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We demonstrate the application and comparative interpretations of three tree-based algorithms for the analysis of data arising
from flow cytometry: classification and regression trees (CARTs), random forests (RFs), and logic regression (LR). Specifically, we
consider the question of what best predicts CD4 T-cell recovery in HIV-1 infected persons starting antiretroviral therapy with CD4
count between 200 and 350 cell/μL. A comparison to a more standard contingency table analysis is provided. While contingency
table analysis and RFs provide information on the importance of each potential predictor variable, CART and LR offer additional
insight into the combinations of variables that together are predictive of the outcome. In all cases considered, baseline CD3-
DR-CD56+CD16+ emerges as an important predictor variable, while the tree-based approaches identify additional variables as
potentially informative. Application of tree-based methods to our data suggests that a combination of baseline immune activation
states, with emphasis on CD8 T-cell activation, may be a better predictor than any single T-cell/innate cell subset analyzed. Taken
together, we show that tree-based methods can be successfully applied to flow cytometry data to better inform and discover
associations that may not emerge in the context of a univariate analysis.

Copyright © 2009 M. Eliot et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Advances in flow cytometry, and particularly technological
developments that facilitate acquisition of multiparameter
defined phenotypes, present new and exciting opportunities
for predicting patient outcomes based on individual specific
cell subset changes. This is specifically relevant in the context
of studying human immunodeficiency virus (HIV), where
there exists a great potential to draw from the rich array of
data on host cell-mediated response to infection and drug
exposures, to inform and discover patient level determinants
of disease progression and/or response to antiretroviral ther-
apy (ART). We describe three existing analytic approaches,
designed specifically for uncovering complex structures, and
their applications to high density multiparameter cell subset
data arising from the use of flow cytometry technology.

We demonstrate the usefulness of each approach for novel
discovery in this context as well as the contrasting clinical
associations that each approach is tailored to address.

The data motivating our research were collected during
the pre-randomization stage of the South Africa Structured
Treatment Interruption (SASTI) trial, an on-going non-
inferiority trial that aims to determine whether patients
whose ART is interrupted after achieving immune control
on therapy will continue to retain the immune reconstitu-
tion benefits of therapy. Data on multiple immunological
parameters were collected, by way of flow cytometry, on
all study participants at start of ART and periodically over
the course of the trial. The aim of our present investigation
is to illustrate how tree-based machine learning algorithms
can be applied to characterize the predictive capacity of
a large number of immunological variables, collected at
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therapy initiation, with regard to a single, clinically relevant
measure of immune reconstitution at a fixed time point on
continuous therapy and prior to randomization.

We begin by presenting briefly a commonly applied,
univariate analysis approach for testing the association
between each immunological parameter, individually, and
the outcome of interest. We then present three tree-based
methods that are designed for discovery of complex struc-
tures of association in high-dimensional data settings: (1)
classification and regression trees (CARTs) [1]; (2) random
forests (RFs) [2]; (3) logic regression (LR) [3, 4]. These meth-
ods have been described recently for many high-throughput
data settings, including most notably gene chip arrays [5–12];
however, to our knowledge, the application of these analytic
approaches to discover predictors of clinical outcomes based
on data arising from flow cytometry technologies has not
been reported previously.

Notably, the usefulness of CART for immunophenotyp-
ing is discussed in Beckman et al. [13], with a review in
Boddy et al. [14]. In our setting, the underlying goal differs
in that we aim to explore the clinical utility of a large
number of a priori defined phenotypes, rather than identify
new phenotypes based on a comparatively small number
of measurements. Also of note, in an earlier manuscript,
Ganju et al. apply CART to identify predictors of censored
survival time among patients with cerebral gliomas [15].
Inputs in the analysis include five flow cytometry variables,
as well as cytogenetic, molecular and clinical markers. Our
investigation extends this research, through consideration of
a large number of multiparameter subsets, and by offering a
discussion of multiple tree-based approaches, as well as their
comparative interpretations, for discovery of associations
between these subsets and a clinical endpoint.

2. Data and Laboratory Methods

The SASTI trial began in 2006 and led to the successful
recruitment of n = 127 HIV-1 infected individuals, of whom
n = 78 individuals completed the 36-week prerandomization
phase of the trial. Eligibility criteria for the study included
documented HIV-1 infection, 18 years of age or older, and
a CD4+ count between 200 and 350 cells/μL in the absence
of therapy and within 60 days of the start of the study. All
individuals in the trial received a similar ART regimen for the
first 36 weeks, and then were randomized to either multiple
short-term treatment interruptions or continuous therapy.
The present investigation focuses only on prerandomization
data, when all subjects are still on ART, as the trial is still on-
going as of August 2009.

Cellular immunophenotypes were studied using flow
cytometry. Stainings were performed on fresh whole blood
at the Department of Hematology and Molecular Medicine,
National Health Laboratory Service and University of the
Witwatersrand, Johannesburg, South Africa. Briefly, whole
blood samples were stained for surface marker detection
using fluorochrome-labeled monoclonal antibodies (mAbs)
lyophilized on 96-well plates (Lyoplates, BD Biosciences,
San Jose, CA). Fluorochrome binding was detected using
a 4-color FacsCalibur flow cytometer (BD Biosciences).

Cellular subests were analysed using proprietary software
(CellQuest, BD Biosciences). Percent of positive cells was
calculated based on isotype-matched control mAb bind-
ing. Whole blood samples were stained with monoclonal
antibody (mAb) combinations (given in Table 1) for 30
minutes, followed by lysis and analysis on a FACScaliber
flow cytometer (BD Biosciences). Given the limitation of the
instrument (simultaneous detection of 4-color fluorescence),
multiple stainings were performed to assess subsets of
CD3+ T lymphocytes. The gating strategy is summarized as
follows.

(1) Background staining was assessed using isotype-
matched mAb (staining 1—this method is generally
considered acceptable for surface flow cytometry of
lymphocytes).

(2) Postrun electronic event gating was performed using
CellQuest software (BD Biosciences), based on the
use of multiple 2-color quadrants. A first gating
assessed expression of CD3 and CD8 (stainings 2, 3,
4, 6), CD3 and HLA-DR (staining 5), CD3 and CD45
(staining 7), and Lin-1 and HLA-DR (staining 8).
Events falling in the quadrants of interest were further
gated using quadrants to explore the expression of
the remaining markers. The number of events falling
in each quadrant was collected. Results are expressed
as percent of gated/total events unless otherwise
specified.

(3) For T cell subset assessment, the CD4+ T lymphocyte
subset was directly stained using CD4 mAb only in
staining 7 (single platform CD4 count [16]). Based
on the mutually exclusive expression of CD8 and
CD4 in the vast majority of T cells (as also assessed
in staining 7), in all remaining T cell stainings (2, 3,
4, and 6) CD4+ T cells were defined as CD3+ cells
lacking expression of CD8.

In this paper, we focus on assessing the relationships
among multiple baseline flow cytometry variables collected
at initiation of ART and the variability in achieving a robust
CD4+ T-cell count rise on ART, in the context of restricting
the range of starting CD4 count between 200 and 350
cells/μL. A complete listing of the baseline flow variables is
given in the first column of Table 2. These are fluorescence-
based cell phenotypes following intensity threshold gates
using two to four fluorochromes. Four replicates, based on
independent data acquisitions, were recorded for each of
the phenotypes, CD3-CD8-, CD3+CD8-, CD3-CD8+, and
CD3+CD8+ and averaged for the analysis. After combining
these data, there are a total of 63 flow variables. All variables
are measured as a percent of gated at baseline, with the
exception of CD4+ which is a cell count. CD4+ T-cells, which
are targeted in the viral replication cycle, play an important
role in the functioning of the host immune system and
are a well-described marker for disease progression when
decreasing and as a response to ART based on its inverse
relation to viral replication [17]. A CD4+ cell count of
greater than 450 cells/μL at 36 weeks on ART is considered
a positive response to ART within this study and serves as
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Table 1: 4 Color stainings employed for flow cytometric analysis.

Staining no. FITC PE PerCP cy5.5 APC

1 Ig Ig Ig Ig

2 CD45RA CD62L CD3 CD8

3 CD38 CD28 CD3 CD8

4 HLA-DR CD95 CD3 CD8

5 CD56 CD16 CD3 HLA-DR

6 CD7 CD154 CD3 CD8

7 CD8 CD4 CD45 CD3

8 Lin-1 CD123 HLA-DR CD11c

the outcome in our present investigation. Notably, while this
dichotomized version of CD4+ cell count is used in our
study, the analytic methods we present are equally applicable
to both binary and quantitative outcomes.

