Figure - A Model of Three-dimensional Science Learning

Ana K Houseal, University of Wyoming

Available at: https://works.bepress.com/ana_houseal/49/
A Model of the Three Dimensions of Science Learning

Disciplinary Core Ideas (DCIs)
- Life Science
- Physical Science
- Earth Systems Science
- Engineering

Cross Cutting Concepts (CCCs)
- Patterns
- Cause & effect
- Scale, proportion, and quantity
- Systems & systems models
- Energy & matter
- Structure & function
- Stability & change

Scientific and Engineering Practices (SEPs)
- Asking questions/Defining problems
- Developing and using models
- Planning and carrying out investigations
- Analyzing and interpreting data
- Using mathematical and computational thinking
- Constructing explanations/Designing solutions
- Engaging in arguments from evidence
- Obtaining, evaluating and communicating information

Engagement in practices within science content, but without connection to unifying themes

Science content with connections to unifying themes, but without the ability to explore or further scientific knowledge

Scientific practices connected to CCCs but not to discipline-based content

THIS IS WHERE WE WANT TO BE!

Example Performance Expectations (PEs): Students who demonstrate understanding can:

2-PS1-1.
Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

5-PS1-1.
Develop a model to describe that matter is made of particles too small to be seen.

MS-PS1-1.
Develop models to describe the atomic composition of simple molecules and extended structures.

References:
Framework for K-12 Science Education – the Three Dimensions of Science

Disciplinary Core Ideas
CONTENT
- Life Science
- Physical Science
- Earth Systems Science
- Engineering

Cross Cutting Concepts
BIG IDEAS
- Patterns
- Cause & effect
- Scale, proportion, and quantity
- Systems & systems models
- Energy & matter
- Structure & function
- Stability & change

Scientific and Engineering Practices
PROCESS
- Asking questions/Defining problems
- Developing and using models
- Planning and carrying out investigations
- Analyzing and interpreting data
- Using mathematical and computational thinking
- Constructing explanations/Designing solutions
- Engaging in arguments from evidence
- Obtaining, evaluating and communicating information

Three Dimensional Learning (PEs)

Explicit evidence of integration:

What in your unit/lesson is happening here?

References: