Rose-Hulman Institute of Technology

From the SelectedWorks of S. Allen Broughton

June 25, 2013

Exceptional Automorphisms of (generalized) Super-Elliptic Surfaces

Sean A Broughton Aaron Wootton, *University of Portland*

This work is licensed under a Creative Commons CC_BY-NC-SA International License.

Available at: https://works.bepress.com/allen_broughton/62/

Fuchsian group technology

Classification of C < N < A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Exceptional Automorphisms of (generalized) Super-Elliptic Surfaces preliminary report

S. Allen Broughton (joint work with Aaron Wootton)

Department of Mathematics Rose-Hulman Institute of Technology

"Riemann and Klein Surfaces, Symmetries and Moduli Spaces" in honour of Professor Emilio Bujalance - June 25, 2013

Fuchsian group technology

Classification of C < N < A

outline

- Cyclic *n*-gonal surfaces
 - Problem history of cyclic *n*-gonal surfaces
 - Automorphism groups of cyclic n-gonal surfaces
- 2 Super-elliptic surfaces
 - Super-elliptic surfaces
 - Moduli spaces of cyclic n=gonal and super-elliptic surfaces
- 3 Fuchsian group technology
 - Fuchsian groups
 - Fuchsian group pairs
- 4 Classification of C < N < A
 - Classification via Fuchsian groups
 - Restrictions on signatures and structure
 - Examples and results

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Problem history of cyclic n-gonal surfaces

Problem history of cyclic *n*-gonal surfaces

 A cyclic n-gonal surface is a smooth surface with a plane model of the form

$$y^n = f(x) = \prod_{i=1}^r (x - a_i)^{t_i},$$
 (1)

where a_i , t_i and $t = t_1 + \cdots + t_r = \deg(f)$ satisfy

- the *a_i* are distinct,
- $0 < t_i < n$,
- *n* divides *t* (this is not the typical requirement), and
- $gcd(n, t_1, ..., t_r) = 1$
- If *n* = 2 then the surface is hyperelliptic.

- The plane model of the surface is smooth except at points the points (*a_i*, 0) where *t_i* > 1, and at a single point at ∞ if *t* > *n*.
- The normalization S^ν → S has d_i = gcd(t_i, n) points lying over (a_i, 0) and n = gcd(t, n) points lying over ∞.
- We frequently identify S^ν and S and call S^ν the smooth model and S the plane model.
- The genus σ of (the smooth model of) *S* is given by

$$\sigma = \frac{1}{2} \left(2 + (r-2)n - \sum_{i=1}^r d_i \right).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fuchsian group technology

Classification of C < N < A

Problem history of cyclic *n*-gonal surfaces

n-gonal surfaces - 3

- If ωⁿ = 1 then (x, y) → (x, ωy) is an automorphism of S which fixes the points (a_i, 0) and no others.
- Let C be the cyclic group of automorphisms obtained by letting ω range over all nth roots of unity.
- The map π : S^ν → P¹, (x, y) → x is a quotient map for the projection S^ν → S^ν/C, and is called the cyclic *n*-gonal morphism.
- The degree of ramification of π over a_i is n_i = n/gcd(t_i, n). The map is unramified over ∞ because n divides t.

Normality results using Accola's theorem on strong branching.

- Hyperelliptic case: the involution *ι* : (*x*, *y*) → (*x*, −*y*) is central in Aut(*S*).
- Prime order case: n = p is a prime and σ > (p 1)², then C is normal in Aut(S). If f(x) is square-free then C is central (Accola).
- Fully ramified or generalized super-elliptic case: $gcd(n, t_i) = 1$ for all *i*. If $\sigma > (n - 1)^2$, then *C* is normal in Aut(*S*) (Kontogeorgis).
- Weakly malnormal case: for all $g \in Aut(S)$ either $gCg^{-1} = C$ or $gCg^{-1} \cap C = \{1\}$. Then, if $\sigma > (n-1)^2$, C is normal in Aut(S). (Broughton-Wootton)

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Automorphism groups of cyclic n-gonal surfaces

Automorphism groups of cyclic n-gonal surfaces

Fuchsian group technology

Classification of C < N < A

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Automorphism groups of cyclic n-gonal surfaces

automorphism groups of cyclic n-gonal surfaces - 1

- There is a great deal of interest in the full automorphism group A = Aut(S) of a cyclic n-gonal surface, especially the normal case.
- In the normal case A/C is an automorphism group of the sphere, one of five types of Platonic groups.
- One "simply" solves an extension problem

$$C \rightarrow A \rightarrow K$$
.

 The automorphisms can be explicitly written down as birational transformations of P².

