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Towards Theoretical Bounds for
Resource-bounded Information Gathering

for Correlation Clustering

Work done as part of the Synthesis Project with
Andrew McCallum and Ramesh Sitaraman

Pallika Kanani

University of Massachusetts, Amherst

Abstract. Resource-bounded Information Gathering for Correlation Clus-
tering deals with designing efficient methods for obtaining and incorpo-
rating information from external sources to improve accuracy of cluster-
ing tasks. In this paper, we formulate the problem, and some specific
goals and lay the foundation for better theoretical understanding of this
framework. We address the challenging problem of analytically quantify-
ing the effect of changing a single edge weight on the partitioning of the
entire graph, under some simplifying assumptions, hence demonstrat-
ing a method to calculate the expected reduction in error. Our analysis
of different query selection criteria provides a formal way of comparing
different heuristics. We compare the solution of our theoretical analysis
with simulation results. We also estimate the probability of recovering
the true partition under various query selection strategies for general
random graphs and discuss some possible directions for approximation.
Next, we prove a related bound under certain assumptions. We also de-
scribe some general techniques to efficiently query and select nodes for
expanding graphs.

1 Introduction

Learning under resource constraints has been of interest to the Machine Learning
community in various contexts. One of the least understood of these is design-
ing efficient methods for obtaining and incorporating information from external
sources to improve accuracy of clustering tasks. We assume that there exists
some “true” underlying clustering for our data, which we are not able to recover
due to noise. In many real life scenarios, we may also have access to an external
source of information, which can be queried in order to reduce the noise or in
other ways help get closer to the true clustering. Invariably, such external infor-
mation is available at a cost, and we must try to select a subset of the available
information, so as to achieve the best cost-benefit ratio.

What makes this problem really interesting is the non-trivial effect of obtain-
ing a single piece of information on the clustering results of the entire dataset. If
we formulate the clustering problem as graph partitioning of a weighted graph,
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changing a single edge weight can affect the clustering result, depending on the
structure of the graph. Similarly, introducing an additional node in the graph can
also affect the clustering results significantly. Our strategy for querying external
information needs to take this into account to be efficient.

Our theoretical understanding of graph partitioning problems is still evolving,
and to the best of our knowledge, this problem has not been studied in this
form. Correlation clustering is an important class of algorithms that address
similarity - dissimilarity type of data well. There has been very little work on the
effect of correlation clustering on changing graphs. Probably the most significant
contribution of this project has been to formulate the problem of Resource-
bounded Information Gathering for Correlation Clustering, along with specific
subgoals.

The most challenging aspect of this problem is to quantify the impact made
by a single edge on the partitioning of the entire graph. We address this question
under several simplifying assumptions to demonstrate a method to calculate the
expected reduction in error as the result of a single query. We propose some
interesting directions for approximation of this quantity. Our analysis of different
query selection criteria provides a formal way of comparing different heuristics.
We also prove a related bound under certain assumptions. Next, we describe
some general techniques for efficiently querying an external source to obtain
new nodes and incorporating them in the graph to gain most improvement with
least investment of resources.

This is a rich area with many interesting possible directions, and this work
lays the foundation for better theoretical understanding of algorithms for per-
forming graph partitioning, as well as Resource-bounded Information Gathering.

1.1 Problem Definition

Resource Bounded Information Gathering for Correlation Clustering
The standard correlation clustering problem on a graph with real-valued edge
weights is as follows: there exists a fully connected graph G(V,E) with n nodes
and edge weights, wij ∈ [−1,+1]. The goal is to partition the vertices in V by
minimizing the inconsistencies with the edge weights [Bansal et al.2002]. That
is, we want to find a partitioning that maximizes the objective function F =∑
ij wijf(i, j), where f(i, j) = 1 when vi and vj are in the same partition and

−1 otherwise.
Now consider a case in which there exists some “true” partitioning P, and

the edge weights wij ∈ [−∞,+∞] are drawn from a random distribution (noise
model) that is correlated with whether or not edge eij ∈ E is cut by a partition
boundary in P. The goal is to find an approximate partitioning, Pa, of V into an
unknown number of k partitions, such that Pa is as ‘close’ to P as possible. There
are many different possible measures of closeness to choose from. Let L(P,Pa)
be some arbitrary loss function. If no additional information is available, then
we could simply find a partitioning that optimizes F on the given weights.

In this paper, we consider settings in which we may issue queries for addi-
tional information to help us reduce loss L. Let G0(V0, E0) be the original graph.
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Let F0 be the objective function defined over G0. Our goal is to perform cor-
relation clustering and optimize F0 with respect to the true partitioning of G0.
We can augment the graph with additional information using two alternative
methods: (1) updating the weight on an existing edge, (2) adding a new vertex
and edges connecting it to existing vertices. We can obtain this additional in-
formation by querying a (possibly adversarial) oracle using two different types
of queries. In the first method, we use a query of type Q1, which takes as input
edge eij and returns a new edge weight w′ij , where w′ij is drawn from a different
distribution that has higher correlation with the true partitioning P. Alterna-
tively, we may also assume that the oracle is friendly, and always returns a true
value of the edge weight that is queried.

In the second method, we can expand the graph G0, by adding a new set
of vertices, V1 and the corresponding new set of edges, E1 to create a larger,
fully connected graph, G′. Although we are not interested in partitioning V1, we
hypothesize that partitioning G′ would improve the optimization of F′ on G0

due to transitivity of partition membership. These can be obtained by second
type of query, Q2, which takes as input (V0, E0) and returns a subset V ′s ⊂ V1.
Note that the additional nodes obtained as a result of the queries of type Q2 help
by inducing a new, and presumably more accurate partitioning on the nodes of
G0. In this case, given resource constraints, we must select V ′s ⊂ V1 to add to
the graph. Fig. 1 illustrates the result of these queries.

However, there exist many possible queries of type Q1 and Q2, each with an
associated cost. There is also a cost for performing computation on the additional
information. Hence, we need an efficient way to select and order queries under
the given resource constraints.

Formally, we define the problem of resource-bounded information gathering
for correlation clustering as follows. Let c(q) be the cost associated with a query
q ∈ Q1∪Q2. Let b be the total budget on queries and computation. Find distinct
queries q1, q2, .....qm ∈ Q1∪Q2 and Pa, to minimize L(P,Pa), s.t.

∑
qi
c(qi) ≤ b.

(a) G0 (b) Result of Q1 (c) Result of Q2

Fig. 1. Results of the two kinds of queries. (a) The adjacency matrix of G0 where
darker circles represent edges with higher weight. (b) The new edge weights w′ij after
issuing the queries from Q1. (c) The graph expanded after issuing queries from Q2.
The upper left corner of the matrix corresponds to G0 and the remaining rows and
columns correspond to the nodes in V1.
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Some Specific Goals for Queries of type Q1 In our previous work [Kanani et al.2007],
we compare random, heuristic based, and expected entropy based approaches
for selecting queries. Following are some specific goals to be proved for these ap-
proaches. These examples compare the random vs. uncertainty based approaches,
but they can be generalized to any proposed approach.

