
Rose-Hulman Institute of Technology

From the SelectedWorks of S. Allen Broughton

June 25, 2013

Exceptional Automorphisms of (generalized)
Super-Elliptic Surfaces
Sean A Broughton
Aaron Wootton, University of Portland

This work is licensed under a Creative Commons CC_BY-NC-SA International License.

Available at: https://works.bepress.com/allen_broughton/62/

http://www.rose-hulman.edu
https://works.bepress.com/allen_broughton/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://works.bepress.com/allen_broughton/62/


Cyclic n-gonal surfaces Super-elliptic surfaces Fuchsian group technology Classification of C < N < A

Exceptional Automorphisms of (generalized)
Super-Elliptic Surfaces

preliminary report

S. Allen Broughton (joint work with Aaron Wootton)

Department of Mathematics
Rose-Hulman Institute of Technology

“Riemann and Klein Surfaces, Symmetries and Moduli
Spaces" in honour of Professor Emilio Bujalance - June 25,

2013



Cyclic n-gonal surfaces Super-elliptic surfaces Fuchsian group technology Classification of C < N < A

outline

1 Cyclic n-gonal surfaces
Problem history of cyclic n-gonal surfaces
Automorphism groups of cyclic n-gonal surfaces

2 Super-elliptic surfaces
Super-elliptic surfaces
Moduli spaces of cyclic n=gonal and super-elliptic
surfaces

3 Fuchsian group technology
Fuchsian groups
Fuchsian group pairs

4 Classification of C < N < A
Classification via Fuchsian groups
Restrictions on signatures and structure
Examples and results



Cyclic n-gonal surfaces Super-elliptic surfaces Fuchsian group technology Classification of C < N < A

Problem history of cyclic n-gonal surfaces

Problem history of cyclic n-gonal
surfaces
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Problem history of cyclic n-gonal surfaces

n-gonal surfaces - 1

A cyclic n-gonal surface is a smooth surface with a plane
model of the form

yn = f (x) =
r∏

i=1

(x − ai)
ti , (1)

where ai , ti and t = t1 + · · ·+ tr = deg(f ) satisfy
the ai are distinct,
0 < ti < n,
n divides t (this is not the typical requirement), and
gcd(n, t1, . . . , tr ) = 1

If n = 2 then the surface is hyperelliptic.
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Problem history of cyclic n-gonal surfaces

n-gonal surfaces - 2

The plane model of the surface is smooth except at points
the points (ai ,0) where ti > 1, and at a single point at∞ if
t > n.
The normalization Sν → S has di = gcd(ti ,n) points lying
over (ai ,0) and n = gcd(t ,n) points lying over∞.
We frequently identify Sν and S and call Sν the smooth
model and S the plane model.
The genus σ of (the smooth model of) S is given by

σ =
1
2

(
2 + (r − 2)n −

r∑
i=1

di

)
.
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Problem history of cyclic n-gonal surfaces

n-gonal surfaces - 3

If ωn = 1 then (x , y)→ (x , ωy) is an automorphism of S
which fixes the points (ai ,0) and no others.
Let C be the cyclic group of automorphisms obtained by
letting ω range over all nth roots of unity.
The map π : Sν → P1, (x , y)→ x is a quotient map for the
projection Sν → Sν/C, and is called the cyclic n-gonal
morphism.
The degree of ramification of π over ai is ni = n/gcd(ti ,n).
The map is unramified over∞ because n divides t .
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Problem history of cyclic n-gonal surfaces

n-gonal surfaces - 4

Normality results using Accola’s theorem on strong branching.
Hyperelliptic case: the involution ι : (x , y)→ (x ,−y) is
central in Aut(S).
Prime order case: n = p is a prime and σ > (p − 1)2, then
C is normal in Aut(S). If f(x) is square-free then C is
central (Accola).
Fully ramified or generalized super-elliptic case:
gcd(n, ti) = 1 for all i . If σ > (n − 1)2, then C is normal in
Aut(S) (Kontogeorgis).
Weakly malnormal case: for all g ∈ Aut(S) either
gCg−1 = C or gCg−1 ∩ C = {1}. Then, if σ > (n − 1)2, C
is normal in Aut(S). (Broughton-Wootton)
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Automorphism groups of cyclic n-gonal surfaces

