Rose-Hulman Institute of Technology

From the SelectedWorks of S. Allen Broughton

November 28, 2007

The Barycenter of the Numerical Range of an Operator

Sean A Broughton
Roger G Lautzenheiser
Thomas Werne, Jet Propulsion

This work is licensed under a Creative Commons CC_BY-NC-SA International License.

The Barycenter of the Numerical Range of an Operator

S. Allen Broughton - Rose-Hulman Institute of Technology Roger Lautzenheiser - Rose-Hulman Institute of Technology Thomas Werne - Jet Propulsion Laboratory

ISU Math and CS Research Seminar, November 28, 2007

parts of the talk

There are three main parts of the talk

- Introduction, basic examples, and properties.
- Discussion of the 2-D case and the Toeplitz-Hausdorff compactness-convexity result.
- Discussion of the barycenter and proof of barycenter theorem.

notation -1

- V is a Hilbert space, but just really \mathbb{C}^{n} for our purposes
- $X=\left(x_{1}, \ldots, x_{n}\right), Y=\left(y_{1}, \ldots, y_{n}\right) \in V$ are any two vectors
- and $\langle X, Y\rangle=x_{1} \bar{y}_{1}+\cdots+x_{n} \bar{y}_{n}$ is the standard Hermitian scalar product of X and Y
- if $Y^{*}=$ conjugate transpose, then $\langle X, Y\rangle=Y^{*} X$ for column vectors
- $\|X\|=\sqrt{\langle X, X\rangle}$
- $B_{n}=B(V)=\{X \in V:\|X\| \leq 1\}$ is the unit ball in V
- $\partial B_{n}=\partial B(V)=\{X \in V:\|X\|=1\}$ is the unit sphere in V

notation - 2

- $A: V \rightarrow V$ is any operator, but really just an $n \times n$ matrix
- $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A.
- Recall the equation for the spectrum average

$$
\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}=\frac{1}{n} \operatorname{trace}(\boldsymbol{A})
$$

- also define the map

$$
f_{A}: \partial B_{n} \rightarrow \mathbb{C}, \text { by } f_{A}(X)=\langle A X, X\rangle .
$$

definition of numerical range

Definition

Let $A: V \rightarrow V$ be a bounded linear operator of the Hilbert space V. The numerical range $W(A)$ is the subset in the complex plane defined by

$$
W(A)=\{\langle A X, X\rangle:\|X\|=1\}
$$

First properties and examples

what does $W(A)$ look like?

simple properties

Proposition

- For a finite dimensional space V the numerical range $W(A)$ is a compact subset of the plane.
- The numerical range $W(A)$ contains the eigenvalues of A.
- The numerical range $W(A)$ is the continuous image of ∂B_{n} under f_{A}.
- Let $A X=\lambda X$ for some λ and some unit vector X. Then $\langle\boldsymbol{A} X, X\rangle=\langle\lambda X, X\rangle=\lambda\langle X, X\rangle=\lambda$.

simple example

Proposition

If A is a diagonal matrix then $W(A)$ is the convex hull of the set of eigenvalues.

Proof sketch

- Assume that $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and that $X=\left(x_{1}, \ldots, x_{n}\right)$.
- Then $\langle A X, X\rangle=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \lambda_{i}$
- As $\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}=1$ then $\langle A X, X\rangle$ is a convex linear combination of the eigenvalues.

transformation properties

The following properties are useful in $W(A)$ calculations.

Proposition

- If U is a unitary matrix then $W\left(U A U^{-1}\right)=W(A)$.
- For complex constants $a, b, W(a l+b A)=a+b W(A)$.
- For unitary $U, U^{-1}=U^{*}$. Setting $Y=U X$ we get

$$
\left\langle U A U^{-1} Y, Y\right\rangle=\left\langle U A U^{-1} U X, U X\right\rangle=\langle U A X, U X\rangle=\langle A X, X\rangle .
$$

As X varies completely over the sphere so does $Y=U X$.

- $\langle(a l+b A) X, X\rangle=a\langle X, X\rangle+b\langle A X, X\rangle=a+b\langle A X, X\rangle$

restriction to a subspace - 1

Restricting to a subspace, is a useful computational technique. Here is specific computational formulation.

Proposition

Let $W \subseteq V$ be subspace an let X_{1}, \ldots, X_{m} be an orthonormal basis of W. Let B be the $m \times m$ matrix defined by

