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Abstract

Most learning algorithms for factor graphs
require complete inference over the dataset
or an instance before making an update to
the parameters. SampleRank is a rank-based
learning framework that alleviates this prob-
lem by updating the parameters during in-
ference. Most semi-supervised learning al-
gorithms also rely on the complete infer-
ence, i.e. calculating expectations or MAP
configurations. We extend the SampleRank
framework to the semi-supervised learning,
avoiding these inference bottlenecks. Dif-
ferent approaches for incorporating unlabeled
data and prior knowledge into this frame-
work are explored. We evaluated our method
on a standard information extraction dataset.
Our approach outperforms the supervised
method significantly and matches the result
of the competing semi-supervised learning ap-
proach.

1 Introduction

Most supervised learning algorithms for factor
graphs require full inference over the dataset
(e.g. conditional loglikelihood) or an instance (e.g.
Collin’s perceptron) before parameter updates can
be made. Often this is the main computational bot-
tleneck during training.

SampleRank (Rohanimanesh et al., 2009) is a
rank-based learning framework that alleviates this
problem by performing parameter updates within in-
ference. Every pair of samples generated during in-
ference is ranked according to the model and the
ground truth, and the parameters are updated when

the rankings disagree. SampleRank has enabled ef-
ficient learning for massive information extraction
tasks (Culotta et al., 2007; Singh et al., 2009).

The problem of requiring a complete inference
iteration before the parameters are updates also
exists in the semi-supervised learning scenario,
where the situation is worse compared to super-
vised learning, as the inference has to be ap-
plied to the large unlabeled dataset. Most semi-
supervised learning algorithms are designed to ad-
dress many machine learning tasks and rely on
marginals (GE: (Mann and McCallum, 2008)) or
MAP assignments (CODL: (Chang et al., 2007))
which are extremely cheap for many of these tasks
(such as classification and regression). However,
marginal and MAP inference is often intractable for
the factor graphs used for information extraction.

This work employs the fast rank-based learn-
ing algorithm for semi-supervised learning on fac-
tor graphs to avoid the inference bottleneck. We
demonstrate how SampleRank naturally extends to
semi-supervised learning by generalizing the notion
of rank constraints to include both preference ex-
pressed as the labeled data, and preference of the
model designer when the labels are not available.
This allows us to perform SampleRank as is, with-
out sacrificing its scalability, which is necessary for
future large scale applications of semi-supervised
learning.

We applied our method to a standard information
extraction dataset used for semi-supervised learning.
Empirically we demonstrate improvements over the
supervised model, and closely match the results of
a more complex competing semi-supervised learner,



while running significantly faster.

2 Background

A factor graph G defines a probability distribution
over assignments y to a set of output variables, con-
ditioned on input variables x. A factor Ψi computes
the inner product between the vector of sufficient
statistics f(xi,yi) and parameters Θ. Let Z(x) be
the data-dependent partition function used for nor-
malization. The conditional probability distribution
defined by the factor graph is:

p(y|x,Θ) =
1

Z(x)

∏
Ψi∈G

eΘ·f(xi,yi) (1)

2.1 Rank-Based Learning

Most learning methods need to calculate the model
expectations (Lafferty et al., 2001) or the MAP con-
figuration (Collins, 2002) before making an update
to the parameters. This step of inference is usually
the bottleneck for learning, even when performed
approximately.

SampleRank (Rohanimanesh et al., 2009) is a
rank-based learning framework that alleviates this
problem by performing parameter updates within
MCMC inference. Every pair of consectutive sam-
ples in the MCMC chain is ranked according to
the model and the ground truth, and the parame-
ters are updated when the rankings disagree. This
allows the learner to acquire more supervision per
instance, and has led to efficient training for mod-
els in which inference are expensive and generally
intractable (Singh et al., 2009).

SampleRank considers two ranking functions: (1)
the unnormalized conditional probability (model
ranking), and (2) a truth function F(y) (objective
ranking) which is defined as −L(y,yL), the nega-
tive loss between the possible assignment y and the
true assignment yL. One such truth function is to-
kenwise accuracy with respect to some labeled data,
another could be the F1-measure.

In order to learn parameters for which model
rankings are consistent with objective rankings,
SampleRank performs the following update at each
step of the MCMC chain. Given two samples ya and
yb, let α be the learning rate, and ∆ = f(xi,y

a
i ) −

f(xi,y
b
i ), the weights are changed as follows:

Θ← Θ+


α∆ if p(ya|x)

p(yb|x)
< 1 & F(ya) > F(yb)

−α∆ if p(ya|x)
p(yb|x)

> 1 & F(ya) < F(yb)

0 otherwise

Calculating these rankings does not require infer-
ence.

Note that it has recently been incorporated as part
of the imperatively-defined factor graphs (IDFs) in
the FACTORIE toolkit (McCallum et al., 2009).

3 Semi-Supervised Rank-Based Learning

To apply SampleRank to the semi-supervised set-
ting, we need to specify the truth function F over
both labeled and unlabeled data. For labeled data
YL, we can use the true labels, however these are
not available for unlabeled data YU . Inspired by
semi-supervised learning framework, there are sev-
eral different ways of defining the truth function
FU : YU → < over unlabeled data.

3.1 Self-Training
Self-training, which uses predictions as truth, fits di-
rectly into our SampleRank framework. After per-
forming SampleRank on training data (using FL),
MAP inference is performed on the unlabeled data.
The prediction ŷU is used as the ground truth for
the unlabeled data. Thus the self-training objective
function Fs over the unlabeled data can be defined
as Fs(y) = −L(y, ŷU ).