Automorphism groups of cyclic n-gonal
surfaces
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Automorphism groups of cyclic n-gonal surfaces

automorphism groups of cyclic n-gonal surfaces - 1

There is a great deal of interest in the full automorphism
group A = Aut(S) of a cyclic n-gonal surface, especially
the normal case.
In the normal case A/C is an automorphism group of the
sphere, one of five types of Platonic groups.
One “simply” solves an extension problem

C → A→ K .

The automorphisms can be explicitly written down as
birational transformations of P2.
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Automorphism groups of cyclic n-gonal surfaces

automorphism groups of cyclic n-gonal surfaces - 2

The case n = 2 (hyperelliptic case) has been studied
extensively: Brandt, Bujulance, Etayo, Gamboa,
Gromadzki, Martinez.
The case where n = 3, (cyclic trigonal surfaces): Accola,
Bujalance(×2), Cirre, Costa, Izquierdo, Martinez, Ying.
The case where n = p, for p a prime: Brandt,
Gonzalez-Diez, Harvey, Wootton.
General n where the cyclic n-gonal morphism S → S/C is
fully ramified: Kontogeorgis.
General n with weak malnormality conditions: Broughton &
Wootton
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Automorphism groups of cyclic n-gonal surfaces

cyclic n-gonal surfaces - the groups involved

Let S be a cyclic n-gonal surface, namely:
S is a surface of genus σ.
C = 〈h〉 is a cyclic group of automorphisms of S, of order
n, such that S/C has genus zero.
A = Aut(S) is the group of automorphisms of S.
N = NA(C) is the normalizer of C in A.
The group K = N/C acts on S/C and so must be one of
the five platonic types: Zk , Dk , A4, Σ4, A5, if K is not trivial.
An automorphism in A− N is called exceptional.
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Automorphism groups of cyclic n-gonal surfaces

goals of calculation

Ultimately, we want to determine the automorphism group
of any cyclic n-gonal surface. We will restrict our attention
to generalized super-elliptic surfaces.
The normal case A = N is computable using well known
extension methods for the exact sequence

C ↪→ N � K .

Assuming that S is a generalized super-elliptic surface,
N = A if σ > (n − 1)2.
For fixed n determine the finite number of cases where
N < A with exceptional automorphism. As
(n−1)(r−2)

2 = σ ≤ (n − 1)2 then r ≤ 2n.
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Super-elliptic surfaces

Super-elliptic surfaces
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Super-elliptic surfaces

super-elliptic surfaces - 1

A super-elliptic surface is a cyclic n-gonal surface, where
n = p, a prime,
f (x) is square free, (implies that C will be central in A),
p need not divide the degree of f (x).

We generalize this definition to non-prime cyclic groups and
relax the square-free condition.

Definition
Let S be a cyclic n-gonal surface, whose plane model satisfies
the requirements given earlier. If gcd(n, ti) = 1 for all ti , or
alternatively, if the degree of ramification of π over ai equals n,
then S is called a generalized super-elliptic surface.
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Super-elliptic surfaces

super-elliptic surfaces - 2

The definition is motivated by the papers of Kontogeorgis
and Shaska. The key requirement is that C have a fully
ramified action.
We require that n divide the degree of f (x) so that all
ramification occurs over points of the finite plane.
Relaxing the requirement that f (x) be square-free implies
that C will be only be normal instead of central (for large
genus).
The genus σ of (the smooth model of) S is given by

σ =
(n − 1)(r − 2)

2
.
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Super-elliptic surfaces

super-elliptic surfaces - 3

There is much interest – motivated by cryptography – in
computing in the Jacobian of super-elliptic surfaces S for
fields of prime characteristic. See the paper of Shaska
and, of course, his talk. |item Throughout the remainder of
the talk we use the term super-elliptic to mean the
extension to general n.
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Moduli spaces of cyclic n=gonal and super-elliptic surfaces

