Skip to main content
Life-history decisions under predation risk: Importance of a game perspective
Faculty Publications in the Biological Sciences
  • Amos Bouskila, Simon Fraser University
  • Michael E. Robinson, Simon Fraser University
  • Bernard D. Roitberg, Simon Fraser University
  • Brigitte Tenhumberg, University of Nebraska - Lincoln
Date of this Version

Evolutionary Ecology 12 (1998), pp. 701–715.


Copyright © 1998 Chapman & Hall. Used by permission.

We model ontogenetic shifts (e.g. in food or habitat use) during development under predation risk. We ask whether inclusion of state and frequency dependence will provide new insights when compared with game-free life-history theory. We model a simple biological scenario in which a prey animal must switch from a low-predation, low-growth habitat to a high-predation, high-growth habitat. To assess the importance of frequency dependence, we compare the results of four scenarios of increasing complexity: (1) no predation; (2) constant predation; (3) frequency-dependent predation (predation risk diluted at high prey density); and (4) frequency-dependent predation as in (3) but with predators allowed to respond adaptively to prey behavior. State dependence is included in all scenarios through initial size, assumed to be environmental. A genetic algorithm is used to search for optimal solutions to the scenarios. We find substantially different results in the four different scenarios and suggest a decision tree by which biological systems could be tested to ascertain which scenario is most applicable.
Citation Information
Amos Bouskila, Michael E. Robinson, Bernard D. Roitberg and Brigitte Tenhumberg. "Life-history decisions under predation risk: Importance of a game perspective" (1998)
Available at: