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Overview

parts of the talk

There are three main parts of the talk
Introduction, basic examples, and properties.
Discussion of the 2-D case and the Toeplitz-Hausdorff
compactness-convexity result.
Discussion of the barycenter and proof of barycenter
theorem.
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Notation and definitions

notation -1

V is a Hilbert space, but just really Cn for our purposes
X = (x1, . . . , xn),Y = (y1, . . . , yn) ∈ V are any two vectors
and 〈X ,Y 〉 = x1y1 + · · ·+ xnyn is the standard Hermitian
scalar product of X and Y
if Y ∗ = conjugate transpose, then 〈X ,Y 〉 = Y ∗X for column
vectors
||X || =

√
〈X ,X 〉

Bn = B(V ) = {X ∈ V : ||X || ≤ 1} is the unit ball in V
∂Bn = ∂B(V ) = {X ∈ V : ||X || = 1} is the unit sphere in V
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Notation and definitions

notation - 2

A : V → V is any operator, but really just an n × n matrix
λ1, . . . , λn are the eigenvalues of A.
Recall the equation for the spectrum average

1
n

n∑
i=1

λi =
1
n

trace(A)

also define the map

fA : ∂Bn → C, by fA(X ) = 〈AX ,X 〉.
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Notation and definitions

definition of numerical range

Definition
Let A : V → V be a bounded linear operator of the Hilbert
space V . The numerical range W (A) is the subset in the
complex plane defined by

W (A) = {〈AX ,X 〉 : ||X || = 1}
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First properties and examples

what does W (A) look like?
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First properties and examples

simple properties

Proposition
For a finite dimensional space V the numerical range
W (A) is a compact subset of the plane .
The numerical range W (A) contains the eigenvalues of A.

The numerical rangeW (A) is the continuous image of ∂Bn
under fA.
Let AX = λX for some λ and some unit vector X . Then
〈AX ,X 〉 = 〈λX ,X 〉 = λ〈X ,X 〉 = λ.
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First properties and examples

simple example

Proposition

If A is a diagonal matrix then W (A) is the convex hull of the set
of eigenvalues.

Proof sketch
Assume that A = diag(λ1, . . . , λn) and that X = (x1, . . . , xn).

Then 〈AX ,X 〉 =
∑n

i=1 ||xi ||2λi

As
∑n

i=1 ||xi ||2 = 1 then 〈AX ,X 〉 is a convex linear
combination of the eigenvalues.
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First properties and examples

transformation properties

The following properties are useful in W (A) calculations.

Proposition

If U is a unitary matrix then W (UAU−1) = W (A).
For complex constants a,b, W (aI + bA) = a + bW (A).

For unitary U, U−1 = U∗. Setting Y = UX we get

〈UAU−1Y ,Y 〉 = 〈UAU−1UX ,UX 〉 = 〈UAX ,UX 〉 = 〈AX ,X 〉.

As X varies completely over the sphere so does Y = UX .
〈(aI + bA)X ,X 〉 = a〈X ,X 〉+ b〈AX ,X 〉 = a + b〈AX ,X 〉
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First properties and examples

restriction to a subspace - 1

Restricting to a subspace, is a useful computational technique.
Here is specific computational formulation.

Proposition
Let W ⊆ V be subspace an let X1, . . . ,Xm be an orthonormal
basis of W. Let B be the m ×m matrix defined by

Bi,j = 〈AXi ,Xj〉

Then
W (B) ⊆W (A).
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First properties and examples

restriction to a subspace - 2

Proof sketch
Set P = [X1 X2 · · · Xm], then by orthogonality P∗P = Im.
Let Z ∈ ∂Bm and X = PZ =

∑m
i=1 ziXi .

Then ||X || = 1 as 〈X ,X 〉 = X ∗X = Z ∗P∗PZ = Z ∗Z = 1.
X = PZ defines an isometry from ∂Bm to W ∩ ∂Bn.
For X ∈W ∩ ∂Bn, 〈AX ,X 〉 = 〈APZ ,PZ 〉 = 〈(P∗AP)Z ,Z 〉.
W (P∗AP) = {〈AX ,X 〉 : X ∈W ∩ ∂Bn} ⊆W (A)

The i , j entry of P∗AP is X ∗i AXj = 〈AXi ,Xj〉 = Bi,j
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2D case

statement of result

Proposition

If A is a 2× 2 matrix then W (A) is a filled ellipse with the
eigenvalues at the foci.

We give a proof sketch since it uses basic techniques used
studying the numerical range.
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2D case

proof sketch -1

Proof sketch
Select unitary U such that UAU−1 is upper triangular - use
Schur’s Lemma. So we assume that A is upper triangular.
Let τ = trace(A)/2.Then there is a unit complex scalar υ
such that υ(A− τ I) has eigenvalues ±a for real a. Thus,
for some complex b, A has the form

A =

[
a 2b
0 −a

]
.

The effect of the above transformation is a rigid motion in
the plane, taking ellipses to ellipses, foci to foci and
eigenvalues to eigenvalues.
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2D case

proof sketch - 2

Next, use the unitary similarity[
eiφ 0
0 eiψ

] [
a b
0 −a

] [
e−iφ 0

0 e−iψ

]
=

[
a ei(φ−ψ)b
0 −a

]
so that we may assume that b is real non-negative.
A typical unit vector X in C2 has the form

X =

[
cos(θ)eiφ

sin(θ)eiψ

]
and so

〈AX ,X 〉 =
[

cos θe−iφ sin θe−iψ
] [ a b

0 −a

] [
cos(θ)eiφ

sin(θ)eiψ

]
or

〈AX ,X 〉 = a(cos2 θ − sin2 θ) + 2b cos θ sin θei(ψ−φ)
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2D case

proof sketch - 3

or for suitable α, β

〈AX ,X 〉 = a cos(α) + b sin(α)eiβ

〈AX ,X 〉 = a cos(α) + b sin(α) cos(β) + ib sin(α) sin(β)

With some work, one can show that as α, β vary the ellipse

x2

a2 + b2 +
y2

b2 ≤ 1

is swept out.
The foci of this ellipse are at −a and a, the eigenvalues of
A.
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Toeplitz-Hausdorff theorem

statement of theorem

The Toeplitz-Hausdorff theorem dramatically reduces the
possibilities for the shape of the numerical range of a matrix.