Approach 1: Assuming µ shifts :

Goal 0: Here we assume that the weight matrix observed as a result of the
queries comes from a different (and presumable less noisy) distribution. We then
want to prove that we get at least ε improvement as a result of each query.

Approach 2: Assuming we get the perfect Wij or the perfect label for the
queried edge :

Goal 1: Let γ be the fraction of edges to be selected for labeling. If the method
of selection is uniformly random, then the expected reduction in the cost of clus-
tering is f1(γ.δ, µ). If the method of selection is based on uncertainty, then the
expected reduction in the cost of clustering is f2(γ.δ, µ). To Prove: f2 rises faster
than f1 w.r.t. γ. Or that value of f2 is great than f1 for a γ > c

Goal 2: Let γ be the fraction of edges to be selected for labeling. If the method
of selection is uniformly random, then the error bound on correlation clustering
is g1(γ.δ, µ, n, ε) Similarly, the error bound of graph partially labeled by method
based on uncertainty is g2(γ.δ, µ, n, ε). To Prove: g2 is tighter than g1.

Illustrative Example Fig. 2 illustrates approach 2 for an example graph. The
cost reduces when new information is obtained, but the magnitude of reduction
depends on the selection criterion used for querying the edge. Also note the effect
on the true error of partitioning.

A Note on Optimality In the general context of this problem, we can work
with two different optimal criteria. One is utility based, i.e. given a fixed budget,
b, what is the expected reduction in error (true or observed) after b queries. The
other one is erorr based, i.e. given that we require a specific amount of reduction
in error (again, true or observed), what is the expected number of queries needed
to achieve this reduction. A related optimality criterion is maximizing the area
under the curve of measured accuracy after execution of each query. In general,
the optimality criterion most suitable to the problem at hand should be selected.

A Note on True Error vs. Cost Function In this work, we assume a true
underlying clustering of our data. Even though different cost functions can be



5 Pallika Kanani

Fig. 2. From top to bottom: True clustering, The original graph, Two edges picked
randomly, Two edges picked based on uncertainty
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used to measure “goodness” of a particular partitioning, ultimately, we are in-
terested in reducing the “true” error as a result of information gathering. This
should be kept in mind while analyzing this problem.

1.2 Synthesis Contributions

This work is done as part of the synthesis project, combining the areas of Ma-
chine Learning and Theory. Section 5 describes the motivating Machine Learning
application. Here, we describe the specific contributions of this project towards
the theoretical analysis of our problem.

Problem Formulation and Specifying Goals The first and probably the
most significant contribution of this project has been to formulate the problem of
Resource-bounded Information Gathering for Correlation Clustering, along with
specific subgoals. This problem in it’s specific form has not been studied or de-
fined in the literature to the best of our knowledge. In [Kanani and McCallum2007],
we introduced it as an open problem. There are several other subgoals that can
be defined, along with several possible directions for future work. In this work,
we discuss some of these rich possibilities.

Calculating Expected Reduction in Error At the heart of Resource-bounded
Information Gathering is the following question. How does the change in one edge
weight affect the partitioning of the entire graph, resulting in the change in error?
In this case, we assume that we have an access to the “friendly” oracle, which
unveils the true value of the edge weight being queried. We address this question
under several simplifying assumptions to demonstrate a method to calculate the
expected reduction in error as the result of a single query. We discuss various
possibilities for approximation. Our analysis of different query selection criteria
provides a formal way of comparing different heuristics. We compare the solution
of our theoretical analysis with simulation results. We also perform simulations
to estimate the probability of recovering the true partition under various query
strategies for general random graphs.

Proving a Bound on Reduction in Error Alternatively, we can assume that
the edge weights of the graph resulting at the end of a single query come from
a different, but related distribution. In this case, we prove an upper bound on
the probability of obtaining at least ε improvement at the end of each query,
as a function of the gap between the parameters of the model before and after
obtaining new information. We use previously proven error bounds on correlation
clustering as a basis for our proof.

Techniques for RBIG for Expanding the Graph This part of our work
is a classic example of going back and forth between our problem domain and
theory. We started by defining the general problem of selectively filling entries
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of a potentially infinite matrix. Next, we defined it in terms of our domain and
applied some simple algorithmic techniques to solve it. Here, we abstract away
again from our specific domain and present the solutions in general form. We
describe the techniques for selecting a subset of the queries to obtain additional
nodes as well as for selecting a subset of the nodes to add to the graph for
improving partitioning. We also describe the assumptions under which these
techniques hold.

2 Changing Edge Weights - Expected Reduction in Error

In this section, we assume that we have access to an oracle, which unveils the
“true” edge weight of the requested edge, i.e. it returns a value of 0(do not
merge) or 1(must merge) for the queried edge. We now demonstrate a method
to calculate the expected reduction in error as the result of a single query.

2.1 Notation

Let G be a weighted, undirected, complete graph with n nodes. Let W be the
corresponding weight matrix, and Y be the indicator matrix representing parti-
tions S of G. Note that S partitions the nodes of graph G into equivalence sets,
and Yij ∈ {0, 1}.

We assume there is an arbitrary ”true” partition S∗ = {S∗1 , ...., S∗k∗} of the
vertices. i.e. S∗1 ∪ .... ∪ S∗k∗ = X and S∗i ∩ S∗j = ∅. Number of clusters k∗ and
the size of each cluster are arbitrary and unknown.

To this partition S∗ corresponds a probability distribution PS∗(W ) over edge
weights. We assume that PS∗(W ) is the process that generates the data we want
to cluster. The goal of the clustering algorithm is to recover the true partition
S∗ underlying the data generating process PS∗(W ) from a single realization of
edge weights W

Let us define the error of a partitioning S with respect to true clustering S∗

using the following pair-wise loss function.

d(S, S∗) = ||Y (S)− Y (S∗)||2F (1)

Here, ||.||F denotes the Frobenius norm. The function d measures the number
of pairs on which the two partitionings disagree.

