Skip to main content
Article
Using Movements, Genetics and Trophic Ecology to Differentiate Inshore from Offshore Aggregations of Humpback Whales in the Gulf of Alaska
Endangered Species Research
  • Briana H. Witteveen, University of Alaska - Fairbanks
  • Jan M. Straley, University of Alaska - Southeast
  • Ellen Chenoweth, University of Alaska - Southeast
  • C. Scott Baker, Oregon State University
  • Jay Barlow, National Oceanic and Atmospheric Administration
  • Craig Matkin, North Gulf Oceanic Society
  • Christine M. Gabriele, Glacier Bay National Park and Preserve
  • Janet Nielsen, Glacier Bay National Park and Preserve
  • Debbie Steel, Oregon State University
  • Olga von Ziegesar, Eye of the Whale
  • Alexander G. Andrews, National Oceanic and Atmospheric Administration
  • Amy Hirons, Nova Southeastern University
Document Type
Article
Publication Date
1-1-2011
Keywords
  • Humpback whale,
  • Megaptera novaeangliae,
  • Gulf of Alaska,
  • mtDNA,
  • Haplotype,
  • Trophic level,
  • Movement
Abstract
Humpback whales Megaptera novaeangliae have been studied in the coastal waters of the Gulf of Alaska (GOA) since the late 1960s, but information about whales foraging offshore is limited. A large-scale collaborative project (SPLASH) provided opportunities to study humpback whales in both inshore and offshore habitats. Using identification photographs and biopsy samples, we explored individual movements, the distribution of mitochondrial (mtDNA) haplotypes, and trophic levels for humpback whales within 3 regions (Kodiak, KOD; Prince William Sound, PWS; and southeastern Alaska, SEAK) of the GOA to determine whether inshore and offshore aggregations of humpback whales are distinct. Each region was divided into inshore and offshore habitats, creating 6 subregions for comparison. Results documenting 2136 individual whales showed that movement within the study area was most frequent between inshore and offshore subregions within a region. In general, movement between regions was minimal. Tissue samples of 483 humpback whales included 15 mtDNA haplotypes. Pairwise chi-squared tests showed haplotype differences between subregions, but inshore PWS was the only subregion with a haplotype composition significantly different than all other subregions. Trophic levels, as inferred from stable nitrogen isotope ratios, were significantly different among subregions, ranging from 3.4 to 4.5. Pairwise comparisons showed that inshore PWS was again the only subregion that significantly differed from all others. Results suggest that the combined inshore and offshore habitats for KOD and the inshore and offshore habitats for SEAK should each be considered as single regional feeding aggregations, while inshore PWS may represent a separate aggregation from PWS offshore.
Comments

©Inter-Research 2011

DOI
10.3354/esr00351
Citation Information
Briana H. Witteveen, Jan M. Straley, Ellen Chenoweth, C. Scott Baker, et al.. "Using Movements, Genetics and Trophic Ecology to Differentiate Inshore from Offshore Aggregations of Humpback Whales in the Gulf of Alaska" Endangered Species Research Vol. 14 Iss. 3 (2011) p. 217 - 225 ISSN: 1863-5407
Available at: http://works.bepress.com/amy-hirons/6/