Skip to main content
Article
Experimental and Theoretical Modeling of Behavior of 3D-Printed Polymers under Collision with a Rigid Rod
Additive Manufacturing (2017)
  • Kamran Kardel, Georgia Southern University
  • Hamid Ghaednia, Auburn University
  • Andres L. Carrano, Georgia Southern University
  • Dan B. Marghitu, Auburn University
Abstract
The behavior of five different 3D-printed polymers has been analyzed both theoretically and experimentally under low-speed collision conditions. The impact of a rigid rod with a flat specimen fabricated of 3D-printed materials was analyzed. An experimental setup has been designed in order to capture the motion of the rod during the impact using a high-speed camera. Image processing algorithms were developed to estimate the velocity before and after the impact as well as the coefficient of restitution. Also, permanent deformations after the impact were scanned with an optical profilometer. In this work, a theoretical formulation for the contact force during the impact is proposed. The impact was divided into two phases, compression and restitution, in which materials considered elastic–plastic in the first and fully elastic in the second one. The experimental results are used to measure the damping coefficient. Results show a good correlation between the proposed formulation for the contact force and the behavior of materials.
Keywords
  • Contact force,
  • Permanent deformation,
  • Coefficient of restitution,
  • 3D-printed polymers,
  • Additive manufacturing
Publication Date
March, 2017
DOI
10.1016/j.addma.2017.01.004
Citation Information
Kamran Kardel, Hamid Ghaednia, Andres L. Carrano and Dan B. Marghitu. "Experimental and Theoretical Modeling of Behavior of 3D-Printed Polymers under Collision with a Rigid Rod" Additive Manufacturing Vol. 14 (2017) p. 87 - 94 ISSN: 2214-7810
Available at: http://works.bepress.com/andres-carrano/2/