Consider the following true errors in the partitions before and after obtaining
information. We use the subscript (or superscript) 0 to denote the variables
related to the original graph and the corresponding correlation clustering and the
subscript (or superscript) 1 to denote the corresponding variables after obtaining
information.

d0 = d(S0, S
∗) (2)

d1 = d(S1, S
∗) (3)
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2.2 The Planted Partition Model

(Karp). In a graph with n vertices, the edge weights are generated by a distri-
bution

PS∗(W |M,a, b) =
n∏
i=1

n∏
j=1

PS∗(Wij |Mij , a, b) (4)

So that each element Wij of W is a bounded independent random variable in
the interval [a, b] with mean Mij . Each PS∗(Wij |Mij , a, b) is constrained by the
true partitioning S∗ as follows. If Y (S∗)ij = 1 (vertices i and j are in the same
cluster), the mean Mij of Wij must fulfill the constraint that Mij = m+ > 0.
If Y (S∗)ij = 0 (vertices i and j are in different clusters), the mean Mij of Wij

must fulfill Mij = m− > 0.Here,m+ > m−

2.3 Specific Model Assumptions

We assume that each Wij is drawn from a beta distribution with mean either as
m+ or m−, depending on the constraint described above. Therefore, Wij ∈ [0, 1].
The betas we use are beta1(1, 1−m+

m+
) and beta2(1, 1−m−

m−
). We select these values

of the parameters of beta for convenience. We shall describe other simplifying
assumptions as we encounter them.

We shall now describe a method to calculate the expected reduction in error
as a result of a single query.

2.4 Method to calculate expected reduction in error at the end of
one query

Expected error for the original graph Let us first consider the expected
error of a partitioning generated by a simple stochastic graph partitioning algo-
rithm on the original graph.

E(d0) =
∑
S0

P (S0|S∗).d(S0, S∗) (5)

In order to compute P (S0|S∗), we integrate over W . Hence, we need to
compute the following integral.

P (S0|S∗) =
∫
W

n∏
i,j=1

P (Yij |W ).P (Wij |S∗)dW (6)

Notice that the probability of whether or not two nodes are partitioned de-
pends on the graph partitioning algorithm.

Let’s say we use a very simple algorithm. Consider the following stochastic
algorithm for graph partitioning:

Step 1. Starting with graph G and the corresponding weight matrix W, we
build a new graph H, with adjacency matrix A. For each edge (i, j), flip a coin
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with probability proportional to the edge weight that an edge exists in H between
nodes i and j.
Step 2. Take a transitive closure of H.

Note that the probability P (Yij |W ) now consists of the following. Let Hk
i→j

be a path in H from node i to node j of length at most k:

P (Yij |W ) = P (Aij = 1) ∗ P (∃Hn
i→j) (7)

We consider the edge weight Wij as the probability that there exists an edge
in A between nodes i and j. Also, given a clustering, under the planted partition
model, Wijs are independent. For simplicity, we do not consider a full transitive
closure but a 2-step transitive closure of H.

P (Yij = 1|W ) = P (∃(H1
i→j ∨H2

i→j))

= 1− P (¬∃(H1
i→j ∨H2

i→j))

= 1− P (¬∃H1
i→j ∧ ¬∃H2

i→j)

= 1− [(1− P (∃H1
i→j))×

∏
k

P (¬∃H2
i→jpassingthroughk)]

= 1− [(1−Wij)×
∏
k

(1− P (∃H2
i→jpassingthroughk))]

= 1− [(1−Wij)×
∏
k

(1− P (∃H1
i→k ∧ ∃H1

k→j))]

= 1− [(1−Wij)×
∏
k

(1−Wik.Wkj)]

This can be generalized to n-step via a dynamic programming solution.
Hence, we now get an expression for P (Yij = 1|W ) as follows:

P (Yij = 1|W ) = 1− [(1−Wij)
∏
k

(1−Wik.Wkj)] (8)

Similarly, we get

P (Yij = 0|W ) = (1−Wij)
∏
k

(1−Wik.Wkj) (9)

Now, in order to evaluate the integral in eqn. 6, we need to know the config-
uration of the underlying true clustering, S∗. Let us assume that we are given
this information. Let D+ be the set of edges drawn from beta1 and D− be the
set of edges drawn from beta2. Therefore, eqn. 6 now becomes
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P (S0|S∗) =
∫
W

∏
Yij=1∧(i,j)∈D+

[1− {(1−Wij)
∏
k

(1−Wik.Wkj)}]beta(1,
1−m+

m+
)

×
∏

Yij=1∧(i,j)∈D−

[1− {(1−Wij)
∏
k

(1−Wik.Wkj)}]beta(1,
1−m−
m−

)

×
∏

Yij=1∧(i,j)∈D+

[(1−Wij)
∏
k

(1−Wik.Wkj)]beta(1,
1−m+

m+
)

×
∏

Yij=1∧(i,j)∈D−

[(1−Wij)
∏
k

(1−Wik.Wkj)]beta(1,
1−m−
m−

)dW

(10)

Notice that the Wij terms affect each other while calculating the product
terms. Since the above integral is extremely hard to evaluate (even under our
simplifying assumptions), we first consider an example graph to understand the
properties of the above integral. We shall use this example to demonstrate the
method to evaluate the required probability P (S0|S∗).

Consider a graph G3 with 3 nodes. We will also assume that all three nodes
are connected with each other in the underlying true clustering. Also notice that
since we have an undirected graph, we assume the matrix to be symmetric and
focus on the upper triangular matrix only. Also, we use the following simplifying
notation. Let w1 = W12, w2 = W13, w3 = W23, and m = m+.

For graph G3, eqn. 10 becomes:

P (S0|S∗) =
∫
W

∏
(i,j)∈{w1,w2,w3}

[1−{(1−Wij)
∏
k

(1−Wik.Wkj)}]beta(1,
1−m
m

)

(11)
First, let us evaluate the product terms over (i,j).∏

(i,j)

= (w1 + w2w3 − w1w2w3)

×(w2 + w1w3 − w2w1w3)
×(w3 + w1w2 − w3w1w2)

= −w3
1w

3
2w

3
3 + w2

1w
3
2w

3
3 + w3

1w
2
2w

3
3 − w1w

2
2w

3
3

−w2
1w2w

3
3 + w1w2w

3
3 + w3

1w
3
2w

2
3 − w1w

3
2w

2
3

+w2
1w

2
3 + w2

1w
2
2w

2
3 − w1w

2
2w

2
3 + w2

2w
2
3 + w2

1w
2
2

−w3
1w2w

2
3 − w2

1w
3
2w3 + w1w

3
2w3 − w3

1w
2
2w3

−w2
1w

2
2w3 + w3

1w2w3 + w1w2w3 − w2
1w2w

2
3
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(12)

Observing this, we can see that the integral can be represented as a sum of
products and it is bounded, because the positive terms are bounded by 1 and
the negative terms are bounded by 0.

