep. Given enough iterations,
Gibbs sampling for LDA [4] produces samples from the pos-
terior P(z|w). The difference between the three methods
we explore is in the set of variables z that are sampled, as
illustrated in Figure 1, and which portion of the complete
data is used in estimating .

3.1 Gibbsl: Jointly resample all topics

In this method we define the scope of a single Gibbs sweep
to be the hidden topic variables for the entire collection,
including both the original documents and the new docu-
ments. After sampling the topic variables for the training
documents to convergence without the new documents, we
randomly initialize topic variables for the new documents

original training docs new docs

—p Gibbs1
— Gibbs2
= =P =P Gibbs3

Figure 1: The three Gibbs sampling-based methods it-
erate over a set of words, updating the topic assignment
for each word given the topic assignments for the remain-
ing words. The methods vary only in the set of topic
assignments they consider: Gibbsl samples new topic
assignments for the entire corpus, including the origi-
nal training documents; Gibbs2 samples assignments for
only the new documents, holding the parameters for the
training corpus fixed; Gibbs3 samples each new docu-
ment independently.

and continue sampling over all documents until the model
converges again. We can then estimate the topic distribu-
tion 04 for a given document given a single Markov chain
state as

Qi + Ni|d

ét|d = ’
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(4)
where n.|q is the length of the document. Increasingly ac-
curate estimates can be generated by averaging over values
of Eq. 4 for multiple Markov chain states, but may cause
problems due to label swapping.

Inference method Gibbsl is equivalent to fitting a new
model for the complete data, including both the original
documents and the new documents, after separately initial-
izing some of the topic variables using Gibbs sampling. This
method is as computationally expensive as simply starting
with random initializations for all variables. It is useful,
however, in that we can use the same initial model for all
other inference methods, thereby ensuring that the topics
will roughly match up across methods. We consider this
inference procedure the most accurate, and the topic distri-
bution for each test document estimated using Gibbsl as a
reference for evaluating other inference methods.

3.2 Gibbs2: Jointly resample topics for all new
documents

Inference method Gibbs2 begins with the same initializa-
tion as Gibbsl, but saves computation by holding all of the
topic assignments for the training documents fixed. Under
this approximation, one Gibbs sweep only requires updating
topic assignments for the new documents.

Inference involves sampling topic assignments for the train-
ing data as in Gibbsl1, randomly assigning values to the topic
indicator variables z for the new documents, and then sam-
pling as before, updating ® as in Eq. 1 after each variable
update.

3.3 Gibbs3: Independently resample topics for
new documents

Inference method Gibbs2 performs Gibbs sampling as a
batch. As such, it samples from the posterior distribution
over all z variables in the new documents given all the words
in the new documents, accessing all the new documents in
each iteration. Unfortunately, handling topic inference in a



batch manner is both unrealistic in time-sensitive stream-
ing document collections, and inefficient because it cannot
be parallelized across documents without substantial inter-
process communication.

Gibbs3 is an online version, which processes all docu-
ments independently. When a test document arrives, we
sample topics for a number of iterations using only topic-
word counts in & from the training corpus and the current
document. For the next incoming document we reset ® to
include only counts from the training corpus and that new
document.

This algorithm differs from the previous two methods in
that it produces estimates of 04 given only the words in the
training documents and in document d. Gibbsl and Gibbs2
produce estimates given the entire data set.

3.4 Time- and Memory-Efficient Gibbs Sam-
pling for LDA

The efficiency of Gibbs sampling-based inference meth-
ods depends almost entirely on how fast we can evaluate
the sampling distribution over topics for a given token. We
therefore present SparseLDA, our new algorithm and data
structure that substantially improves sampling performance.
Although we apply this method to topic inference on new
documents, the method is applicable to model fitting as well.

The probability of a topic z in document d given an ob-
served word type w is

B"_nw\t

Sampling from this distribution involves calculating the
unnormalized weight in Eq. 5, which we refer to as ¢(z), for
each topic; sampling a random variable U ~ U(0,3", q(2));
and finding ¢ such that 3"} ¢(2) < U < 32!_, ¢(2). This
algorithm requires calculating ¢(z) for all topics in order
to determine the normalizing constant for the distribution
>, 4(2), even though probability mass is generally concen-
trated on a small number of topics. Porteous et al. [7]
approach this problem by iteratively refining an approxima-
tion to Y, ¢(z). We take an arguably simpler approach by
caching most of the computation required to compute the
normalizing constant. By rearranging terms in the numera-
tor, we can divide Eq. 5 into three parts:

a8 a3 (0t + Mg ja) ot
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Note that the first term is constant for all documents and
that the second term is independent of the current word type

w. Furthermore, Y _q(%) is equal to the sum over topics of
each of the three terms in Equation 6:
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This process divides the full sampling mass into three
“buckets.” We can now sample U ~ U(0,s +r + ¢q). If
U < s, we have hit the “smoothing only” bucket. In this
case, we can step through each topic, calculating and adding

(6)

up \V\T for that topic, until we reach a value greater
than z. If s < = < (s + r), we have hit the “document
topic” bucket. In this case, we need only iterate over the set
of topics ¢ such that ny4 # 0 — a number that is usually
substantially less than the total number of topics. Finally,
if x > (s 4+ r), we have hit the “topic word” bucket, and we
need only consider topics such that n,; # 0. Again, this
number is usually very small compared to T'.

The values of the three components of the normalization
constant, s, 7, ¢, can be efficiently calculated. The constant s
only changes when we update the hyperparameters . The
constant r depends only on the document-topic counts, so
we can calculate it once at the beginning of each document
and then update it by subtracting and adding values for
the terms involving the old and new topic at each Gibbs
update. This process takes constant time, independent of
the number of topics.

The topic word constant ¢ changes with the value of w,
so we cannot as easily recycle earlier computation. We can,
however, substantially improve performance by observing
that the expression for ¢ can be broken into two components:

Qi + Nyjq
= —_— . 1
! ; [ﬁV+n.|t Tl (10

The coefficient ﬁ;lgr)i can therefore be cached for every
topic, so calculating ¢ for a given w consists of one multiply
operation for every topic such that n,;; # 0. As nyq = 0
for almost all topics in any given document, this vector of

coefficients will also almost entirely consist of only ngiﬁrnt,

so we can save additional operations by caching these coef-
ficients across documents, only updating those topics that
have non-zero counts in the current document as we begin
each document, and resetting those values to the a-only
values as we complete sampling for each document.

If the values of o and 3 are small, ¢ will take up most of the
total mass. Empirically, we find that more than 90% of sam-
ples fall within this bucket. In a Dirichlet-multinomial dis-
tribution with small parameter magnitudes, the likelihood
of the distribution is roughly proportional to the concentra-
tion of the counts on a small number of dimensions. We find
that the wallclock time per iteration is roughly proportional
to the likelihood of the model. As the sampler approaches
a region of high probability, the time per iteration declines,
leveling off as the sampler converges.

Clearly, the efficiency of this sampling algorithm depends
on the ability to rapidly identify topics such that n. # 0.
Furthermore, as the terms in Eq. 10 are roughly propor-
tional to n,¢, and since we can stop evaluating terms as
soon as the sum of terms exceeds U — (s + r), it is desir-
able to be able to iterate over non-zero topics in descending
order. We now present a novel data structure that meets
these criteria.

We encode the tuple (¢,7,):) in a single 32 bit integer by
dividing the bits into a count segment and a topic segment.
The number of bits in the topic segment is the smallest m
such that 2™ > T. We encode the values by shifting 7.,
left by m bits and adding ¢t. We can recover n,,; by shift-
ing the encoded integer right m bits and ¢ by a bitwise and
with a “topic mask” consisting of m 1s. This encoding has
two primary advantages over a simple implementation that
stores m,,; in an array indexed by t for all topics. First,
in natural languages most word types occur rarely. As the
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Figure 2: A comparison of time and space efficiency
between standard Gibbs sampling (dashed red lines) and
the SparseLDA algorithm and data structure presented
in this paper (solid black lines). Error bars show the
standard deviation over five runs.

encoding no longer relies on the array index, if a word type
w only occurs three times in the corpus, we need only re-
serve an array of at most three integers for it rather than 7.
Second, since the count is in the high bits, we can sort the
array using standard sorting implementations, which do not
need to know anything about the encoding.

By storing encoded values of (£, n,,¢) in reverse-sorted ar-
rays, we can rapidly calculate ¢, sample U, and then (if
U > (s+7)) usually within one calculation find the sampled
t. Maintaining the data structure involves reencoding val-
ues for updated topics and ensuring that the encoded values
remain sorted. As n,; changes by at most one after every
Gibbs update, a simple bubble sort is sufficient.

In order to evaluate the efficiency of SparseLDA, we mea-
sured the average time per iteration and memory usage,’
shown in Figure 2 averaged over five runs for each value of
T on NIPS data. As we increase the number of topics, the
time per iteration increases slowly, with much lower overall
time than a carefully optimized implementation of standard
Gibbs sampling. Memory usage is also substantially lower
and grows more slowly than standard Gibbs sampling. Em-
pirical comparisons with the FastLDA method of Porteous
et al. [7] are difficult, but on the standard NIPS corpus
with 800 topics, we found the ratio of per-iteration times
between standard Gibbs sampling and SparseLDA to be ap-
proximately 20, compared to a speedup of approximately 11
times reported for FastLDA over standard Gibbs sampling
using the same corpus and number of topics with a; = 0.001.
In addition, FastLDA does not address memory efficiency,
one of the primary benefits of SparseL.DA.

4. VARIATIONAL INFERENCE

Another class of approximate inference method widely
used in fitting topic models is variational EM. Variational in-
ference involves defining a parametric family of distributions

'Memory use in Java was calculated as
runtime.totalMemory() - runtime.freeMemory ()

that forms a tractable approximation to an intractable true
joint distribution. In the case of LDA, Blei, Ng, and Jordan
[3] suggest a factored distribution consisting of a variational
Dirichlet distribution &g for each document and a varia-
tional multinomial 44; over topics for each word position in
the document. The parameters of these distributions can
then be iteratively fitted using the following update rules:

Gar = OthrZ%m (11)

Yait o< Qg)w”t exp(P(aaqt)), (12)

where ¥(z) is the digamma function. Variational approxi-
mations converge in fewer iterations than Gibbs sampling,
but each iteration generally takes substantially longer due
to the calculation of exp and ¥ functions.

We evaluate a variational method based on the update
rules specified. Given a new document, we initialize &q to
a and clamp ® to the expression in Eq. 1 evaluated us-
ing the topic-word counts from the training documents. We
then apply the update rules in Eq. 11 and 12 in turn until
convergence. We then estimate 6; o« &:. This method is
a variational equivalent to inference method Gibbs3, being
appropriate for parallelized, streaming environments. More
complicated variational distributions have been shown to
have lower bias [9], but are generally more computationally
intensive per iteration than the simple fully factored varia-
tional distribution.

S. CLASSIFICATION-BASED INFERENCE

The previous inference methods theoretically require many
iterations to allow a Markov chain to achieve its stationary
distribution or to fit a variational approximation. In some
settings, however, it is necessary to estimate a topic dis-
tribution as fast as possible. As an alternative to iterative
methods, we propose a classification-based approach to pre-
dicting 0 for a new document.

In this task, each document has a labeled topic distribu-
tion, obtained from the trained topic model. Specifically,
each document can be classified as multiple classes, each
with a probability. This setting is an extension to the tradi-
tional classification task, in which an instance has only one
class membership. In a traditional classifier, the training
data is represented as D = {(x;,y:) | ¢ =1...n}, where x;
is a representation of the document (e.g. a feature vector)
and y; is x;’s label. y; is typically a vector of indicator
variables, such that if x; belongs to the jth class, only the
jth element of y; will be 1, and other elements will be 0.
For simplicity, we often use the class label instead of the
indicator vector to represent y;. For our task, we allow each
element of y; to take values between 0 and 1 and the sum of
all elements should be 1, so that y; indicates a probabilis-
tic distribution over all classes. Classes in this setting are
equivalent to topics. We investigate two classifiers in this
paper, one of which is useful only as a baseline.