3. Methods

We present a univariate analysis and three tree-based algo-
rithms. The tree-based approaches involve recursive splitting
of the data, based on the value of predictor variables,
in a manner that broadly captures the variability in a
single outcome. All three approaches are nonparametric
and can be applied in the context of a large number of
predictors and a single binary or quantitive trait. Both
CART and RFs can handle both quantitative and binary
predictor variables, while logic regression requires dichoto-
mous inputs. For clarity of presentation, we dichotomize
all of the potential predictors a priori. Further discussion
of this, including model sensitivity to choice of inputs,
is given in Section 5. We begin by briefly defining our
notation.

3.1. Notation and Univariate Analysis. Suppose we have p
predictor variables based on the outcome of flow cytometry
at a single time point. We denote these with the vector xi =
(xi1, . . . , xip) for individual i, where i = 1, . . . ,n. The n × p
matrix X is used to denote the full data design matrix with
(i, j)-element corresponding to the value of variable j for
individual i. Subjects are assumed to be independent, though
we expect correlation among the predictors. Interest lies in
characterizing the association between X and a measured
trait, which we denote with the vector y = (y1, y2, . . . , yn)
for the n individuals in our study. In our setting, each of the
columns of X, denoted Xj , is a measure of the flow variables
and the outcome of interest is a binary indicator for CD4+
cell count >450 cells/μL. We define each Xj as an indicator
for being above or below the sample median value for that
variable.

Measuring and testing the association between a single
categorical predictor and a binary outcome is typically
achieved through a contingency table analysis. The odds
ratio, defined as the odds of disease given exposure, divided
by the odds of disease given no exposure, is a well-described

measure of association in the this context and is given
formally by

OR = Pr(D+ | E+)/[1− Pr(D+ | E+)]
Pr(D+ | E−)/[1− Pr(D+ | E−)]

. (1)

In our setting, we report the odds of having a CD4+ cell
count of more than 450 cells/μL (D+) given that a specific
baseline flow variable is in the upper half of its distribution
(E+), over the odds of having a CD4+ cell count >450
cells/μL given that this flow variable is in the lower half (E−).
Pearson’s χ2-test can be applied as a test of the null hypothesis
of no association between exposure and disease for each flow
variable independently. An adjustment of the resulting P-
values, that accounts for the number of tests performed, is
needed in this setting for assessing statistical significance. We
report the q-value which is based on a positive false discovery
rate adjustment [18, 19].

3.2. Classification and Regression Trees. Classification and
Regression Trees (CARTs) are an alternative, nonparametric
approach that allows us to model simultaneously the rela-
tionship between an outcome and multiple potential predic-
tor variables. This approach provides us with information on
variable importance as well as the structure of association.
Classification trees are constructed for binary outcomes
while regression trees apply to continuous traits. Both binary
and continuous predictor variables are acceptable inputs,
though trees are constructed based on binary splits of these
data. The first step in generating a tree is to determine
the most predictive variable of the trait, which we denote
X(1), based on a prespecified splitting rule. Secondly, we
divide individuals into groups based on the value of X(1) and
determine the most predictive variable of the outcome within
each of these groups. This process is repeated recursively
until a stopping criterion is met and then the resulting tree
is pruned back to avoid over-fitting. Tree construction is
sensitive to the choice of splitting rule, and ultimately, we
want to define such a rule so that we partition our data
in a manner that minimizes the within group heterogeneity
in the outcome. Here we describe the CART methodology
generally, though in the example we present a classification
tree since we are considering a binary outcome.

Formally, let the node Ω represent the full set of data and
suppose after splitting the data based on one of the predictor
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Table 2: Univariate associations with CD4+ count at 36 weeks on
ART.