Each of the terms in the above product can be integrated separately in the
following form, since Wiij ’s are independent, given S∗.∫

f(w)g(w)h(w)dw =
∫
f(w)dw

∫
g(w)dw

∫
h(w)dw (13)

Following general method illustrates how we can compute these integrals. Let
us for now, take beta(α, β) and let f(w) = wkij .∫

W k
ijbeta(α, β)dW =

∫
W k
ij

Beta(α, β)
W

(α−1)
ij (1−Wij)(β−1)dW

=
1

Beta(α, β)

∫
W

(α+k−1)
ij (1−Wij)(β−1)dW

=
Beta(α+ k − 1, β)

Beta(α, β)

=
Γ (α+β)
Γ (α)Γ (β)

Γ (α+k+β)
Γ (α+k)Γ (β)

=
α(α+ 1)(α+ 2)...(α+ k − 1)

(α+ β)(α+ β + 1)(α+ β + 2)..(α+ β + k − 1)

Using Γ (α+ 1) = αΓ (α). Hence, we get∫
W k
ijbeta(α, β)dWij =

α(α+ 1)(α+ 2)...(α+ k − 1)
(α+ β)(α+ β + 1)(α+ β + 2)..(α+ β + k − 1)

(14)

In general, under the substitution of α = 1, β = 1−m
m , we get,∫

W k
ijbeta(α, β)dWij =

k!mk∏k−1
l=1 (1 + km)

(15)

Note that this general form is very useful to evaluate the integral for a large
graph analytically. However, this computation is very elaborate as k increases
and we would need to resort to approximation methods, as we shall see in the
next section.

Using eqn. 14, we can evaluate the integral in our example, using α = 1,
β = 1−m

m , k = 0, 1, 2, 3. Using eqns. 11, 12 and 14, we get
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P (S0|S∗) =
−24m9 − 156m8 + 12m7 + 239m6 + 123m5 + 21m4 +m3

(1 + 2m)3(1 +m)3
(16)

This can be substituted back in eqn. 5 to get the expected error. As we can
see, this solution is in closed form, however, given the nature of P (Yij |W ) for
our simplistic algorithm, it is difficult to express the solution of the integral
in general form. In the future, we would like to explore other versions of the
algorithm that lead to a simpler form of the required integral.

Expected error at the end of a single query We now turn our attention
to the expected error as the result of a single query. Note that, we can assume
that with a probability p, the oracle returns the value 0 for Wij . This case is
not very useful for the current version of our partitioning algorithm, since all
the terms containing Wij vanish, and hence, it does not influence the decision
on the surrounding edges. In the future, we would like to address this problem
by using a slightly more sophisticated partitioning algorithm.

Consider the case when the oracle returns the value 1 for Wij . In our example,
we set the value of, say w1 = 1.

The product term reduces to∏
i,j

= w2
2 + w2

3 + 2w2w3 + w2
2w

2
3 − 2w2w

2
3 − 2w2

2w3 (17)

Making the substitutions as before, we get

P (S1|S∗) =
6m2 − 2m4

(1 +m)2
(18)

Expected reduction in error We can now derive the expression for the ex-
pected reduction in error as follows. Using eqns. 5, 16 and 18

E(d0 − d1) =
∑
S0

P (S0|S∗)d(S0, S∗)−
∑
S1

P (S1|S∗)d(S1, S∗) (19)

However, since we are summing over all possible S’s, we can write this as

E(d0 − d1) =
∑
S

[P (S0|S∗)− P (S1|S∗)]d(S, S∗) (20)

For a given true clustering, we have now shown a method to derive the
expected reduction in error after obtaining the true value of one edge weight. As
mentioned before, we would like to work with a different partitioning scheme in
the future to yield a simpler form of the above expectation.
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2.5 Techniques for Approximation

As we saw in the previous section, for general graphs with a reasonable number of
nodes, our technique becomes mathematically cumbersome, and even computa-
tionally intractable. Here we describe some possible directions for approximating
the value of the required integral. We leave the analysis of the quality of these
approximation techniques to our future work.

Beta for high powers Recall that in order to evaluate the integral in eqn. 10 we
need to evaluate individual integrals as described in eqn. 15. For higher values of
k, this calculation becomes more and more cumbersome. We used Matlab Sym-
bolic package for these calculations and the analytical calculations soon became
intractable. However, fig. 3 shows the plot of the function f(k,m) = k!mkQk−1

l=1 (1+km)

for increasing values of k. Notice that as k increases, this function tends to con-
verge to a single curve, especially, for smaller and larger values of m (which can
be interpreted as a reasonable probability gap or amount of uncertainty in the
graph). This fact can be used to approximate integrals involving high values of
k very effectively.

Fig. 3. Approximation by exploiting the nature of the integral function

Exchanging the product and integration Recall that the integral in 10 is
an integral of a product. Another strategy for approximation is to exchange the
product and integration. Of course, this makes the independence assumption
that is not valid, but provides us with a technique that could prove to be very
effective for large graphs, without losing precision. Fig. 4 shows the exact and
approximate value of the integral for graphs of size 3 and 4 using this method.
For larger graphs, we could not calculate the exact values due to computation
limitations.
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Fig. 4. Approximation by exchanging product and integration

Observing patterns in powers This method is useful for approximating the
product terms by observing the pattern of terms under different types of edge
weight combinations. We show this technique for our transitivity of length 2. We
can either assume that this is adequate, or generalize this method in the future.

We first define the following numbers:

N1 =
∑
ij

∑
k

1A : A = {Wik = 1 ∧Wkj = 1} (21)

N2 =
∑
ij

∑
k

1A : A = {(Wik = 1 ∧Wkj = 0) ∨ (Wik = 0 ∧Wkj = 1)} (22)

N3 =
∑
ij

∑
k

1A : A = {Wik = 0 ∧Wkj = 0} (23)

Now, we observe that the multiplication term for P (S|S∗) takes the form
(1−a2)N1 ∗ (1−ab)N2 ∗ (1−b2)N3 after simplifications. This help us evaluate the
required integral. This also gives us ideas for designing new heuristics for query
selection, as discussed in the next section.

2.6 Analysis of Different Query Selection Criteria

The analysis so far estimates the expected reduction in error at the end of
a single query, for any edge. We now present some ideas for estimating this
quantity under different query selection criteria.

Let Psij be the probability that edge eij gets selected for querying under the
given query selection criteria. Let us define the event Qr to be the result of a
query q. If an edge eij is selected as part of q, then Qr = {W 1

ij = 1,W 1
ij = 0},

otherwise, some other edge in the graph is set to 0 or 1. Let p be the probability
that the oracle gives a positive response to the selected query q, i.e. p = P (Wij =
1)
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E(P (Y ij1 = 1|W 1)) = Psij ∗
∑
Qr
P (Yij = 1|W ) + (1− Psij ) ∗

∑
Qr
P (Yij = 1|W )

= Psij ∗ [p ∗ 1 + (1− p)[1−
∏
k(1−Wik.Wkj)]] + (1− Psij ) ∗

∑
Qr
P (Yij = 1|W )

= Psij ∗ [1− (1− p)
∏
k(1−Wik.Wkj)] + (1− Psij ) ∗

∑
Qr
P (Yij = 1|W )

Simillarly,

E(P (Y ij1 = 0|W 1)) = Psij ∗
∑
Qr
P (Yij = 0|W ) + (1− Psij ) ∗

∑
Qr
P (Yij = 0|W )

= Psij ∗ [(1− p)
∏
k(1−Wik.Wkj)] + (1− Psij ) ∗

∑
Qr
P (Yij = 0|W )

The case when the edge eij is not selected for querying is much more tricky,
since there are two possibilities in that case. Either the edge selected for querying
is incident on one of the nodes of eij , in which case, P (Yij = 0|W ) gets affected
(under our two step transitivity), or some other edge in the graph gets selected,
in which case, this probability is unaffected. We leave this complex analysis for
our future work. However, here we show method to compute Psij for different
query selection criteria and discuss some other heuristics to consider.