$$
B_{i, j}=\left\langle A X_{i}, X_{j}\right\rangle
$$

Then

$$
W(B) \subseteq W(A) .
$$

First properties and examples

restriction to a subspace - 2

Proof sketch

- Set $P=\left[\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{m}\end{array}\right]$, then by orthogonality $P^{*} P=I_{m}$.
- Let $Z \in \partial B_{m}$ and $X=P Z=\sum_{i=1}^{m} z_{i} X_{i}$.
- Then $\|X\|=1$ as $\langle X, X\rangle=X^{*} X=Z^{*} P^{*} P Z=Z^{*} Z=1$.
- $X=P Z$ defines an isometry from ∂B_{m} to $W \cap \partial B_{n}$.
- For $X \in W \cap \partial B_{n},\langle A X, X\rangle=\langle A P Z, P Z\rangle=\left\langle\left(P^{*} A P\right) Z, Z\right\rangle$.
- $W\left(P^{*} A P\right)=\left\{\langle A X, X\rangle: X \in W \cap \partial B_{n}\right\} \subseteq W(A)$
- The i, j entry of $P^{*} A P$ is $X_{i}^{*} A X_{j}=\left\langle A X_{i}, X_{j}\right\rangle=B_{i, j}$

statement of result

Proposition

If A is a 2×2 matrix then $W(A)$ is a filled ellipse with the eigenvalues at the foci.

We give a proof sketch since it uses basic techniques used studying the numerical range.

proof sketch -1

Proof sketch

- Select unitary U such that $U A U^{-1}$ is upper triangular - use Schur's Lemma. So we assume that A is upper triangular.
- Let $\tau=\operatorname{trace}(A) / 2$. Then there is a unit complex scalar v such that $v(A-\tau I)$ has eigenvalues \pm a for real a. Thus, for some complex b, A has the form

$$
A=\left[\begin{array}{cc}
a & 2 b \\
0 & -a
\end{array}\right]
$$

- The effect of the above transformation is a rigid motion in the plane, taking ellipses to ellipses, foci to foci and eigenvalues to eigenvalues.

2D case

proof sketch - 2

- Next, use the unitary similarity

$$
\left[\begin{array}{cc}
e^{i \phi} & 0 \\
0 & e^{i \psi}
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & -a
\end{array}\right]\left[\begin{array}{cc}
e^{-i \phi} & 0 \\
0 & e^{-i \psi}
\end{array}\right]=\left[\begin{array}{cc}
a & e^{i(\phi-\psi)} b \\
0 & -a
\end{array}\right]
$$

so that we may assume that b is real non-negative.

- A typical unit vector X in \mathbb{C}^{2} has the form

$$
X=\left[\begin{array}{c}
\cos (\theta) e^{i \phi} \\
\sin (\theta) e^{i \psi}
\end{array}\right]
$$

- and so

$$
\langle A X, X\rangle=\left[\begin{array}{ll}
\cos \theta e^{-i \phi} & \sin \theta e^{-i \psi}
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & -a
\end{array}\right]\left[\begin{array}{c}
\cos (\theta) e^{i \phi} \\
\sin (\theta) e^{i \psi}
\end{array}\right]
$$

or

$$
\langle A X, X\rangle=a\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+2 b \cos \theta \sin \theta e^{i(\psi-\phi)}
$$

2D case

proof sketch - 3

- or for suitable α, β

$$
\begin{gathered}
\langle A X, X\rangle=a \cos (\alpha)+b \sin (\alpha) e^{i \beta} \\
\langle A X, X\rangle=a \cos (\alpha)+b \sin (\alpha) \cos (\beta)+i b \sin (\alpha) \sin (\beta)
\end{gathered}
$$

- With some work, one can show that as α, β vary the ellipse

$$
\frac{x^{2}}{a^{2}+b^{2}}+\frac{y^{2}}{b^{2}} \leq 1
$$

is swept out.

- The foci of this ellipse are at $-a$ and a, the eigenvalues of A.

statement of theorem

The Toeplitz-Hausdorff theorem dramatically reduces the possibilities for the shape of the numerical range of a matrix.

Theorem

The numerical range of $W(A)$ of a matrix A is a compact, convex subset of the plane.

proof sketch

- Let X and Y be two vectors such that $\langle A X, X\rangle$ and $\langle A Y, Y\rangle$ are distinct.
- Let $W \subseteq V$ be the linear span of X and Y and let $X_{1}, X 2$ be a orthonormal basis of W
- By previous proposition, the set of values $\langle A Z, Z\rangle$ for all unit vectors Z in W is the same as the numerical range $W(B)$ of the 2×2 matrix

$$
B=\left[\begin{array}{ll}
\left\langle A X_{1}, X_{1}\right\rangle & \left\langle A X_{1}, X_{2}\right\rangle \\
\left\langle A X_{2}, X_{1}\right\rangle & \left\langle A X_{2}, X_{2}\right\rangle
\end{array}\right]
$$

- Thus $\langle A X, X\rangle$ and $\langle A Y, Y\rangle$ are contained in an ellipse contained in $W(A)$.

Experimental approach

another look at $W(A)$

- The average of the eigenvalues appear to be at the center of $W(A)$.
- Proven to be true for the 2×2 case.