Predictor Odds ratio P-value

CD3-DR-CD56+CD16+ 0.183 .008

Lin-DR- 0.228 .018

CD45+CD3+ 0.274 .035

CD3+CD8+CD38+CD28+ 0.281 .047

CD3-CD8+ 0.323 .084

CD3-DR+CD56+CD16+ 0.339 .087

CD3+CD8-CD7+CD154+ 0.339 .087

CD3-DR-CD56-CD16- 0.364 .113

CD3+CD8+CD7+CD154+ 0.388 .463

CD3+CD8-CD7+CD154- 0.389 .146

CD3+CD8-DR+CD95- 0.429 .189

CD3+DR- 0.460 .236

CD3+CD8-CD45RA+CD62L+ 0.477 .283

CD3+CD8-DR+CD95+ 0.477 .283

CD45-CD3+ 0.494 .632

CD3+CD8- 0.494 .632

Lin-DR+CD123+CD11c+ 0.564 .424

CD3+CD8+DR+CD95+ 0.628 .571

CD3-DR+ 0.646 .586

CD3+CD8-DR-CD95- 0.646 .586

CD45+CD3+CD8-CD4- 0.703 .690

CD3+CD8+CD38-CD28+ 0.709 .699

CD3+CD8-CD7-CD154- 0.740 .774

CD3+CD8+ 0.752 .786

CD3+CD8-CD38+CD28+ 0.759 .797

CD3+CD8+CD38+CD28- 0.760 .812

CD3-DR+CD56-CD16- 0.805 .887

CD3-DR+CD56+CD16- 0.805 .887

CD3+CD8+CD38-CD28- 0.813 .898

CD45-CD3- 0.862 .989

Lin-DR+CD123+CD11c- 0.913 .917

CD3+CD8+CD45RA+CD62L- 0.923 .908

CD3+CD8+CD45RA-CD62L 0.931 .898

CD45+CD3+CD8-CD4+ 0.931 .898

CD3+CD8+DR+CD95- 0.938 .887

CD3+CD8-CD7-CD154+ 0.962 .696

CD3+CD8-CD38+CD28- 0.996 .797

CD3+CD8+DR-CD95- 1.004 .797

Lin+DR+ 1.074 .898

CD3-DR-CD56-CD16+ 1.074 .898

CD3-CD8- 1.074 .898

Lin+DR- 1.149 1.000

CD45+CD3- 1.160 .989

CD3+CD8-CD38-CD28- 1.160 .989

CD3+CD8-CD45RA+CD62L- 1.230 .898

CD45+CD3+CD8+CD4- 1.317 .797

CD3+DR+ 1.329 .786

Lin-DR+CD123-CD11c- 1.329 .786

Table 2: Continued.

Predictor Odds ratio P-value

CD3+CD8-DR-CD95+ 1.329 .786

CD3+CD8+DR-CD95+ 1.410 .699

CD45+CD3+CD8+CD4+ 1.410 .699

CD3+CD8+CD45RA-CD62L+ 1.422 .690

CD3-DR- 1.446 .677

CD3-DR+CD56-CD16+ 1.486 .661

Lin-DR+ 1.511 .605

CD4+ 1.522 .598

Lin-DR+CD123-CD11c+ 1.522 .598

CD3+CD8-CD45RA-CD62L+ 1.630 .512

CD3-DR-CD56+CD16- 1.630 .512

CD3+CD8+CD7+CD154- 1.657 .502

CD3+CD8+CD7-CD154- 1.707 .487

CD3+CD8-CD38-CD28+ 1.898 .354

CD3+CD8-CD45RA-CD62L 2.011 .294

CD3+CD8+CD45RA+CD62L+ 2.152 .238

variables, we have two groups, ΩL and ΩR, called the left and
right daughter nodes, respectively. If the node impurity, or
heterogeneity, forΩ is denoted I(Ω), then we aim to identify
the split that maximizes

φ = I(Ω)− I(ΩL)− I(ΩR). (2)

That is, we want to choose a split that maximizes the
reduction in node impurity. In the context of a binary
outcome (y = 0 or 1), we let I(Ω) = π(Ω)i(Ω) where π
is the probability of belonging to Ω, so that (2) reduces to

φ = i(Ω)− πLi(ΩL)− πRi(ΩR). (3)

The impurity, i(Ω), is commonly measured using the Gini
index [12], defined as

i(Ω) = 2pΩ
(
1− pΩ

)
, (4)

where pΩ = Pr(y = 1 | Ω) is the conditional probability that
y is equal to 1 within the node Ω.

Once a tree is constructed, as shown in Figure 1, we
prune it to ensure its applicability to external datasets.
Importantly, increasing the number of splits in a tree will
inevitably decrease the prediction error for the data used
to generate the tree. However, a smaller tree may better
describe the underlying structure in the population at large.
Therefore, after we build a tree, as described above, we prune
it in order to get an optimal subtree, using cost-complexity
pruning. Briefly, for tree T of size |T | and complexity
parameter α ≥ 0, the cost complexity is given by

Rα = R(T ) + α|T |, (5)

where

R(T ) =
∑

τ∈T̃

Pr(τ)r(τ), (6)
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n = 78
pΩ = 0.243

(19/78)

CD3-DR-CD56+
CD16+
= high

CD3-DR-CD56+
CD16+
= low

n = 39
pΩ = 0.103

(4/39)

n = 39
pΩ = 0.385

(15/39)

Lin-DR-
= high

Lin-DR-
= low

n = 16
pΩ = 0.125

(2/16)

n = 23
pΩ = 0.56

(13/23)

CD3+CD8-
DR+CD95+

= high

CD3+CD8-
DR+CD95+

= low

n = 12
pΩ = 0.333

(4/12)

n = 11
pΩ = 0.82

(9/11)

Figure 1: Classification tree (unpruned).

