Skip to main content
Article
Low-Temperature Nitrogen Doping in Ammonia Solution for Production of N-Doped TiO2-Hybridized Graphene as a Highly Efficient Photocatalyst for Water Treatment
ACS Sustainable Chemistry & Engineering
  • Wen Qian, Portland State University
  • P. Alex Greaney, Oregon State University
  • Simon Fowler, Portland State University
  • Sheng-Kuei Chiu, Portland State University
  • Andrea M. Goforth, Portland State University
  • Jun Jiao, Portland State University
Document Type
Citation
Publication Date
1-1-2014
Subjects
  • Graphene morphology,
  • Oxide superconductors
Disciplines
Abstract

To facilitate the potential application of TiO2 as an efficient photocatalyst, the modulation of its band gap and electrical structure is of great significance. Herein, we report a very simple nitrogen (N)-doping method to obtain N-doped TiO2, which is hybridized with graphene sheets at a temperature as low as 180 °C and using an ammonia solution as the N source and reaction medium. X-ray photoelectron spectroscopy analysis revealed that the atomic N level could reach 2.4 atomic percent when the reaction time was 14 h. Photoluminescence (PL) emission spectra indicated that N-doped TiO2/graphene composites have drastically suppressed TiO2 PL intensity when compared to undoped TiO2, confirming the lower recombination rate of electron–hole pairs in the N-doped TiO2. Additionally, photodegradation data showed that the decomposition rate of methylene blue with our N-doped TiO2/graphene photocatalyst is twice as fast as a commercial Degussa P25 catalyst. Furthermore, density functional theory (DFT) calculations demonstrate that N doping creates empty states in the band gap of the TiO2 that are below the Fermi energy of graphene. Thus, when N-doped TiO2 is brought into contact with graphene, these states become filled by electrons from the graphene, shifting the TiO2 bands upward relative to the graphene. Such a shift in band alignment across the TiO2/graphene heterojunction makes transfer of the photoexcited electron more energetically favorable. This work provides a very convenient chemical route to the scalable production of N-doped TiO2/graphene photocatalyst for potential applications in wastewater treatment.

Rights

Copyright © 2014 American Chemical Society

Locate the Document

https://doi-org/10.1021/sc5001176

DOI
10.1021/sc5001176
Persistent Identifier
https://archives.pdx.edu/ds/psu/34523
Citation Information
Qian, W., Greaney, P. A., Fowler, S., Chiu, S. K., Goforth, A. M., & Jiao, J. (2014). Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment. ACS Sustainable Chemistry & Engineering, 2(7), 1802-1810.