Moduli spaces of cyclic n=gonal and
super-elliptic surfaces
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Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 1

Given our cyclic n-gonal equation

yn = f (x) =
r∏

i=1

(x − ai)
ti ,

call
(a1,a2, . . . ,ar ) the branch points of S,
(t1, t2, . . . , tr ) the multi-degree of S,
(n1,n2, . . . ,nr ) – where ni = n/gcd(n, ti) – the branching
data or signature of the action of C on S.
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Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 2

Two surfaces with branch points (a1,a2, . . . ,ar ) and
(b1,b2, . . . ,br ) are equivalent if there is an L ∈ PSL2(C)
and a permutation ϑ ∈ Σr , preserving multi-degree, so that

bi = L(aϑi).

for all i .
Let ΣT denote the group of permutation preserving the
multi-degree T .
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Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 3

The smooth variety

MCn,T = (Cr − diagonals)/(PSL2(C)× ΣT )

of degree r − 3 is “almost” a moduli space for the surfaces
of multi-degree T .
The action of PSL2(C) is only partial and exceptional
automorphisms need to be taken into account.
EachMCn,T corresponds to a moduli space, of the same
dimension, of Fuchsian groups determined by the
signature (n1,n2, . . . ,nr ).
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Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 4

A multi-degree (t1, t2, . . . , tr ) may be identified with an
element of Zr

n with ti 6= 0 for all i ,
∑

i ti = 0, and
Zn = 〈t1, t2, . . . , tr 〉.
T = (t1, t2, . . . , tr ) and U = (u1,u2, . . . ,ur ) yield
MCn,T =MCn,U if there is ω ∈ Aut(Z) and ϑ ∈ Σr such
that

ui = ω(tϑi).

for all i .
It is interesting to see how many differentMCn,T
correspond to a given signature. The super-elliptic
surfaces have signature (n,n, . . .n). See next slide.
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Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 5

Table of numbers of multi-degrees for cyclic 35-gonal surfaces
with 4 branch points.

(n1,n2,n3,n4) # inequivalent multi-degrees lcm(n1,n2,n3,n4)

(35,35,35,35) 26 35
(35,35,35,7) 18 35
(35,35,35,5) 13 35

(35,35,7,7) 12 35
(35,35,7,5) 8 35
(35,35,5,5) 6 35

(35,7,7,5) 2 35
(35,7,5,5) 3 35

(7,7,7,7) 4 7
(7,7,5,5) 1 35
(5,5,5,5) 3 5
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Fuchsian groups
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Fuchsian groups

Fuchsian groups - generators, presentation and
signature

A Fuchsian group Γ, a discrete group acting on the
hyperbolic plane H, has a presentation by hyperbolic,
elliptic, and parabolic generators and relations:

generators : {αi , βi , γj , δk ,1 ≤ i ≤ σ, 1 ≤ j ≤ s,1 ≤ k ≤ p}

relations :
σ∏

i=1

[αi , βi ]
s∏

j=1

γj

p∏
k=1

δk = γm1
1 = · · · = γms

s = 1

The signature of Γ is

S(Γ) = (σ : m1, . . . ,ms,ms+1, . . . ,ms+p)

with ms+j =∞, j = 1, . . . ,p (the parabolic generators).
allow for parabolic generators to account for parametric
families of n-gonal surfaces, such as Fermat curves.
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Fuchsian groups

Fuchsian groups - invariants

Important invariants of a Fuchsian group
The genus of Γ: σ(Γ) = σ is the genus of S = H/Γ

The area of a fundamental region: A(Γ) = 2πµ(Γ) where,

µ(Γ) = 2(σ − 1) +

s+p∑
j=1

(1− 1
mj

).

Teichmüller dimension d(Γ) of Γ: the dimension of the
Teichmüller space of Fuchsian groups with signature S(Γ)
given by

d(Γ) = 3(σ − 1) + s + p.
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Fuchsian group pairs

Fuchsian group pairs
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Fuchsian group pairs

Fuchsian group pairs - index and codimension

For finite index pair of Fuchsian groups Γ < ∆,

[∆ : Γ] = µ(Γ)/µ(∆).

Also we call the quantity

c(Γ,∆) = d(Γ)− d(∆)

the Teichmüller codimension of (Γ,∆)

These quantities are determined entirely by the signatures
S(Γ) and S(∆).
The signatures of a pair Γ < ∆ must satisfy certain
compatibility conditions.
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Fuchsian group pairs

Fuchsian group pairs - canonical generating sets

Suppose that Γ has genus σ, s elliptic generators, and p
parabolic generators and that ∆ has genus τ , t elliptic
generators, and q parabolic generators.
For notational convenience, we denote the canonical
generating sets of Γ and ∆, respectively, by:

G1 = {θ1, . . . , θ2σ+s+p}

and
G2 = {ζ1, . . . , ζ2τ+t+q},

In any calculation we will always assume that σ = τ = 0.
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Fuchsian group pairs

Fuchsian group pairs - monodromy

The pair Γ < ∆ determines a permutation or monodromy
representation of ∆ on the cosets of Γ

ρ : ∆→ Σm

where m is the index of Γ in ∆.
Write

P = (π1, π2, . . . , π2τ+t+q)

for πi = ρ(ζi) ∈ Σm, to construct the monodromy vector of
the pair.
The cycle types and other properties of P are determined
by signatures S(Γ) and S(∆) and the relations on the
generators.
M(∆, Γ) = ρ(∆) =

〈
π1, π2, . . . , π2τ+t+q

〉
is called the

monodromy group of the pair.
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Fuchsian group pairs

Fuchsian group pairs - word maps and monodromy

The word map of the inclusion Γ ↪→ ∆ is a set of words
{w1, . . . ,w2σ+s+p} in the generators in G2 such that

θi = wi(ζ1 . . . , ζ2τ+t+q), i = 1, . . . ,2σ + s + p

Given a word map for the inclusion Γ ↪→ ∆ a monodromy
vector P is easily calculated using the Todd-Coxeter
algorithm.
Given monodromy vector P of a genus zero pair Γ < ∆
(both groups), then the word map of the pair may be
calculated, by an easily implemented algorithm.
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Fuchsian group pairs

Fuchsian group pairs - example part 1

Suppose we have these signatures

S1 = (0; 2,2,2,5),S2 = (0; 2,4,5)

We want a pair Γ < ∆ with

S(Γ) = S1,S(∆) = S2

Find a compatible monodromy vector in Σ6

π1 = (1,3)(4,6), π2 = (1,2)(3,5,4,6), π3 = (1,2,3,4,5),

note that M(∆, Γ) = A6.



Cyclic n-gonal surfaces Super-elliptic surfaces Fuchsian group technology Classification of C < N < A

Fuchsian group pairs

Fuchsian group pairs - example part 2

Define ρ : ∆→ Σ6 by ρ : ζi → πi , i = 1 . . . 3.
Γ is the stabilizer of a point for the permutation action of ∆
on {1, . . . ,6}
From the algorithm, a generating set for Γ is

θ1 = (ζ1ζ2)ζ1(ζ1ζ2)−1

θ2 = ζ2ζ1ζ
−1
2

θ3 = ζ2
2

θ4 = (ζ−1
2 ζ−1

1 ζ−1
2 ζ1ζ3ζ1)ζ3(ζ−1

2 ζ−1
1 ζ−1

2 ζ1ζ3ζ1)−1
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Fuchsian group pairs

Constrained and tight pairs - 1

The following concept is introduced to account for families of
pairs.

Definition
Let ρ : ∆→ Σm be as previously defined.