Theorem
The numerical range of W (A) of a matrix A is a compact,
convex subset of the plane.
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Toeplitz-Hausdorff theorem

proof sketch

Let X and Y be two vectors such that 〈AX ,X 〉 and 〈AY ,Y 〉
are distinct.
Let W ⊆ V be the linear span of X and Y and let X1,X2 be
a orthonormal basis of W
By previous proposition, the set of values 〈AZ ,Z 〉 for all
unit vectors Z in W is the same as the numerical range
W (B) of the 2× 2 matrix

B =

[
〈AX1,X1〉 〈AX1,X2〉
〈AX2,X1〉 〈AX2,X2〉

]
Thus 〈AX ,X 〉 and 〈AY ,Y 〉 are contained in an ellipse
contained in W (A).
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Experimental approach

another look at W (A)

The average of the eigenvalues appear to be at the center
of W (A).
Proven to be true for the 2× 2 case.
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Experimental approach

How to generate pictures

Select a large number of vectors X1,X2, . . . ,XN uniformly
distributed on ∂Bn

Plot 〈AXi ,Xi〉 for N different vectors. Here are two
examples.
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Experimental approach

some observations

Points are not uniformly distributed on W (A), so the
standard centroid is not the right idea for the “center” of
W (A).

The sample average 1
N

N∑
i=1
〈AXi ,Xi〉 seems be very close to

spectrum average 1
n

n∑
i=1

λi .

The result above appears to hold true even if the vectors
are only distributed “symmetrically”.
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definitions

definition of barycenter

Definition
We define the barycenter (center of mass) of W (A) to be

BW (A) = lim
N→∞

1
N

N∑
i=1

〈AXi ,Xi〉

where the Xi ’s are chosen from the uniform distribution on the
boundary of the unit ball in Cn
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definitions

uniformly distributed points

The Xi ’s are uniformly distributed ∂Bn if or each closed
subset U of ∂Bn,

lim
N→∞

#{i : Xi ∈ U}
N

=
vol(U)

vol(∂Bn)
,

where vol(U) is the volume of U computed as a subset of
the ∂Bn.
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definitions

integral definition

We get an integral definition

BW (A) = lim
N→∞

1
N

N∑
i=1

〈AXi ,Xi〉 =

∫
∂Bn

〈AX ,X 〉dω.

Define this planar density on W (A)

δ(z) = lim
r→0

ω(f−1
A (∆r (z)))

πr2

with ∆r (z) = {w ∈ C : ‖w − z‖ ≤ r}.
Then BW (A) has a planar integral definition

BW (A) =

∫
∂Bn

〈AX ,X 〉dω =

∫
W (A)

zδ(z)dxdy
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theorem statement

statement of theorem

The following theorem characterizes the barycenter.

Theorem
The barycenter BW (A) of the numerical range W (A) is given
by:

BW (A) =
tr(A)

n
=

1
n

n∑
i=1

λi .
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proof sketch

proof sketch -1

From the definitions.

BW (A) =

∫
∂Bn

〈AX ,X 〉dω =
∑
i,j

∫
∂Bn

ai,jxixjdω

We need only prove ∫
∂Bn

xixjdω =
1
n
δi,j
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proof sketch

proof sketch - 2

Now some setup

Define the functions

fi(X ) = xixi , fi,j(X ) = xixj

Note that ∑
i

fi(X ) =
∑

i

xixi = 〈X ,X 〉 = 1

Also define unitary operators (transpositions and
symmetries along coordinate axes)

Ui,j :
(
x1, . . . , xi , . . . , xj , . . . , xn

)
−→

(
x1, . . . , xj , . . . , xi , . . . , xn

)
for any distinct i , j and

Vi : (x1, . . . , xi , . . . , xn) −→ (x1, . . . ,−xi , . . . , xn)
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proof sketch

proof sketch - 3

From invariance∫
∂Bn

xixidω =

∫
∂Bn

fi(X )dω =

∫
∂Bn

fi(Ui,jX )dω =

∫
∂Bn

fj(X )dω =

∫
∂Bn

xjxjdω

and so

n
∫
∂Bn

xixidµ =

∫
∂Bn

∑
j

xjxjdµ =

∫
∂Bn

1dµ = 1

proving
∫
∂Bn

xixidω = 1
n
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proof sketch

proof sketch - 4

Now assuming i 6= j ,∫
∂Bn

xixjdω =

∫
∂Bn

fi,j(X )dω =

∫
∂Bn

fi,j(ViX )dω

∫
∂Bn

fi,j(ViX )dω =

∫
∂Bn

−fi,j(X )dω = −
∫
∂Bn

xixjdω.

and hence
∫
∂Bn

xixjdω = 0
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proof sketch

proof sketch - 5

Remark
If the vectors are randomly chosen from any probability
distribution µ on the sphere invariant under the Vi and Ui,j then

BW (A) = lim
N→∞

1
N

N∑
i=1

〈AXi ,Xi〉 =

∫
∂Bn

〈AX ,X 〉dµ
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proof sketch

Thank you.
Any questions?
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