Skip to main content
Article
The Remineralization of Sedimentary Organic Carbon in Different Sedimentary Regimes of the Yellow and East China Seas
Chemical Geology
  • Bin Zhao, Ocean University of China
  • Peng Yao, Ocean University of China
  • Thomas S. Bianchi, University of Florida
  • Ana Arellano, University of South Florida
  • Xuchen Wang, Ocean University of China
  • Jianbin Yang, Ocean University of China
  • Rongguo Su, Ocean University of China
  • Jinpeng Wang, Ocean University of China
  • Yahong Xu, Ocean University of China
  • Xinying Huang, Ocean University of China
  • Lin Chen, Ocean University of China
  • Jun Ye, Ocean University of China
  • Zhigang Yu, Ocean University of China
Document Type
Article
Publication Date
1-1-2018
Keywords
  • Marginal seas,
  • Sedimentary regimes,
  • Pore waters,
  • Sedimentary organic carbon,
  • Remineralization,
  • Yellow and East China Seas
Digital Object Identifier (DOI)
https://doi.org/10.1016/j.chemgeo.2018.08.012
Disciplines
Abstract

We investigated the remineralization of sedimentary organic carbon (SOC) at 12 sites in East China Sea mobile-muds (ECSMMs) and South Yellow Sea central mud deposits (SYSMDs) - using a time-sequence sediment incubation experiment. We examined pore-water dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), fluorescent dissolved organic matter (FDOM), dissolved inorganic nitrogen (DIN) nutrients (NH4+, NO3−, and NO2−), redox sensitive elements (Fe2+ and Mn2+), and major anions (SO42− and Cl−) in incubated sediments, to better constrain controlling mechanisms of SOC remineralization under different sedimentary regimes. Lower DIC production rates in SYSMDs (2.36–3.13 mmol m−2 d−1) than those in ECSMMs (2.94–13.5 mmol m−2 d−1), were mainly attributed to cold bottom water masses and a relatively stable sedimentary environment in SYS. Higher DIC production rates were observed mostly at offshore sites of ECSMMs that had relatively enriched 13C of SOC - which indicated preferential degradation of labile SOC of marine origin. When compared with tropical mobile-muds, higher bottom-water temperatures, thicker mobile-muds, and large inputs of reactive terrestrial OC resulted in more intense remineralization of SOC in Amazon mobile-muds than in ECSMMs. Lower ratios of DOC/DIC production rates in ECSMMs (0.11–0.72) were likely indicative of efficient transformation of OC, and largely due to sulfate reduction. A rapid increase in marine protein-like FDOM components during the incubation indicated that less stable marine SOC was preferentially converted to DOC - and then to DIC. Our SOC budget indicates that 16.8% of SOC was decomposed in sediments of ECSMMs, but only about 5.4% of SOC was decomposed in SYSMDs, suggesting lower SOC preservation efficiency in mobile-muds than distal muds.

Citation / Publisher Attribution

Chemical Geology, v. 495, p. 104-117

Citation Information
Bin Zhao, Peng Yao, Thomas S. Bianchi, Ana Arellano, et al.. "The Remineralization of Sedimentary Organic Carbon in Different Sedimentary Regimes of the Yellow and East China Seas" Chemical Geology Vol. 495 (2018) p. 104 - 117
Available at: http://works.bepress.com/anaarellano/10/