T̃ is the set of terminal nodes in tree T and r(τ) is the
measure of error for the node τ. In the case of a binary
outcome, we let r(τ) equal the misclassification rate.

3.3. Random Forests. Random Forest (RF), originally pro-
posed by [2], is an alternative approach that involves
generating a collection of trees. Since this approach results
in an ensemble of trees, which tend to vary in structure,
RFs serve to quantify the importance of variables, rather
than depicting the specific structure of association among
variables. A primary advantage of RFs is that, through
sampling a subset of variables at each split, it offers a natural
approach to handling collinearity among the predictors.
In this paper, we demonstrate the application of RFs as
an exploratory tool, although methods for determining
statistical significance based on variable importance scores
have been described recently [20, 21].

The RF algorithm is summarized by the following
step-by-step procedure: (1) generate a learning sample by
sampling n1 individuals with replacement from our data
(usually about two-thirds of the data). We call the remaining
n2 ≈ n − n1 data the out-of-bag (OOB) data; (2) using
the learning sample data, generate an unpruned tree by
randomly sampling a subset of the predictors at that node.
These predictors will be used as our variables on which our
splitting decisions are based (3) based on the OOB data,
find the overall tree impurity, and call this πb. Permute the
predictor Xj and record the overall tree impurity for each
j = 1, . . . , p. Call tree impurity for the jth predictor πb j and
call variable importance for this predictor δb j = πb j − πb.
(4) repeat steps (1)–(3) for b = 2, . . . ,B in order to obtain
δ1 j , . . . , δB j for each j.

For each predictor, j, the overall variable importance
score is given by the average importance over the B trees.
Formally, we write

θ̂ j = 1
B

B∑

b=1

δb j . (7)

Notably, for each tree, a learning sample is used in the tree
construction, while an independent test sample, called the
OOB data, is used to evaluation variable importance.

3.4. Logic Regression. Logic regression (LR) is another tree-
based approach that is increasingly popular for the analysis
of high-dimensional data. LR searches specifically for models
that are comprised of combinations of Boolean expressions
of the predictors [3, 4]. Boolean expressions take on the
value of either 0 or 1, and are themselves functions of
binary variables, related to each other by “and,” “or,” and
“complement” statements. Formally, LR models are of the
form

g(E[Y | X]) = β0 +
t∑

j=1

βjLj , (8)

where Lj is a Boolean combination of the binary pre-
dictors. Suppose that we have binary predictor variables
X1,X2, . . . ,Xp which we want to use to predict some
outcome. An example of a Boolean expression in terms of our
group of predictors is (X1∧X2)∨(X3∧Xc

4), which represents
“both X1 = 1 and X2 = 1 or both X3 = 1 and X4 = 0.”

4. Example

We report the results of applying a univariate analysis and
each of the tree-based methods described above to data
arising from the SASTI trial detailed in Section 2. In total,
n = 63 flow cytometry variables, measured at baseline,
are used as potential predictors (in addition to CD4+
count at baseline). Each variable is dichotomized to indicate
whether the value is above or below the median of the
observed (nonmissing) values for that predictor. That is, an
observation is set equal to 1 if it is greater than the median
value for all observations in our sample of that predictor and
0 otherwise. A single imputation is used such that missing
data points are assigned the most common value of 0 or 1,
based on the nonmissing data for the corresponding variable.
The outcome of our analysis is an indicator for whether
CD4+ cell count is greater then 450 cells/μL at 36 weeks after
initiation of ART, which represents the last time point prior
to randomization.

