Skip to main content
Article
One-Step Melt Synthesis of Water-Soluble, Photoluminescent, Surface-Oxidized Silicon Nanoparticles for Cellular Imaging Applications
Chemistry of Materials
  • Beth Ann Manhat, Portland State University
  • Anna L. Brown, Portland State University
  • Andrea M. Goforth, Portland State University
  • Labe A. Black, The University Of Montana
  • J.B. Alexander Ross, The University Of Montana
  • Katye Fichter, Oregon Health & Science University
  • Tania Vu, Oregon Health & Science University
  • Erik Richman, University of Oregon
Document Type
Citation
Publication Date
1-1-2011
Subjects
  • Nanoparticles -- research
Disciplines
Abstract

We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bifunctional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bifunctional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue−green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells.

Rights

Copyright © 2011 American Chemical Society

Locate the Document

https://doi-org/10.1021/cm200270d

DOI
10.1021/cm200270d
Persistent Identifier
https://archives.pdx.edu/ds/psu/34412
Citation Information
Manhat, B. A., Brown, A. L., Black, L. A., Ross, J. A., Fichter, K., Vu, T., ... & Goforth, A. M. (2011). One-step melt synthesis of water-soluble, photoluminescent, surface-oxidized silicon nanoparticles for cellular imaging applications. Chemistry of Materials, 23(9), 2407-2418.