A pair Γ < ∆ is called constrained if ∆ has no parabolic
generators and o(ζi) = o(ρ(ζi)) = o(πi) for each elliptic
generator ζi .
A pair Γ < ∆ is called tight if ∆ has at least one parabolic
generator and o(ζi) = o(ρ(ζi)) = o(πi) for each elliptic
generator ζi .

Remark
The definition depends only on the cycle types, and hence only
on the signature pair.

Example shortly
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Fuchsian group pairs

Constrained and tight pairs - 2

Proposition
Let Γ < ∆ be a tight pair where ∆ has q parabolic elements.
Then there is a q-parameter family Γ(`1, . . . , `q) < ∆(`1, . . . , `q)
such that each member of the family has

the same codimension d(Γ,∆)

the same index [∆ : Γ]

the same monodromy M(∆, Γ) and monodromy vector P.
the same word map
The pair Γ(`1, . . . , `q) < ∆(`1, . . . , `q) is hyperbolic for
almost every choice of the `i .
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Fuchsian group pairs

Constrained and tight pairs - 3

Remark
Every Fuchsian group pair is constrained or belongs to a
unique family as above. The tight pair defining the family is
called the parent tight pair.

Example

The previous example and the pair T (7,7,7) < T (2,3,7), are
constrained pairs.

Example

The family of triangle group pairs T (2,d ,2d) < T (2,3,2d)
comes from the tight pair T (2,∞,∞) < T (2,3,∞). The
monodromy vector is ((1,2), (1,2,3), (1,3)).
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Classification via Fuchsian groups
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Classification via Fuchsian groups

Lifting actions - 1

For S a cyclic n-gonal surface, we have a covering diagram

ΓC ↪→ ΓN ↪→ ΓA
↓ η ↓ η ↓ η
C ↪→ N ↪→ A

(2)

for an exact sequence

Π ↪→ ΓA
η
� A

such that Π is torsion free and S = H/Π
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Classification via Fuchsian groups

Lifting actions - 2

Also

M(ΓA, ΓN) = M(A,N)

M(ΓN , ΓC) = M(N,C) = M(N/C, 〈1〉) ' K

M(ΓA, ΓC) = M(A,C) ' A.

The last holds because of the super-elliptic condition.
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Classification via Fuchsian groups

Overview of classification method - 1

Each triple of groups C < N < A gives a triple of Fuchsian
groups ΓC < ΓN < ΓA.
Classify, using computational group theory methods on

Fuchsian group signatures
monodromy of Fuchsian group pairs ΓC < ΓN , ΓN < ΓA
“word maps” of Fuchsian group pairs ΓC < ΓN , ΓN < ΓA

Using the monodromy and word maps, the monodromy of
the pairs C < N and N < A, may be fused together to
produce A.
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Classification via Fuchsian groups

Overview of classification method -2

The superelliptic condition limits the possible triples.
There are finitely many cases of parametric families and
finitely many exceptional cases to consider. The two types
of cases need separate computational methods.
The methods used are a specific application of methods
developed to study pairs of Fuchsian groups. For more
details, see [1] and [2] in the references.
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Classification via Fuchsian groups

Steps of classification - 1

Using a computer search determine all signature pairs
S(ΓN) and S(ΓA) for codimension 0,1,2,3, treating
constrained and tight pairs separately.
The group K and the signature S(ΓC) is automatically
determined.
For each candidate signature pair, compute all the
compatible monodromy vectors up to conjugacy. Use the
classification of primitive permutation groups (Magma or
GAP).
Some extra work, using towers of groups, is required in
using the primitive data base to calculate all the M(ΓA, ΓN),
since the monodromy group it is only a transitive group, not
necessarily primitive.
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Classification via Fuchsian groups

Steps of classification - 2

From monodromy vectors of ΓN < ΓA and ΓN < ΓC
compute the word maps of ΓC ↪→ ΓN and ΓN ↪→ ΓA