5.1 Maximum Entropy Classifier (MaxEnt)

We first extend a traditional MaxEnt or logistic regression
classifier to our new task. In the simple scenario in which
each instance has one fully observed class label, any real-
valued function f;(x,y) of the object x and class y can be
treated as a feature. The constraints are the expected val-
ues of features computed using training data. Given a set )



of classes, and features fi, the parameters to be estimated
Ak, the learned distribution p(y|x) is of the parametric ex-
ponential form [2]:

exp (0, Ak fr(%,9))
>, exp (3, Ak fr(x,9))

Given training data D = {(x1, y1), (X2, ¥2), ...,
log likelihood of parameters A is

I(A|D) = log (Hp(yﬂm)) - %
k

i=1
2
:ZZ A fr(x1,yi) — log Za(x Z%, (14)
=1 k k

The last term represents a zero-mean Gaussian prior on the
parameters, which reduces overfitting and provides identifi-
ability. We find values of A that maximize [(A|D) using a
standard numerical optimizer. The gradient with respect to
feature index k is

Pylx) = (13)

<Xn7 yn>}7 the

n
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M (15)

In the topic distribution labeling task, each data point
has a topic distribution, and is represented as (xi,yi). We
can also use the maximum log likelihood method to solve
this model. The only required change is to substitute y
for y. Using a distribution changes the empirical features
of the data (fr(xi,yi)), also known as the constraints in
a maximum entropy model, which are used to compute the
gradient. Whereas in a traditional classifier we use fx(xi, y:)
as empirical features, we now use fi(Xi,yi) instead, where
yi is the labeled topic distribution of the ith data point.
Suppose that we have two classes (i.e. topics) and each in-
stance can contain two features (i.e. words). Training data
might consist of x = (z1,x2),y = 1 for a traditional clas-
sifier and x = (z1,%2),y = (p1,p2) for a topic distribution
classifier, such that p; and p2 are the proportions of topic
1 and topic 2 for data point x and p; + p2 = 1. Empirical
features (sufficient statistics of training data) for traditional
classifier would be (z1,1) and (x2,1). While the empirical
features for a topic distribution classifier would be (x1,1),
(z2,1), (%1,2), and (z2,2), with the first two weighted by
p1, and the remaining two weighted by p2. This substitution
changes the penalized log likelihood function:

I(A| D) =log (Hmyixi)) - %

=1 k
= ;;(/\kfk(xnyi —log Zx(x ;Tc?’ (16)

Correspondingly, the gradient at feature index k is:

(ﬁkD _Z<2pz )fie (%5, 9) ka(Xi»y)p(yIXi))

M (17)

Where p;(y) stands for the probability of topic y in the cur-
rent instance, i.e. one of the elements of y;.

Once we have trained a topic proportion classifier, we can
use it to estimate 6 for a new document. We compute the
scores for each topic using Eq. 13. This process is essentially
a table lookup for each word type, so generating 6 requires
a single pass through the document.

In experiments, we found that the output of the topic pro-
portion classifier is often overly concentrated on the single
largest topic. We therefore introduce a temperature param-
eter 7. Each feature value is weighted by % Values of 7 < 1
increase the peakiness of the classifier, while values 7 > 1
decrease peakiness. We chose 1.2 for NIPS data and 0.9
for Pubmed data based on observation of the peakiness of
predicted 6 values for each corpus.

5.2 Naive Bayes Classifier

From the trained topic model, we can estimate ®, a matrix
with T' (#topics) rows and W (#words) columns represent-
ing the probability of words given topics. Combined with a
uniform prior over topic distributions, we can use this ma-
trix as a classifier, similar to the classifier we obtained from
MaxEnt. This method performs poorly, and is presented
only as a baseline in our experiments. A document d is
represented as a vector, with each element an entry in the
vocabulary, denoted as w and the value as the number of
times that word occurs in the document, denoted as 1n|q.
Using Bayes’ rule, the score for each topic is:

Z¢w|tnw\d (18)

Score(z = t)

The estimated 6 distribution is then simply the normalized
scores.