For random query selection criteria,

Psij =
1
N

(24)

For uncertainty based criteria,

Psij = argmaxk
−wklogwk∑
k −wklogwk

(25)

We now derive this for the expected entropy criteria, as proposed in our
previous work [Kanani et al.2007],

We first define entropy of the graph G0 as

H0 =
∑
ij

P (Yij = 1|W ) logP (Yij = 1|W ) (26)

We next define entropy of the graph after obtaining the value of Wij . De-
pending on the two possible outcomes, we have,

Hp =
∑
ij

P (Yij = 1|W,Wij = 1) logP (Yij = 1|W,Wij = 1) (27)

Hn =
∑
ij

P (Yij = 1|W,Wij = 0) logP (Yij = 1|W,Wij = 0) (28)

We now define expected entropy of an edge eij as,
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EEij =
Hp +Hn

2
(29)

Finally, as per this query selection criterion, the probability of the edge get-
ting selected is

Psij =
EEij∑
ij EEij

(30)

Other Query Selection Criteria We now propose some of the other heuristics
to consider for selecting queries. Assuming that the path of length 2 is enough
to establish transitivity in a fully connected graph, we can count the number
of positive and negative edges incident on the two nodes to assign a score to
each edge, which can then be used for selection (this is similar to the force
of attraction in an electric field). The derivative heuristic works by taking the
partial derivative of the weight matrix with respect to each edge weight. This is
similar to doing sensitivity analysis. We leave the analysis of these criteria for
our future work.

2.7 Simulation Experiments

Evaluating the expected reduction in error analytically, even for our example
is hard, since we need to sum over all possible clusterings of the graph. Fur-
thermore, we would like to compare the expected reduction in error for different
strategies for selecting the edges. We would also like to extend these results to a
general random graph. We turn to simulation technique to achieve these goals.

Experimental Setup We sample each graph using the Planted Partition Model
described above, where each edge weight is drawn from a beta distribution, whose
mean is determined by whether or not the corresponding vertices are merged in
the true partitioning of the graph. We use 500 samples of graphs for each of
these experiments.

We compare the uncertainty-based strategy for selecting the edge to query
versus the random approach. For our experiments, we store the samples gener-
ated initially for baseline, select an edge using one of the strategies and modify
the edge weight (to either 0 or 1) based on the true clustering.

We also extend some of the results to general graphs. The random graphs
are generated as follows. We first randomly select the number of nodes between
two and the specified maximum size. Next, we randomly select the number of
clusters between one and the number of nodes divided by two. We assume the
clusters are of uniform size, with the exception of singletons.

Comparison with Analytical Results We first compare the results of the
theoretical analysis presented in the previous section to the estimated probability
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of recovering the true partition of the simple example graph against different
values of m+. We use arbitrary m− in this experiment, since none of the edges
come from beta2. We see that after querying for one edge, we achieve most
improvement when there is most uncertainty in the original graph.

Fig. 5. Comparison of Analytical and Estimated Prob. of Recovering Partitioning of
Example Graph

Estimating Expected Reduction in Error for Example Graph We now
estimate the expected error before and after obtaining the results of a single
query, as described in equation 20 for our example graph. Fig. 5 shows that
when the underlying graph is very noisy, the uncertainty based approach is not
very useful, in the case of our example graph. However, at higher values of m+,
it is profitable to query the edge with most uncertainty.

Note that we sum over all possible clusterings of the given graph to calculate
the expected error. The number of possible partitionings for a graph with n
nodes is given by the Bell number of n (See Note), which can be approximated
to n!. Hence prohibitively expensive to generate all possible partitionings for
large graphs. In future, we would like to estimate the expected reduction in
error for general graphs.

Estimating Probability of Recovering True Partition in General Graph
Since, we are not calculating the expected error, we estimate the probability

of recovering the true partitioning of a random graph. In our experiments, we
use the process described earlier to generate 10 random graph structures, with
a max. size of 10 (which are then sampled 500 times).

Fig.7(a) shows this probability for different values of m+. We set the value of
m− to 0 for this experiment. For values of m+ greater than 0.5, the uncertainty
based approach proves to be an effective strategy for improving performance.
In fig.7(b), we average over several curves corresponding to different values of
m− . Each point on this curve is an average over different probability gaps in
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Fig. 6. Expected Error for Different Query Selection Strategies for Example Graph

the graph. As we can see, uncertainty based approach performs better than the
random approach. In future, we would like to extend these results to multiple
queries.

(a) Setting the value of m− to 0 (b) Averaging over several values of m−

Fig. 7. Prob. of Recovering Partitioning of General Graphs

2.8 A Note on True Clustering

In the future, we would like to integrate over all possible true clusterings of the
graph. Currently, we do not do this because it is hard to assume the distribution
of true clusterings. The obvious case of uniform distribution is easier to analyze,
but very unlikely. One interesting question we can ask about this case is as
follows :

Given an undirected, complete graph of n nodes, the total number of ways in
which we can partition it is given by the Bell number, B(n). (We assume disjoint,
complete partitions). What is the total number of times that two nodes are
merged in the same partition. For. e.g. for n = 3, there are 5 possible partitions.
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The total number of times two nodes are merged together is (0+1+1+1+3 =)6.
Hence, the ratio is 6

15 . Similarly, for n = 4, it is 30
90 .

In general, this quantity is related to the following integer sequence: Number
of partitions of {1...n} containing 2 detached pairs of consecutive integers, i.e.,
partitions in which only 1- or 2-strings of consecutive integers can appear in a
block and there are exactly two 2-strings [Munagi2005]. The required formula
is binomial(n, 2) ∗ B(n − 1) and the required ratio is B(n−1)

B(n) . This provides an
interesting direction for future analysis.

3 Changing Edge Weights - Proving a Bound on
Reduction in Error

In this section, we assume that the edge weights of the graph resulting at the end
of a single query come from a different, but related distribution. In this case, we
will prove an upper bound on the probability of obtaining at least ε improvement
at the end of each query, as a function of the gap between the parameters of the
planted partition model before and after obtaining new information.

3.1 Assumptions

This section uses a slightly different set of assumptions, as compared to the
previous section. We assume that the two distributions from which the weight
matrices are drawn before and after obtaining information are related to each
other by a linear relation on their means. We also use the cost function of corre-
lation clustering to estimate the true error. This is done on the basis of the error
bound presented in [Joachims and Hopcroft2005], which provides the basis for
our proof.