How to generate pictures

- Select a large number of vectors $X_{1}, X_{2}, \ldots, X_{N}$ uniformly distributed on ∂B_{n}
- Plot $\left\langle A X_{i}, X_{i}\right\rangle$ for N different vectors. Here are two examples.

some observations

- Points are not uniformly distributed on $W(A)$, so the standard centroid is not the right idea for the "center" of $W(A)$.
- The sample average $\frac{1}{N} \sum_{i=1}^{N}\left\langle A X_{i}, X_{i}\right\rangle$ seems be very close to spectrum average $\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}$.
- The result above appears to hold true even if the vectors are only distributed "symmetrically".

definition of barycenter

Definition

We define the barycenter (center of mass) of $W(A)$ to be

$$
B W(A)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle A X_{i}, X_{i}\right\rangle
$$

where the X_{i} 's are chosen from the uniform distribution on the boundary of the unit ball in \mathbb{C}^{n}

uniformly distributed points

- The X_{i} 's are uniformly distributed ∂B_{n} if or each closed subset U of ∂B_{n},

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{i: X_{i} \in U\right\}}{N}=\frac{\operatorname{vol}(U)}{\operatorname{vol}\left(\partial B_{n}\right)},
$$

- where $\operatorname{vol}(U)$ is the volume of U computed as a subset of the ∂B_{n}.

definitions

integral definition

- We get an integral definition

$$
B W(A)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle A X_{i}, X_{i}\right\rangle=\int_{\partial B_{n}}\langle A X, X\rangle d \omega
$$

- Define this planar density on $W(A)$

$$
\delta(z)=\lim _{r \rightarrow 0} \frac{\omega\left(f_{A}^{-1}\left(\Delta_{r}(z)\right)\right)}{\pi r^{2}}
$$

with $\Delta_{r}(z)=\{w \in \mathbb{C}:\|w-z\| \leq r\}$.

- Then $B W(A)$ has a planar integral definition

$$
B W(A)=\int_{\partial B_{n}}\langle A X, X\rangle d \omega=\int_{W(A)} z \delta(z) d x d y
$$

statement of theorem

The following theorem characterizes the barycenter.

Theorem

The barycenter $B W(A)$ of the numerical range $W(A)$ is given by:

$$
B W(A)=\frac{\operatorname{tr}(A)}{n}=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}
$$

proof sketch

proof sketch -1

- From the definitions.

$$
B W(A)=\int_{\partial B_{n}}\langle A X, X\rangle d \omega=\sum_{i, j} \int_{\partial B_{n}} a_{i, j} x_{i} \overline{X_{j}} d \omega
$$

- We need only prove

$$
\int_{\partial B_{n}} x_{i} \overline{x_{j}} d \omega=\frac{1}{n} \delta_{i, j}
$$

proof sketch

proof sketch - 2

Now some setup

- Define the functions

$$
f_{i}(X)=x_{i} \overline{X_{i}}, f_{i, j}(X)=x_{i} \overline{X_{j}}
$$

- Note that

$$
\sum_{i} f_{i}(X)=\sum_{i} x_{i} \overline{X_{i}}=\langle X, X\rangle=1
$$

- Also define unitary operators (transpositions and symmetries along coordinate axes)

$$
U_{i, j}:\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right) \longrightarrow\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right)
$$

for any distinct i, j and

$$
V_{i}:\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \longrightarrow\left(x_{1}, \ldots,-x_{i}, \ldots, x_{n}\right)
$$

proof sketch

proof sketch - 3

From invariance
$\int_{\partial B_{n}} x_{i} \overline{x_{i}} d \omega=\int_{\partial B_{n}} f_{i}(X) d \omega=\int_{\partial B_{n}} f_{i}\left(U_{i, j} X\right) d \omega=\int_{\partial B_{n}} f_{j}(X) d \omega=\int_{\partial B_{n}} x_{j} \bar{x}_{j} d \omega$ and so

$$
n \int_{\partial \mathbf{B}_{n}} x_{i} \overline{x_{i}} d \mu=\int_{\partial B_{n}} \sum_{j} x_{j} \bar{x}_{j} d \mu=\int_{\partial B_{n}} 1 d \mu=1
$$

proving $\int_{\partial B_{n}} x_{i} \overline{X_{i}} d \omega=\frac{1}{n}$

proof sketch

proof sketch - 4

Now assuming $i \neq j$,

$$
\begin{aligned}
& \int_{\partial B_{n}} x_{i} \overline{X_{j}} d \omega=\int_{\partial B_{n}} f_{i, j}(X) d \omega=\int_{\partial B_{n}} f_{i, j}\left(V_{i} X\right) d \omega \\
& \int_{\partial B_{n}} f_{i, j}\left(V_{i} X\right) d \omega=\int_{\partial B_{n}}-f_{i, j}(X) d \omega=-\int_{\partial B_{n}} x_{i} \overline{X_{j}} d \omega .
\end{aligned}
$$

and hence $\int_{\partial B_{n}} x_{i} \overline{X_{j}} d \omega=0$

proof sketch

proof sketch - 5

Remark

If the vectors are randomly chosen from any probability distribution μ on the sphere invariant under the V_{i} and $U_{i, j}$ then

$$
B W(A)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle A X_{i}, X_{i}\right\rangle=\int_{\partial B_{n}}\langle A X, X\rangle d \mu
$$

Thank you.

Any questions?