In experiments, we compare both classification methods
against the inference methods discussed in previous sections.
The two classifiers take less time to predict topic distribu-
tions, as they do not require iterative updates. Provided
they can achieve almost the same accuracy as the three in-
ference methods or their performance is not much worse, for
some particular task which requires real-time response, we
can choose classification-based inference methods instead of
sampling based or variational updated methods. The choice
of estimator can be a trade-off between accuracy and time
efficiency.

5.3 Hybrid classification/sampling inference

A hybrid classification/sampling-based approach can be
constructed by generating an estimate of 64 given wq using
the MaxEnt classifier and then repeatedly sampling topic
indicators z given 6 and . Note that given 0, P(z|w;) o
Gtgzﬁw‘t is independent of all z\;. After the initial cost of set-
ting up sampling distributions, sampling topic indicators for
each word can be performed in parallel and at minimal cost.
After collecting sampled 2 indicators, we can re-estimate the
topic distribution 6 according to the topic assignments as in
Eq. 4. In our experiments, we find that this re-sampling pro-
cess results in more accurate topic distributions than Max-
Ent alone.

6. EMPIRICAL RESULTS

In this section we empirically compare the relative accu-
racy of each inference method. We train a topic model on
training data with a burn-in period of 1000 iterations for
all inference methods. We explore the sensitivity of each
method to the number of topics, the proportion between



Table 1: Top five topics predicted by different meth-
ods for a testing document
Method 0: Highest probability words in topic
Gibbsl 0.4395 learning generalization error
0.2191 function case equation
0.0734 figure time shown
0.0629 information systems processing
0.0483 training set data
MaxEnt 0.2736 learning generalization error
0.2235 function case equation
0.0962 figure time shown
0.0763 information systems processing
0.0562 learning error gradient

training documents and “new” documents, and the effect of
topic drift in new documents.

We evaluate different inference methods using two data
sets. The first is 13 years of full papers published in the
NIPS conference, in total 1,740 documents. The second is
a set of 51,616 journal article abstracts from Pubmed. The
NIPS data set contains fewer documents, but each document
is longer. NIPS has around 70K unique words and 2.5M
tokens. Pubmed has around 105.4K unique words and about
TM tokens. We also carried out experiments on New York
Times data from LDC. We used the first six months of 2007,
comprising 39,218 documents, around 12M tokens, about
900K unique words. We preprocessed the data by removing
stop words.

We implemented the three sampling-based inference meth-
ods (using SparseLDA), the variational updated method,
and the classification-based methods in the MALLET toolkit
[5]. They will be available as part of its standard open-source
release.

6.1 Evaluation Measures

It is difficult to evaluate topic distribution prediction re-
sults, because the “true” topic distribution is unobservable.

We can, however, compare different methods with each other.

We consider the Gibbsl inference method to be the most ac-
curate, as it is closest to Gibbs sampling over the entire cor-
pus jointly, a process that is guaranteed to produce samples
from the true posterior over topic distributions. In order
to determine whether sampling to convergence is necessary,
for inference methods Gibbs2 and Gibbs3, we report results
using 1000 iterations of sampling (Gibbs2 and Gibbs3) and
two iterations (Gibbs2.S and Gibbs3.S), which is the mini-
mum number of Gibbs sweeps for all topic indicators to be
sampled using information from all other tokens.

We represent the prediction results of each method as a
T-dimensional vector 64 for each document. We compare
methods using three metrics. In all results we report the
average of these measures over all “new” documents.

1. Cosine distance This metric measures the angle be-
tween two vectors P and (@) representing 04 as esti-
mated by two different inference methods:

2o Peae
Dcos(P”Q) == (19)
IPlel
Values closer to 1.0 represent closely matched distri-

butions.