Integer Linear Programming Formulation of Correlation Clustering
The correlation clustering Ŝ of a graph with edge weights W is given by solution
Ŷ of the following integer program given by Demaine, et. al.:

Let W be the adjacency matrix of a weighted, undirected graph, G, with n
vertices. Let W+ be the same as W , after replacing all negative edges by zero
and let W− be the same as W , after replacing all positive edges by zero. The
optimization is over the nXn matrix Y with elements Yij ∈ {0, 1}. A value of 1
for Yij indicates that nodes indexed by i and j are in the same cluster. A value
of 0 indicates they are in different clusters. That is, Y is the cluster indicator
matrix.

min
Y

n∑
i=1

n∑
j=1

[(1− Yij)W+
ij − YijW

−
ij ] (31)

subject to
∀i : Yii = 1 (32)
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∀i, j : Yij = Yji (33)

∀i, j, k : Yij + Yjk ≤ Yik + 1 (34)

∀i, j : Yij ∈ {0, 1} (35)

We assume there is an arbitrary ”true” partition S∗ = {S∗1 , ...., S∗k∗} of the
vertices. i.e. S∗1 ∪ .... ∪ S∗k∗ = X and S∗i ∩ S∗j = ∅. Number of clusters k∗ and
the size of each cluster are arbitrary and unknown.

To this partition S∗ corresponds a probability distribution PS∗(W ) over edge
weights. We assume that PS∗(W ) is the process that generates the data we want
to cluster. The goal of the clustering algorithm is to recover the true partition
S∗ underlying the data generating process PS∗(W ) from a single realization of
edge weights W

The Generalized Planted Partition Model In a graph with n vertices, the
edge weights are generated by a distribution

PS∗(W |M,a, b) =
n∏
i=1

n∏
j=1

PS∗(Wij |Mij , a, b) (36)

So that each element Wij of W is a bounded independent random variable in
the interval [a, b] with mean Mij . Each PS∗(Wij |Mij , a, b) is constrained by the
true partitioning S∗ as follows. If Y (S∗)ij = 1 (vertices i and j are in the same
cluster), the mean Mij of Wij must fulfill the constraint that Mij ≥ µ+ > 0.
If Y (S∗)ij = 0 (vertices i and j are in different clusters), the mean Mij of Wij

must fulfill Mij ≤ µ− < 0

Error Bounds on Correlation Clustering [Joachims and Hopcroft2005] proves
the following error bound for correlation clustering.

Given the true partition S∗ of n points, the probability that correlation clus-
tering returns a partition () with Err((), S∗) ≥ ε in the planted partition model
with µ = min{µ+,−µ−} and a ≤Wij ≤ b is bounded by

P (Err((), S∗) ≥ ε) ≤ enln(n)−2εn(n−1) µ2

(b−a)2 (37)

This bounds the probability of drawing a W so that correlation clustering
returns a partition () which has an error d((), S∗) greater than δ. This provides
us with a basis to use the cost function of correlation clustering for the following
proof.

3.2 Bound Proof

Let us first define the error of a partitioning () with respect to true clustering
S∗ using the following pair-wise loss function.

d((), S∗) = ||Y (())− Y (S∗)||2F (38)



21 Pallika Kanani

Here, ||.||F denotes the Frobenius norm. The function d measures the number
of pairs on which the two partitionings disagree. The following proof is on the
similar lines of the upper bound on d((), S∗) as presented in (Joachims).

Let d+(S, S∗) = δ+ be the number of edges that are not cut in S∗ but cut in
S. Let d−(S, S∗) = δ− be the number of edges that are cut in S∗ but not cut in
S . Let D+ and D− be the corresponding sets of edges.

Consider the following true errors in the partitions before and after obtaining
information. We use the subscript (or superscript) 0 to denote the variables
related to the original graph and the corresponding correlation clustering. We
use the subscript (or superscript) 1 to denote the corresponding variables after
obtaining information.

d0 = d(S0, S
∗) (39)

d1 = d(S1, S
∗) (40)

We want to bound the probability P (d0 − d1 ≤ ε). We will use the following
Hoeffding’s inequality1, which bounds the deviation of a sum of independent and
bounded random variables Xk ∈ [ai, bi] from its mean:

P (
∑

Xk − E(
∑

Xk) ≤ c) ≤ e
−2c2P

(bi−ai)2 (41)

In our case, we set

∑
Xk = d0 − d1

= (
∑

(i,j)∈D0
+

W 0
ij −

∑
(i,j)∈D0

−

W 0
ij)− (

∑
(i,j)∈D1

+

W 1
ij −

∑
(i,j)∈D1

−

W 1
ij)

= (
∑

(i,j)∈D0
+

W 0
ij −

∑
(i,j)∈D1

+

W 1
ij)− (

∑
(i,j)∈D0

−

W 0
ij)−

∑
(i,j)∈D1

−

W 1
ij)

E(
∑

Xk) = (
∑

(i,j)∈D0
+

M0
ij −

∑
(i,j)∈D1

+

M1
ij)− (

∑
(i,j)∈D0

−

M0
ij)−

∑
(i,j)∈D1

−

M1
ij)

= (δ0+µ
0
+ − δ1+µ1

+)− (δ0−µ
0
− − δ1−µ1

−)

Let m be the gap introduced by new information. Here, we are assuming a two
sided model. We can even make it one sided at this point. I.e., we can say that
only positive information is obtained from the external source and the negative
edges remain unaltered. We leave this analysis to our future work. Now, we
assume that the parameters of the two gen. planted partition models are related
by the following relation:

1 Note that Hoeffding’s inequality applies to a sum of independent random vari-
ables.The W0’s and W1’s do not seem to be independent, but actually they are.
The Mij0 and Mij1 are independent of each other. They are only related by their
maximums, that is the µ’s.
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µ0
+ = µ1

+ −m+ (42)

µ0
− = µ1

− +m− (43)

Also, we use the following: µ0 = min{µ0
+,−µ0

+}, m = min{m+,−m−}, δ0 =
δ0+ + δ0−, and δ1 = δ1+ + δ1−. Therefore,

E(
∑

Xk) = (δ0+µ
0
+ − δ1+µ1

+)− (δ0−µ
0
− − δ1−µ1

−)

= (δ0+µ
0
+ − δ1+(µ0

+ +m+))− (δ0−µ
0
− − δ1−(µ0

− −m−))
= (δ0+µ

0
+ − δ0−µ0

−)− (δ1+µ
0
+ − δ1−µ0

−)− (δ0+m+ − δ0−m−)
= µ0(δ0+ + δ0−)− µ0(δ1+ + δ1−)−m(δ1+ + δ1−)
= µ0δ0 − µ0δ1 −mδ1
= µ0(δ0 − δ1)−mδ1

Now, we use Hoeffding’s inequality with the following values:

c = ε− E(Xk) = ε− µ0(δ0 − δ1)−mδ1∑
(bi − ai)2 = ((δ0+ − δ1+) + (δ0− − δ1−))(b− a)2 = (δ0 − δ1)(b− a)2

P (
∑

Xk − E(
∑

Xk) ≤ c) ≤ e
−2c2P

(bi−ai)2

P (
∑

Xk − E(
∑

Xk) ≤ ε− E(Xk)) ≤ e
−2[ε−µ0(δ0−δ1)−mδ1]2

(δ0−δ1)(b−a)2

P (
∑

Xk ≤ ε) ≤ e
−2[ε−µ0(δ0−δ1)−mδ1]2

(δ0−δ1)(b−a)2

P (d0 − d1 ≤ ε) ≤ e
−2[ε−µ0(δ0−δ1)−mδ1]2

(δ0−δ1)(b−a)2

This gives us the required bound.