Compute the word map of ΓC ↪→ ΓA by substitution.
Compute the monodromy group M(ΓA, ΓC) using the
Todd-Coxeter algorithm.
If the stabilizer of a point in M(ΓA, ΓC) ' A is not cyclic then
reject this case. Generally C = ΓC/Π is weakly malnormal,
it is just not cyclic.
There are 202 constrained pairs and 597 tight pairs
ΓN < ΓA that could potentially lead to cyclic n-gonal
surfaces. Obviously this cannot be done by hand unless
we are missing something clever.
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Restrictions on signatures and structure
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Restrictions on signatures and structure

Super-elliptic restriction on signatures - 1

Theorem
If S is super-elliptic then ΓN has at most 3 more periods than
ΓA. If ΓA and ΓN have the same number of canonical
generators, then they appear in Singerman’s list [5]. The
signatures for ΓA and ΓN appear as a pair in following table. In
the table

(a1,a2,a3) or (k , k) is the signature of K = ΓN/ΓC ,
the mi equal either 1 or n,
the number of periods denoted by n is the same for each,
and could be zero.

The signature for ΓC is automatically determined from ΓN .
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Restrictions on signatures and structure

Super-elliptic restriction on signatures - 2

Case Signature of ΓN Signature of ΓA
0A (0; a1m1,a2m2,a3m3,n, . . . ,n) (0; b1,b2,b3,n, . . . ,n)

0B (0; km1, km2,n, . . . ,n) (0; b1,b2,n, . . . ,n)

1A (0; a1m1,a2m2,a3m3,n, . . . ,n) (0; b1,b2,n, . . . ,n)

1B (0; km1, km2,n, . . . ,n) (0; b1,n, . . . ,n)

2A (0; a1m1,a2m2,a3m3,n, . . . ,n) (0; b1,n, . . . ,n)

2B (0; km1, km2,n, . . . ,n) (0; n, . . . ,n)

3A (0; a1m1,a2m2,a3m3,n, . . . ,n) (0; n, . . . ,n)

Table : Signatures for ΓA and ΓN
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Restrictions on signatures and structure

Non self-normalizing case.

Theorem
If N is not self normalizing in A then N contains a copy of
Zn × Zn and there are three possibilities given in the table
below.

In this table m = |ΓA/ΓN |.
S(ΓA) S(ΓN) m |C| genus Group
(2,3,2n) (2,n,2n) 3 n ≥ 5 (n−1)(n−2)

2 Σ3 × (Zn n Zn)

(2,2,2,n) (2,2,n,n) 2 n ≥ 3 (n − 1)2 V4 n (Zn × Zn)

(2,4,2n) (2,2n,2n) 2 n ≥ 3 (n − 1)2 D4 n (Zn n Zn)
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cyclic n-gonal groups from constrained pairs

We think these are the only possibilities.

S(ΓA) S(ΓN) S(K ) |ΓA/ΓN | |C| genus Group
(2,4,5) (4,4,5) (4,4) 6 5 4 Σ6
(2,3,7) (3,3,7) (3,3) 8 7 3 PSL2(7)
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cyclic n-gonal groups from tight pairs

Here are some examples, admittedly calculated by hand.
Some tight pairs admit only a finite number of n-gonal
surfaces, see lines 1 and 2
The authors are currently working out a uniform method to
deal with the family of cases arising from a single tight pair.
In this table m = |ΓA/ΓN | .

S(ΓA) S(ΓN) m |C| genus Group
(2,3,4n) (2,2,3,n) 4 n = 2 2 GL(2,3)

(2,3,3n) (3,n,3n) 4 n = 4 3 SL(2,3)/CD
(2,3,2n) (2,n,2n) 3 n ≥ 5 (n−1)(n−2)

2 Σ3 n (Zn × Zn)

(2,2,2,n) (2,2,n,n) 2 n ≥ 3 (n − 1)2 V4 n (Zn × Zn)

(2,4,2n) (2,2n,2n) 2 n ≥ 3 (n − 1)2 D4 n (Zn n Zn)
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Questions

Any questions?
The slides of this talk will be available at http://www.rose-
hulman.edu/˜brought/Epubs/Oslo/Oslo.html
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