2. KL Divergence Another metric between distribu-
tions P and @ is KL divergence:

Dri(PIQ) = pi 1og%. (20)

Smaller values of this metric represent closer distribu-
tions. We use the “gold standard” inference method
as P.

3. F1 The previous two metrics measure the divergence
between probability distributions. As shown in Ta-
ble 1, however, it is common for estimators to pro-
duce rather different distributions while maintaining
roughly the same overall ordering of topics. In this
metric, we attempt to predict the set of topics that
account for the largest probability mass. Specifically,
we sort the entries in 64 for a given inference method
in descending order and select a set of topics 7 such
that Zteq— 0:q < 0.8. We can then treat 7gipps1 as
the correct topics and measure the precision and re-
call of 7,, for all other methods m. The F1 measure is
the harmonic mean between the precision and recall.
Note that F1 does not take into account the order of
topics, only whether they are in the set of topics se-
lected by the gold standard method. Values close to
1.0 represent better matches.

For classification based inference methods we use unigram
counts as input features. Normalized term frequency fea-
tures (term counts normalized by document length) pro-
duced poorer results. We also tried including word-pair
features, on the intuition that the power of topic models
comes from cooccurrence patterns in words, but these fea-
tures greatly increased inference time, never improved re-
sults over unigram features, and occasionally hurt perfor-
mance. We hypothesize that the power of unigram features
in the discriminatively trained MaxEnt classifier may be
a result of the fact that the classifier can assign megative
weights to words as well as positive weights. This capability
provides extra power over the Naive Bayes classifier, which
cannot distinguish between words that are strongly nega-
tively indicative of a topic and words that are completely
irrelevant.

6.2 Discussion

We first compare each method to the Gibbsl inference
method, which is equivalent to completely retraining a model
given the original data and new data. We split the NIPS
data set into training and testing documents in a 7:3 ratio
and run an initial model on the training documents with 70
topics. We explore the effect of these settings later in this
section.

Figure 3 shows results for the three evaluation metrics.
The converged sampling methods Gibbs2 and Gibbs3 are
closest to Gibbsl in terms of cosine distance, F1, and KL
divergence, but do not exactly match. The two-iteration ver-
sions Gibbs2.S and Gibbs3.S are close to Gibbsl in terms of
cosine distance and KL divergence, but MaxEnt and Vari-
ational EM are closer in terms of F1. Hybrid MaxEnt con-
sistently outperforms MaxFEnt. Figure 4 shows similar mea-
sures vs. Gibbs2, arguably a more meaningful comparison
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Figure 5: Examples of topic distribution obtained by
different methods (NIPS)

as Gibbs2 does not resample topics for the training docu-
ments. These results indicate that the MaxEnt inference
method provides a reasonable ordering of topics for a new
document, but that if the exact topic proportions are re-
quired, two-iteration Gibbs sampling and hybrid MaxEnt
should be considered.

We analyzed errors in precision and recall for the MaxEnt
inference method. We discovered that for some documents,
recall is high. In this case, MaxEnt can predict the ma-
jor topics correctly, but it will include more topics within
the 80% threshold, each with a lower weight compared to
Gibbsl, Gibbs2 and Gibbs3. For some documents, preci-
sion is high. In this case, MaxEnt assigns more weight to
the most prominent topics, causing other topics to fall out-
side the threshold. To demonstrate the comparison between
topic proportions proposed by different inference methods,
we show values of 6 for a single document under different
inference methods in Figure 5. The proportions assigned by
the MaxEnt inference method roughly match those of the
sampling-based inference methods, especially compared to
the naive Bayes inference method.

We next compare the efficiency in time of each inference
method. We perform experiments on a cluster of 2.66GHz
Xeon X5355 processors. Figure 6 shows on a log scale that
the methods can be loosely grouped into “fast” methods

(classification-based, two-iteration sampling, and hybrid Max-

Ent) that require a small number of passes through the data
and use simple computations, and “slow” methods that re-
quire many iterations and complicated functions and 50-200
times slower.

Figure 7 shows the F1 measure of different methods given
different values of T. The results indicate that the “fast”
methods are relatively insensitive to the number of topics.
Thus for more topics, the slow methods will be more than
100-200 times slower.