The univariate analysis results are provided in Table 2.
Here the OR is reported as a measure of association between
each flow variable at baseline and CD4+ cell count at 36
weeks on ART. The P-value corresponds to Pearson’s χ2-test
of association. Based on this analysis, we see that CD3-DR-
CD56+CD16+ is the most predictive variable with an OR
= 0.183 (unadjusted P = .008). This suggests that the odds
of having a CD4+ cell count >450 cells/μL while on therapy
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CD3+CD8+CD7+CD154+
Lin+DR+
CD3+CD8+DR+CD95+
Lin-DR+CD123-CD11c+
CD3+CD8+CD38-CD28-
CD45+CD3+CD8+CD4+
Lin-DR+CD123+CD11c-
CD3+CD8+CD7-CD154-
CD3+CD8+
Lin+DR-
CD45+CD3+CD8-CD4-
CD3+CD8+DR+CD95-
CD3+CD8-CD45RA-CD62L+
Lin-DR+CD123+CD11c+
CD3+CD8-DR+CD95+
CD3+CD8-CD45RA-CD62L
CD3+CD8-CD45RA+CD62L+
CD3+CD8+CD45RA-CD62L+
CD3+CD8-DR+CD95-
CD3+DR-
CD3+CD8-CD7+CD154-
CD3+CD8+CD45RA+CD62L+
CD3-CD8+
CD3-DR+CD56+CD16+
CD3-DR-CD56-CD16-
CD3+CD8-CD7+CD154+
CD3+CD8+CD38+CD28+
CD45+CD3+
Lin-DR-
CD3-DR-CD56+CD16+

Random forest binary predictors

0 0.2 0.4 0.6 0.8 1 1.2

Mean decrease Gini

Figure 2: Variable importance scores from application of an RF.

is higher among individuals with a baseline observed CD3-
DR-CD56+CD16+ that is in the lower half of our sample.
Lin-DR- at baseline is the next most predictive variable,
with an OR = 0.23 (unadjusted P = .018). After adjusting
for multiple testing using the approach of Benjamini and
Yekutieli [22], we cannot conclude that any of the flow
variables alone are significantly associated with CD4+ count
after 36 weeks. The repeated ORs reported in this table are
likely due to the limited sample size in our study, as clear
relationships among these pairs and triplets of variables are
not generally well-established.

An unpruned classification tree, based on a stopping rule
of n = 5 individuals per node, is illustrated in Figure 1.
This model yields five terminal nodes, indicated by the
shaded circles, resulting from splits based on CD3-DR-
CD56+CD16+, Lin-DR- and CD3+CD8-DR+CD95+. The
first split indicates, for example, that for high CD3-DR-
CD56+CD16+ (i.e., CD3-DR-CD56+CD16+ greater than
the median), only pΩ = 4/39 = 10.3% of the individuals
in our sample have an observed CD4+ count that is greater
than 450, while for low CD3-DR-CD56+CD16+ (i.e., CD3-
DR-CD56+CD16+ less than the median), pΩ = 15/39 =
38.5% of individuals have a CD4+ cell count that is greater
than 450 cells/μL. Among those individuals who fall to the
right daughter node (i.e., low CD3-DR-CD56+CD16+), the
next most important predictor is Lin-DR-. When CD3-DR-
CD56+CD16+ is low and Lin-DR- is high, 2/16 = 12.5%

of the subjects in our sample have an observed CD4+
count that is greater than 450. On the other hand, when
both CD3-DR-CD56+CD16+ and Lin-DR- are low, a much
higher percentage (13/23 = 56.5%) of individuals have
a CD4+ count greater than 450 cells/μL. Application of
cost-complexity pruning resulted in a tree with no splits,
suggesting that these findings may not be reproducible in an
independent sample. This may be a consequence of limited
power in our small sample setting.

The results of applying the RF algorithm to these data
are given in Figure 2. Here we see that the most important
baseline predictor of CD4+ count on ART is again CD3-DR-
CD56+CD16+, with a mean decrease in node impurity of
1.26. The next most important variable is Lin-DR- (also the
second split in our classification tree), with a corresponding
mean decrease in node impurity of 1.05. These results are
generally consistent with the univariate analysis of Table 2
and to some extent with the classification tree of Figure 1;
however, some notable differences are apparent. First, the
RF analysis places more emphasis on CD45+CD3+ as an
important predictor than the CART analysis. Interestingly,
CD45+CD3+ is also the third most important variable in the
univariate analysis. Since the classification tree is considering
a series of conditional analyses, this difference may be a
result of CD45+CD3+ not having a strong association within
levels of the first splitting variable, CD3-DR-CD56+CD16+.
Secondly, the classification tree analysis places greater
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CD3-DR-
CD56-CD16-

Or

And

CD3+CD8+
CD38+CD28-

CD3+CD8+
CD38+CD28-

Note: gray box indicates complement

(a) First element of LR (β̂1 = −4.96)
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Figure 3: Logic regression trees.

emphasis on CD3+CD8-DR+CD95+ than either the RF or
univariate approaches. This specifically lends some insight
into a potential effect of the combination of CD3-DR-
CD56+CD16+, Lin-DR-, and CD3+CD8-DR+CD95+.