Fraction of the Queries Here is a general idea for analyzing the effect of a
fraction of the queries. Under the planted partition model, Mij ’s are bounded
by µ+ and µ−. When a subset of edges are queries, the corresponding Mij ’s turn
into +1 or -1 and we can adjust

∑
Mij accordingly. Hence our final error bound

can shift based on the amount of queries made. We would like to explore this
direction in our future work.

3.3 A Note about the Cost Functions

The cost function used in the above formulation and most of the correlation clus-
tering literature [Joachims and Hopcroft2005], [Demaine and Immorlica2003], [Charikar et al.2005]
is
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cost′W (Y ) =
n∑
i=1

n∑
j=1

[(1− Yij)W+
ij − YijW

−
ij ] (44)

However, following is a related, but slightly different cost function, which is
smoother:

costW (Y ) =
n∑
i=1

n∑
j=1

[(1− Yij)Wij − YijWij ] =
n∑
i=1

n∑
j=1

[(1− 2Yij)Wij ] (45)

The two functions are related to each other as shown below:

costW (Y ) =
n∑
i=1

n∑
j=1

[(1− Yij)Wij − YijWij ]

=
n∑
i=1

n∑
j=1

[(1− Yij)(W+
ij +W−ij )− Yij(W+

ij +W−ij )]

=
n∑
i=1

n∑
j=1

[{(1− Yij)W+
ij − YijW

−
ij }+ {(1− Yij)W−ij − YijW

+
ij }]

Hence, we note that cost′W (Y ) = no. of positive edges that are cut - no.
of negative edges that are not cut = total disagreements. On the other hand,
costW (Y ) = [ no. of positive edges that are cut − no. of negative edges that are
not cut ]+[ no. of negative edges that are cut - no. of positive edges that are not
cut ] = total disagreements - total agreements. As noted in [Bansal et al.2002],
at optimality, the solution that minimizes disagreements also maximizes agree-
ments, and hence the solutions to the two different objective functions mentioned
above would have the same solution. So, we may chose to work with costW (Y )
for analyzing RBIG as it is smoother and for the sake of simplicity. It is im-
portant to remember that their approximate solutions differ, and it would be
interesting to study this as part of future research.

4 Expanding the Graph

In certain scenarios, the external information maybe available in the form of
additional nodes, which can be incorporated in the graph, to reduce the error
in partitioning the original graph. These additional nodes may represent the
same kind of objects as the nodes in the original graph or they may be different.
The new edges therefore, may also represent a different kind of relation. In
either of the cases, the additional nodes help improve the accuracy by inducing
a new partitioning over the nodes in the original graph due to the transitive
nature of graph partitioning. In this section, we will see some efficient methods
of incorporating additional information in the form of nodes under the given
cost-benefit assumptions.
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4.1 Assumptions

We first assume that the additional nodes are obtained by forming queries using
some information available in the existing graph. Since there is a cost associated
with each query, we would like to reduce the number of queries. Let Pk be one of
the partitions in the underlying true clustering of the original graph. Let P ′k be
one of the partitions in the true partitioning of the expanded graph, such that
Pk ⊂ P ′k. We assume that a query formed by using information from nodes i and
j, such that i, j ∈ Pk will return nodes that belong to P ′k. Otherwise, we get an
empty set.

Next, we assume that there exists an inexpensive way to evaluate a relation
function between the additional node and the nodes in the original graph. We
further assume that under this function, each additional node is related to only
those nodes in the original graph that should be clustered together. However, it
may be the case that it is related to only a subset of the nodes that belong to a
true partition.

4.2 Selecting Queries

In many scenarios, issuing queries and obtaining the results is itself an expensive
task. In this section, we will use the information available in the test data (upper
left section of the matrix) to selectively issue queries, such that the results of
those queries would have most impact on the accuracy of clustering. We use the
assumptions described in the previous section.

In this approach, we start by partitioning the original graph using the graph
partitioning algorithm of our choice. This gives us an initial guess of the par-
titions. We may then use one of the following methods to select queries. The
nodes obtained as a result of these queries are then added to the graph, and we
rerun the graph partitioning algorithm on the expanded graph.

Inter-cluster queries The first method for reducing the number of queries is
to query only a subset of the edges between current partitions. For each cluster
of vertices that have been assigned to the same partition under a given parti-
tioning, we define the centroid as the vertex with the largest sum of weights
to other members in its cluster. We connect all the centroids with each other
and get a collection of queries, which are then used for querying. Let n be the
number of nodes in the original graph and m be the number of currently pre-
dicted partitions. Under this scheme, we have reduced the number of queries to
be executed from O(n2) to O(m2). A variation of this method picks multiple
centroids, proportional to the size of each initial partition, where the proportion
can be dictated by the amount of resources available.

Intra-cluster queries The second method for reducing the number of queries
is to query only a subset of the edges within current partitions. For each initial
partition, we select two most tightly connected citations to form a query. Under
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the same assumptions stated above, we have now reduced the number of queries
to be executed from O(n2) to O(m). A variation of this method picks more than
two citations in each partition, including some random picks.

Fig. 8. Inter-cluster and Intra-cluster queries

Inter-cluster vs Intra-cluster queries Both these approaches are useful in
different ways. Inter-cluster queries help find evidence that two clusters should
be merged, whereas intra-cluster queries help find additional information about
a hypothesized partition. The efficiency of these two methods depend on the
number of underlying real partitions as well as the quality of initial partitioning.
We are currently investigating the correlation between the performance of these
query selection criteria with data characteristics, such as number of clusters,
distribution of clusters and so on.

4.3 Selecting Nodes

Incorporating additional nodes in the graph can be expensive. Calculating new
edge weights can incur high computational cost. Furthermore, the running time
of most graph partitioning algorithms depend on the number of nodes in the
graph. Hence, instead of adding all possible nodes, computing the corresponding
edge weights and partitioning the resulting graph, it is desirable to find a minimal
subset of the nodes that would help bring most of the nodes in the same clusters
together. This is equivalent to selectively filling the entries of the upper right
section of the matrix. We observe that this problem is similar to the classic
Set-cover problem with some differences as noted below.

RBIG as Set-cover The standard Set-cover problem is defined as follows.
Given a finite set U and a collection C = {S1, S2, ....., Sm} of subsets of U . Find
a minimum sized cover C ′ ⊆ C such that every element of U is contained in at
least one element of C ′. It is known that greedy approach provides an Ω(ln n)
approximation to this NP-Complete problem.

We now cast the problem of Resource-bounded information gathering using
additional nodes as a variant of Set-cover. We use the assumptions mentioned
before. The goal is to “cover” all the nodes in the original graph using the least
possible number of new nodes, where ”covers” is defined by the inexpensive
relation function. Under our assumptions, we can think of each new node as a
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Algorithm 1 RBIG-Set-cover Algorithm
1: Input:

Set of nodes in the original graph U
Collection of new nodes C : {S1, S2, ..., Sn}

2: O ⇐ ∅
3: while U is ”coverable” by C do
4: Sk ⇐ argmaxSi∈C |Si|
5: O ⇐ O ∪ {Sk}
6: U ⇐ U ∩ Sk

7: C ⇐ {Si|Si = Si ∩ Sk}
8: end while
9: return O
U is ”coverable” by C ≡ ∃(e∈U∧Si∈C)(e ∈ Si)

set of nodes in the original graph and the set of nodes in the original graph that
should be clustered together as the set of elements to be covered. We now need
to choose a minimal set of new nodes such that they can provide information
about most of the nodes in the original graph.

There are some differences between Set-cover and our problem that reflect
our assumptions as follows. There can be some elements in U which are not
covered by any elements in C. That is,

⋃
Si 6= U . Keeping this condition in

mind, we modify the greedy solution to Set-cover as shown in Algorithm 1.

4.4 Hybrid Approach

We can also combine the two approaches, i.e. Selecting Nodes and Selecting
Queries to form a hybrid approach. For example, we can first select queries using,
say intra-cluster queries to obtain additional nodes. This would help reduce
querying cost. We can then reduce the computation cost by selecting a subset
of the these nodes using the Set-cover method.

4.5 Cost-Benefit Analysis

It should be noted that the choice of strategy for Resource-bounded information
gathering in the case of expanded graph should be governed by a careful Cost-
Benefit analysis of various parameters of the system. For example, if the cost of
computing correct weights for the edges corresponding to the additional nodes
is high, or if we are employing a graph partitioning technique that is heavily
dependent on the number of nodes in the graph, then the Set-cover method
described above would be effective in reducing the cost. On the other hand, if
the cost of making a query and obtaining additional nodes is high, then using
inter-cluster or intra-cluster methods is more desirable. For a large scale system,
a hybrid of these methods could be more suitable.
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5 Motivating Application

The problem described above is inspired by our work in author coreference.
Here we are given a set of citations that mention similar author names, and
must partition them by the true identity of the author. As in our previous work
[Kanani et al.2007], we build a graph in which nodes represent author mentions.
The edge weights indicate the strength of our belief that two mentions refer to
the same real author, and are estimated by a binary logistic regression classifier
that uses features such as title, co-author overlap, etc. Note that, each partition
should represent the set of mentions that correspond to the same real author.

Experimentally, we have shown significant accuracy improvement by making
queries of type Q1 and Q2. In our case, we issue the queries to the web. We
incorporate the results of the queries either as additional features or as additional
nodes in the graph. For example, we can form a query by joining the titles of two
citations and issuing it to a search engine API. A hit indicates the presence of a
document on the web that contains both of these citations and hence provides
some evidence that they are authored by the same person. The result of the
query is translated into a binary input feature to our classifier and is used to
update the weight on the corresponding edge. The problem is resource bounded
because for a fully connected graph, obtaining additional feature value for every
pair of mentions is prohibitively expensive.

Similarly, we can add nodes corresponding to documents obtained by web
queries. Note that these web documents represent author mentions and help
improve accuracy by transitivity. For example, the additional node could be the
list of publications or CV of one of the authors and would show strong affinity
towards several nodes in the original graph. Hence, by transitivity, applying
graph partitioning on this expanded graph leads to improvement in accuracy.
However, since the web is too large to incorporate all its data, we need an
efficient procedure for selecting a subset of web queries and resulting documents.
We have applied the various approaches described in the previous section in
[Kanani and McCallum]. In this work we have shown significant reduction in
costs experimentally.

6 Related Work

In [Kanani et al.2007], we propose an approach to resource bounded information
gathering based on expected entropy, in which we use web information as an
additional feature. We also propose centroid-based methods in which we add
nodes to the graph.

Learning and inference under resource limitations has been studied in var-
ious forms, including resource-bounded reasoning and the value of information
[Grass and Zilberstein2000], [Lesser et al.2000], [Provost et al.2007], [Krause and Guestrin],
active feature value acquisition [Bilgic and Getoor2007], [Zhu and Wu2004], bud-
geted learning, [Kapoor and Greiner2005], [Crammer et al.2004], semi-supervised
learning [Zhu2005], and active learning, [Roy and McCallum2001], [Balcan et al.2007].
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There exists a vast amount of literature in machine learning as well as graph
theory on graph partitioning. There has been a lot of interest in correlation clus-
tering [Bansal et al.2002] [Demaine and Immorlica2003], [Charikar et al.2005] in
the theory community. Spectral methods [Shi and Malik2000], [Ng et al.2001],
[Bach and Jordan2003] are popular with interesting probabilistic interpretations
[Meila and Shi2001]. There has also been some amount of work in learning graph
partitioning under resource constraints [Hofmann and Buhmann1998],[Engelberg et al.2007].

Other alternative frameworks to approach this problem are budgeted multi-
cut, online graph partitioning, clustering with soft group constraints[Law et al.],
query based learning [Angluin et al.2007], property testing of graphs [Goldreich and Ron1997],
random and evolving graphs [Gaertler et al.2006] and sensitivity analysis.

7 Conclusion

We show that measuring the impact of a small change in the graph on the
overall graph partitioning is an extremely challenging problem. Even under our
simplifying assumptions, it is very difficult to get a general expression for the
expected reduction in error. However, we show that it is possible to derive a
closed form solution and demonstrate a method to do so. We also discuss some
interesting directions for approximation. Our analysis of different query selection
criteria provides a formal way of comparing different heuristics. We compare the
solution of our theoretical analysis with simulation results. We also perform
simulations to estimate the probability of recovering the true partition under
various query strategies for general random graphs and find that uncertainty
based approach works better than a random approach for selecting queries for a
reasonable amount of uncertainty in the original graph. We also show a related
bound under a different set of assumptions. Finally, we describe some general
techniques for the case of expanded graphs. This work is an initial step in the
direction of better theoretical understanding of the problem and opens up many
possible interesting directions for future work.
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