3.2 Encoding Constraints
Recent research on constraint-driven semi-
supervised learning uses various constraints to
specify external domain knowledge (Chang et al.,
2007; Mann and McCallum, 2008; Bellare et al.,
2009). These methods thus integrate labeled data,
unlabeled data, and constraints into one unified
framework.

For example, a constraint on a token may capture
its preference for a particular label, i.e. token “NY”
prefers being labeled as “location” with high con-
fidence. If a labeling satisfies this constraint, the
constraint-based objective function should score it
higher than a labeling that violates this constraint.

We can encode constraints directly into the objec-
tive function FU . Let a constraint i be specified as



〈pi, ci〉, where ci(y) denotes whether assignment y
satisfies the constraint i (+1), violates it (−1), or the
constraint does not apply (0), and pi is the strength
associated with the constraint. Then,

Fc(y) =
∑
i

pici(y) (2)

3.3 Incorporating Model Predictions

When objective function Fc is used, every change
to unlabeled data is ranked only according to the
constraints, and thus the model will attempt to sat-
isfy all the constraints. To allow soft constraints, the
model’s current state has to be taken into account.

One option for representing the model prediction
is to use the self-training objective function Fs. A
new objective function that combines self-training
with constraints can be defined as:

Fsc(y) = Fs(y) + λsFc(y) (3)

= −L(y, ŷU ) + λs
∑
i

pici(y)

This objective function has several limitations.
First, self-training involves a complete inference
step to obtain ŷU . Second, the predictions are from
an older model, which may be obsolete. Instead, we
propose another objective function that incorporates
the model score directly into the objective function,
i.e.

Fmc(y) = log p(y|x,Θ) + logZ(x) + λmFc(y)

=
∑
Ψi

Θ · f(xi,yi) + λm
∑
i

pici(y) (4)

In both objective functions Fsc and Fmc, λ con-
trols the relative contribution of the constraints to
the objective function. With higher λ, SampleR-
ank will make updates that never try to violates con-
straints, while with low λ, SampleRank trusts the
model more. The λm corresponds directly to one
used in (Chang et al., 2007).

4 Related Work

In this section we compare our framework with pre-
viously proposed methods.

Chang et al. propose constraint-driven learning
(CODL)(Chang et al., 2007). It can be interpreted

as a variation of the self-training algorithm with con-
straints, where training data is picked based on the
model’s prediction and the constraints. By directly
incorporating the model score and the constraints (as
in Equation 4) we avoid the expensive “Top-K” in-
ference step in CODL.

Generalized expectation (GE) criterion (Mann
and McCallum, 2008) and Alternating Projections
(AP) (Bellare et al., 2009) express preferences
by specifying constraints on feature expectations,
which require expensive inference. Even though AP
introduces an online version, it still involves full
inference over each instance. Furthermore, these
methods are restricted by the features of the model,
while our approach can use arbitrary constraints on
the factor graph.

(Li, 2009) incorporates prior knowledge into con-
ditional random fields using virtual evidence. Our
constraints are not encoded as variables in the factor
graph, allowing more expressivity.

5 Experiments

We carried out experiments on the Cora citation
dataset. The task is to segment each citation into dif-
ferent fields, such as “author”, “title”. We use 300
instances as training data, 100 instances as develop-
ment data, and 100 instances as test data. We select
some instances from the training data as labeled in-
stances, and the remaining data as unlabeled. We use
the same token constraints as (Chang et al., 2007).

We use the objective functions defined in Sec-
tion 3.3, specifically self-training (Self:Fs), di-
rect constraints (Cons:Fc), the combination of the
two (Self+Cons:Fsc) and combination of the model
score and the constraints (Model+Cons:Fmc). We
set α = 1.0, λs = 10, and λm = 0.0001.

Average token accuracy for 5 runs is reported and
compared with CODL in Table 1. We also report
supervised results from (Chang et al., 2007), and
by SampleRank. All of our methods demonstrate
vast improvement over the supervised method for
smaller training sizes, but this difference reduces
as the training size increases. When the complete
training data is used, additional unlabeled data hurt
our performance. This is not observed in CODL
as it uses more unlabeled data, which may also
explain their slightly higher accuracy. Note that



Method 5 10 15 20 25 300
Sup. (CODL) 55.1 64.6 68.7 70.1 72.7 86.1
SampleRank 66.5 74.6 75.6 77.6 79.5 90.7

CODL 71 76.7 79.4 79.4 82 88.2
Self 67.6 75.1 75.8 78.6 80.4 88
Cons 67.2 75.3 77.5 78.6 79.4 88.3

Self+Cons 71.3 77 77.5 79.5 81.1 87.4
Model+Cons 69.8 75.4 75.7 79.3 79.3 90.6

Table 1: Tokenwise Accuracy: for different methods as we vary the size of the labeled data

Self+Cons performs better than Self or Cons indi-
vidually. Model+Cons also performs competitively,
and may potentially outperform other methods with
a different λm.

Self training took 90 minutes to run on average,
while Self+Cons and Model+Cons took 100 min-
utes. Since the Cons method skips the inference step
over unlabeled data, it took only 30 minutes to run.
As the size of the factor graphs and unlabeled data
set grows, this saving will become more significant.

6 Conclusion

This work extends the rank-based learning frame-
work to semi-supervised learning. By integrating
these two paradigms, the computational efficiency
provided by parameter updates within inference is
retained while utilizing unlabeled data and prior
knowledge. We apply our method to a real-word
information extraction dataset, and demonstrate sig-
nificant accuracy and time improvements.

In future we will investigate the framework futher.
This work only explored linear-chain based models,
however we feel that the method can benefit more
for large complex factor graphs such as those used
for joint inference over multiple extraction tasks.
Additionally, various sensitivity, convergence and
robustness properties of the method need to be an-
alyzed.
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