Finally, we applied LR to the data and the resulting
trees are presented in Figure 3. Here we applied a logit link
function, specified that we wanted two trees and restricted
the total number of “leaves” (across both trees) to 6 for ease
if interpretation. The coefficient estimates for the trees in

Figures 3(a) and 3(b) are β̂1 = −4.96 and β̂2 = −3.79, respec-
tively. In this case, the variable CD3-DR-CD56-CD16- is an
important predictor of CD4+ count on therapy. Notably,
this variable is highly negatively correlated with CD3-DR-
CD56+CD16+ (Pearson’s ρ = −0.71), which was identified
as the most important predictor of immune reconstitution
based on the other approaches described above. In addition
to CD3-DR-CD56-CD16- being an important predictor of
immune reconstitution, we have, for example, based on the
second tree, that when CD3+CD8-CD7+CD154+ is low (less
than the median) and either CD45+CD3+CD8+CD4- or
Lin-DR+CD123-CD11c+ is high (greater than the median)
the log odds that CD4+ count is greater than 450 cells/μL
decreases by 3.79, compared to when this does not hold.

5. Discussion

The goal of this study is to compare a number of tree-
based methods for their capability to select immunological
predictors of CD4 reconstitution in HIV-infected subjects
initiating antiretroviral treatment. Earlier studies from our
group have demonstrated that pre-ART CD95 expression
on CD8+ T cells is negatively associated with the frequency
of plasmacytoid Dendritic Cells (PDCs) after 52 weeks of
treatment [23]. Conversely, a positive association was also
demonstrated between levels of baseline CD28 expression
in CD4+ T cells and PDC recovery. Other studies have
also suggested that baseline CD4 count may predict the
degree of post-ART immune reconstitution [24]. How-
ever, the selection of immunologic predictors of immune
reconstitution has so far been based on known biologic
associations between variables (e.g., association of a certain
variable with diseases stages, etc.), and data-mining methods
for automated unbiased selection from a large numbers of
variables remain underutilized.

We describe the application of a univariate approach
and three tree-based methods for the analysis of the
association between a single trait and multiple variables
arising from flow cytometric analysis. Interestingly, for this
data example, the univariate contingency table analysis and
RFs resulted in similar findings in terms of the ranking
of important variables. This may not always be the case,
since as we describe in Section 3, the variable importance
scores derived within the context of RFs are based on the
individual effects of variables, as well as their effects within
levels of other variables. In the example provided, CART
and LR provided complementary information about the
structure of association, and particularly the combinations
of variables that are informative. Specifically, while all
of the approaches suggest that CD3-DR-CD56+CD16+ is
an important predictor of CD4+ count on therapy, the
CART model further suggests that among individuals for
whom CD3-DR-CD56+CD16+ is in the lower half of our
sample, Lin-DR- is an important variable in differentiating
between responders and nonresponders. Similarly, the LR
analysis revealed several combinations of variables that
lend further insight into determining the individual level
characteristics that together are predictive of response to
ART in this population. The added information on variables
that are predictive of outcome, beyond those identified
by univariate analysis, provides greater understanding of
multiple combinations among variables that may equally
predict an outcome, reflecting the potential complexity of
responses among human study groups.

Notably, a high degree of correlation is intrinsic to the
variables included in our analysis of flow cytometry data.
Specifically, events passing a certain logical gate are assessed
for co-expression of two fluorochromes, and separated in
quadrants based on the intensity (above or below a certain
level) of each fluorochrome. Thus, any increase in the percent
of events falling in one quadrant must correspond to a
decrease in the percent of events that fall in one or more
of the other quadrants. For example, the variables CD3-
CD8-, CD3+CD8-, CD3-CD8+, and CD3+CD8+ arise from
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four quadrants on the same plate for each individual and
thus always sum to 100%. While each variable represents
a distinct cell subset, and application of the described
approaches to data with such a correlation structure is
reasonable, further extensions of these methods that account
for the correlation structure may offer new insights. At
the same time, interpreting variable importance must be
done in light of the existing correlations. For example, we
saw in the example provided above that both CART and
the RF identified CD3-DR-CD56+CD16+ as an important
predictor of immune reconstitution, while LR identified the
highly correlated variable, CD3-DR-CD56-CD16-. RFs offer
a natural approach to handling correlations by sampling a
subset of predictors at each stage of the tree splitting; how-
ever, using any of the approaches described, the importance
of a variable may be obscured in the presence of other, very
highly correlated variables. One alternative approach is to
choose a priori a subset of uncorrelated variables to include
in the analysis. This is reasonable if prior knowledge suggests
multiple variables are defining the same underlying construct
but may be less optimal if the precise relationship among
variables is unknown.

