Simulating Dryland Water Availability and Spring Wheat Production in the Northern Great Plains

Thumbnail Image
Date
2012-12-07
Authors
Qi, Zhiming
Bartling, Patricia
Jabro, Jalai
Lenssen, Andrew
Iversen, William
Ahuja, Lajpat
Ma, Liwang
Allen, Brett
Evans, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lenssen, Andrew
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Agricultural system models are useful tools to synthesize field experimental data and to extrapolate results to longer periods of weather and to other cropping systems. The objectives of this study were: (i) to quantify the effects of crop management practices and tillage on soil water and spring wheat (Triticum aestivum L.) production in a continuous spring wheat system using the RZWQM2 model (coupled with CERES-Wheat) under a dryland condition, and (ii) to extend the RZWQM2 model results to longer term weather conditions and propose alternate cropping systems and management practices. Measured soil water content, yield, and total aboveground biomass under different tillage and plant management practices were used to calibrate and evaluate the RZWQM2 model. The model showed no impacts of tillage but late planting greatly reduced grain yield and biomass, in agreement with observed differences among treatments. The hydrologic analysis under long-term climate variability showed a large water deficit (32.3 cm) for spring wheat. Fallowing the cropland every other year conserved 4.2 cm of water for the following wheat year, of which only 1.7 cm water was taken up by wheat, resulting in a yield increase of 249 kg ha−1 (13.7%); however, the annualized mean yield decreased 782 kg ha−1(43.1%) due to 1 yr of fallow. Other long-term simulations showed that optimal planting dates ranged from 1 March to 10 April and the seeding rates with optimum economic return were 3.71 and 3.95 × 106 seeds ha−1 for conventional and ecological management treatments, respectively.

Comments

This article is from Agronomy Journal 105 (2012): 37–50, doi:10.2134/agronj2012.0203.

Description
Keywords
Citation
DOI
Copyright
Collections