Skip to main content
Kaleidoscopic Tilings on Surfaces, This Time with the Groups
Rose Math Seminar (2003)
  • Sean A Broughton
In the past I have given several lectures on kaleidoscopic tilings by triangles and quadrilaterals on surfaces, and asserted in these talks that the tiling group completely determined the combinatorial and topological structure of a tiling. However, I have never really talked about the influence of the group theory! In this series of two talks I will give two examples of determining combinatorial and topological structure, by group computations.  Each talk will focus on a problem I intend to give to REU students this summer. Thus, there will be no general theorems just problems statements with suggestions of attack, the talks will focus on developing the background to get to the problem statements. The first talk will include the necessary review of tilings and hyperbolic geometry. You don't need to know much about group theory or hyperbolic geometry.

First talk: Constructing a fundamental domain for kaleidoscopically tiled surfaces. We are all familiar with the process of creating a torus by identifying opposite sides of a euclidean rectangle. For higher genus surfaces of genus s > 1,  a surface may be constructed by identifying sides of a hyperbolic 4s-gon. For  a kaleidoscopically tiled surface can this be done so that the polygon is a  "nice" collection of tiles? The group theory computation will be focus on relating the infinite tiling group on the hyperbolic plane to the finite tiling group on the surface.
  • Riemann surface,
  • kaleidoscopic tilings,
  • tiling group
Publication Date
April 30, 2003
Rose-Hulman Institute of Technology, Terre Haute, IN
Also see this site:
Citation Information
Sean A Broughton. "Kaleidoscopic Tilings on Surfaces, This Time with the Groups" Rose Math Seminar (2003)
Available at:
Creative Commons License
Creative Commons License
This work is licensed under a Creative Commons CC_BY-NC-SA International License.