This paper represents an attempt to utilize data from
experimental and clinical laboratory settings that are avail-
able in resource constrained settings. While it is general
good scientific practice to avoid unnecessary assessment,
limiting stainings and maximizing the usefulness of current
resource capacity is paramount in the settings in which these
experiments were conducted. Because the use of multicolor
flow cytometers is restricted to resource-rich clinical and
research settings, we have elected to use the output of
more commonly available 4-colour analytical instruments,
in the hope that any information gained from this approach
is applicable in the resource-constrained settings such as
those in which the study was conducted. We also agree
that the clinical interpretability of the findings in this
data setting is limited. Specifically, the full panel of mAb
used for this paper would not be applicable to general
practice, particularly in resource constrained settings, due
to issues of cost and laboratory capacity. This panel was
in fact used in an experimental setting, to investigate in
detail the effects of ART on individual immune subsets.
However, the purpose of this paper is to identify which,
among the baseline, pre-ART stainings performed, could be
useful to predict the desired outcome (in this case immune
reconstitution as assessed by CD4 counts). We demonstrated
how tree-based approaches can be applied to identify a small
number of phenotypes that contribute to the selected CD4
recovery outcome. Importantly, many of the cellular subsets
(e.g., mature NK cells, myeloid Dendritic cells, CD95-
expressiong activated T lymphocytes) selected using the
three tree-based methods presented here as being predictive
of immune reconstitution have been previously shown to
be individually correlated with disease progression and/or
immune reconstitution [25, 26], thus further supporting
the reasonableness of our approach. CD4 is presently the
only validated tool to monitor immune competence in HIV-
infected individuals. However, because pre-ART CD4 counts
are notoriously poor predictors of clinical response to ART,

the identification of a limited number of variables that could
be used as additional predictors in larger prospective studies
represents an important contribution to the field. Selected
stainings can be recombined in smaller panels, reducing
cost and capacity consumption; for example, based on the
logic regression trees presented in Figure 3, the use of only
two staining combinations (e.g., CD3/CD8/CD7/CD154 and
CD45/CD3/CD4/CD8) would be sufficient to predict a CD4
immune reconstitution outcome.

Importantly, differences in the insights offered by each
of the approaches presented are a reflection of the specific
algorithms employed and not the result of one approach
being more or less correct than another. The univariate
analysis, while methodologically sound, only considers asso-
ciations that exist between single variables and the outcome.
Univariate analyses are not designed to discover variables
that are only important conditional on the level of another
variable. The CART and RF algorithms, on the other hand,
are specifically searching for conditional associations, that
is, associations of variables with the outcome within levels
of other variables. Finally, logic regression trees allow for
discovery of combinations of variables that are predictive,
even in the setting in which no single element of the
combination is important on its own. That is, both CART
and RF split initially on the single most important variable;
however, if a combination of two or more variables is
important, none of which are predictive individually, then
both CART and RF may not find this association [12, 27].
The LR algorithm, on the other hand, is designed specifically
to capture this information.

In summary, each of the tree-based approaches described
herein complement univariate analyses of multiparameter
defined flow cytometry subsets. These methods are designed
specifically to uncover complex structures, and as demon-
strated in the example above, allow for discovery of combina-
tions of variables that are together predictive of an outcome.
While extensions of these methods, including, for example,
the recently proposed approach of [20], would allow for
measuring statistical significance of variable importance
scores, their strength lies in the discovery of combinations
of variables that are potentially associated with the out-
come. In all of the approaches presented, a type of cross-
validation algorithm is applied, which renders the results
theoretically applicable to independent samples. However,
as with all exploratory analyses, further hypothesis driven
research will enable further validation of true underlying
associations.
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