One scenario for topic model inference is in very large col-
lections. Even with fast sampling methods, training topic
models remains computationally expensive. Parallel im-
plementations are hindered by the need for frequent inter-
process communication [6]. We would like to be able to train
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Figure 8: Performance VS. Training proportion for
the light-weight MaxEnt inference method, relative to
Gibbs2 on Pubmed.

a model on a representative subset of a collection and then
estimate topic distributions for the remaining documents us-
ing light-weight MapReduce-style processing, in which every
document can be handled independently. In order to study
whether training size will affect prediction performance, we
carried out experiment on Pubmed. We fixed 30% of the
whole data as test data, and vary the training proportion
from 10% to 70%. Results are shown in Figure 8 for the most
light-weight inference method, MaxEnt, relative to Gibbs2.
Although the size of the training set does affect performance,
the magnitude of variation is relatively small.

Another application area is in streaming document col-
lections. In this setting new documents may arrive more
quickly than it is possible to train a complete model. Alter-
natively, we may wish to train a topic model on a central
compute cluster and then “publish” a model to distributed
devices that do not have the computational power to per-
form full topic inference, for example in an email tagging
application on a smart phone. One difficulty in this set-
ting is that the underlying topic distribution may shift over
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Figure 9: The effect of “topic drift” on MaxEnt perfor-
mance. The left figure shows the effect of the proportion
of previously seen vocabulary. The right figure shows
performance on news data: we predict topics for June
2007 using only Jan 2007, then Jan and Feb, and so on.

time, rendering the trained model less applicable. One eas-
ily measured proxy for topic drift is the proportion of words
that are included in the training data. We analyze how the
percentage of previously seen vocabulary affects the perfor-
mance of topic distribution prediction on Pubmed. On the
left side of Figure 9 the x axis is the ratio of unique words
seen in training data to the number of unique words in test
data, and the y axis is the values of all evaluation measures.
Again, we present only results for the most light-weight in-
ference method, MaxEnt. The performance of the estimator
increases as the proportion of previously seen vocabulary in-
creases, leveling off at around 70% for cosine and F1 met-
rics (the KL divergence metric appears more noisy). This
result suggests a simple heuristic for determining when a
new model should be retrained, i.e. the training set should
contain roughly 70% of the distinct word types in the “new”
documents.

We also explore the effect of topic drift in news data in the
New York Times data set, using June 2007 documents as test
data. We use five training corpora: Jan 2007, Jan and Feb,
etc. Retraining after each month improves performance, as
shown on the right side of Figure 9.

7. CONCLUSIONS

Topic models provide a useful tool in analyzing compli-
cated text collections, but their computation complexity has
hindered their use in large-scale and real-time applications.
Although there has been recent work on improving training-
time estimation in topic models [6, 7], there has been little
attention paid to the practically important problem of in-
ferring topic distributions given existing models. Exceptions
include the dynamic mixture model for online pattern dis-
covery in multiple time-series data [10], the online LDA al-
gorithm [8], and especially the work of Banerjee and Basu
[1], who advocate the use of mixture of von Mises-Fisher
distributions for streaming data based on a relatively sim-
ple document-level clustering criterion. In this paper, we
focus on the more flexible topic modeling framework, which
is more effective at capturing combinations of aspects of doc-
uments, rather than simple document similarity. Focusing
on LDA, we compare a number of different methods for in-
ferring topic distributions.

We find that a simple discriminatively trained classification-
based method, MaxEnt, produces reasonable results with
extremely small computational requirements. If more accu-

racy is required, small numbers of iterations of Gibbs sam-
pling or the hybrid MaxEnt method provide improved re-
sults with minimal extra computation.

Finally, the efficiency of Gibbs sampling both for train-
ing topic models and inferring topic distributions for new
documents can be significantly improved by the SparseLDA
method proposed in this paper. This method is valuable not
only because of its reduction in sampling time (at least two
times the speedup reported in previous work [7]), but also
because of its dramatically reduced memory usage, an issue
not addressed previously.
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