Skip to main content
Article
Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve
Biophysical Chemistry (2011)
  • Andrei Ludu, Embry Riddle Aeronautical University
Abstract
Close to melting transitions it is possible to propagate solitary electromechanical pulses which reflect many of the experimental features of the nerve pulse including mechanical dislocations and reversible heat production. Here we show that one also obtains the possibility of periodic pulse generation when the constraint for the nerve is the conservation of the overall length of the nerve. This condition generates an undershoot beneath the baseline (‘hyperpolarization’) and a ‘refractory period’, i.e., a minimum distance between pulses. In this paper, we outline the theory for periodic solutions to the wave equation and compare these results to action potentials from the femoral nerve of the locust (Locusta migratoria). In particular, we describe the frequently occurring minimum-distance doublet pulses seen in these neurons and compare them to the periodic pulse solutions.
Keywords
  • Solitons,
  • nervous impulse,
  • nerve model,
  • membrane transition
Publication Date
2011
Citation Information
Andrei Ludu. "Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve" Biophysical Chemistry Vol. 153 (2011)
Available at: http://works.bepress.com/andrei_ludu/13/