Fuchsian group technology

Classification of C < N < A

Automorphism groups of cyclic n-gonal surfaces

automorphism groups of cyclic n-gonal surfaces - 2

- The case n = 2 (hyperelliptic case) has been studied extensively: Brandt, Bujulance, Etayo, Gamboa, Gromadzki, Martinez.
- The case where n = 3, (cyclic trigonal surfaces): Accola, Bujalance(×2), Cirre, Costa, Izquierdo, Martinez, Ying.
- The case where *n* = *p*, for *p* a prime: Brandt, Gonzalez-Diez, Harvey, Wootton.
- General *n* where the cyclic *n*-gonal morphism S → S/C is fully ramified: Kontogeorgis.
- General *n* with weak malnormality conditions: Broughton & Wootton

Fuchsian group technology

Classification of C < N < A

Automorphism groups of cyclic n-gonal surfaces

cyclic *n*-gonal surfaces - the groups involved

Let *S* be a cyclic *n*-gonal surface, namely:

- S is a surface of genus σ .
- C = ⟨h⟩ is a cyclic group of automorphisms of S, of order n, such that S/C has genus zero.
- A = Aut(S) is the group of automorphisms of S.
- $N = N_A(C)$ is the normalizer of C in A.
- The group K = N/C acts on S/C and so must be one of the five platonic types: Z_k, D_k, A₄, Σ₄, A₅, if K is not trivial.
- An automorphism in *A N* is called *exceptional*.

- Ultimately, we want to determine the automorphism group of any cyclic *n*-gonal surface. We will restrict our attention to generalized super-elliptic surfaces.
- The normal case A = N is computable using well known extension methods for the exact sequence

$$C \hookrightarrow N \twoheadrightarrow K.$$

- Assuming that S is a generalized super-elliptic surface, N = A if $\sigma > (n - 1)^2$.
- For fixed *n* determine the finite number of cases where N < A with exceptional automorphism. As $\frac{(n-1)(r-2)}{2} = \sigma \le (n-1)^2$ then $r \le 2n$.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Super-elliptic surfaces

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Super-elliptic surfaces

super-elliptic surfaces - 1

A super-elliptic surface is a cyclic *n*-gonal surface, where

- *n* = *p*, a prime,
- *f*(*x*) is square free, (implies that *C* will be central in *A*),
- *p* need not divide the degree of *f*(*x*).

We generalize this definition to non-prime cyclic groups and relax the square-free condition.

Definition

Let S be a cyclic *n*-gonal surface, whose plane model satisfies the requirements given earlier. If $gcd(n, t_i) = 1$ for all t_i , or alternatively, if the degree of ramification of π over a_i equals n, then S is called a *generalized super-elliptic surface*.

Fuchsian group technology

Classification of C < N < A

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Super-elliptic surfaces

super-elliptic surfaces - 2

- The definition is motivated by the papers of Kontogeorgis and Shaska. The key requirement is that *C* have a fully ramified action.
- We require that *n* divide the degree of *f*(*x*) so that all ramification occurs over points of the finite plane.
- Relaxing the requirement that f(x) be square-free implies that C will be only be normal instead of central (for large genus).
- The genus σ of (the smooth model of) *S* is given by

$$\sigma=\frac{(n-1)(r-2)}{2}.$$

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

(ロ) (同) (三) (三) (三) (○) (○)

Super-elliptic surfaces

super-elliptic surfaces - 3

 There is much interest – motivated by cryptography – in computing in the Jacobian of super-elliptic surfaces S for fields of prime characteristic. See the paper of Shaska and, of course, his talk. |item Throughout the remainder of the talk we use the term super-elliptic to mean the extension to general n.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 1

Given our cyclic n-gonal equation

$$y^n = f(x) = \prod_{i=1}^r (x - a_i)^{t_i},$$

call

- (a_1, a_2, \ldots, a_r) the branch points of *S*,
- (t_1, t_2, \ldots, t_r) the multi-degree of S,
- (n₁, n₂,..., n_r) where n_i = n/gcd(n, t_i) the branching data or signature of the action of C on S.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 2

 Two surfaces with branch points (a₁, a₂,..., a_r) and (b₁, b₂,..., b_r) are equivalent if there is an L ∈ PSL₂(ℂ) and a permutation ϑ ∈ Σ_r, preserving multi-degree, so that

$$b_i = L(a_{\vartheta i}).$$

for all *i*.

 Let Σ_T denote the group of permutation preserving the multi-degree T.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 3

The smooth variety

 $\mathcal{MC}_{n,T} = (\mathbb{C}^r - diagonals)/(PSL_2(\mathbb{C}) \times \Sigma_T)$

of degree r - 3 is "almost" a moduli space for the surfaces of multi-degree T.

- The action of PSL₂(C) is only partial and exceptional automorphisms need to be taken into account.
- Each *MC_{n,T}* corresponds to a moduli space, of the same dimension, of Fuchsian groups determined by the signature (*n*₁, *n*₂,..., *n_r*).

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 4

- A multi-degree $(t_1, t_2, ..., t_r)$ may be identified with an element of \mathbb{Z}_n^r with $t_i \neq 0$ for all $i, \sum_i t_i = 0$, and $\mathbb{Z}_n = \langle t_1, t_2, ..., t_r \rangle$.
- $T = (t_1, t_2, ..., t_r)$ and $U = (u_1, u_2, ..., u_r)$ yield $\mathcal{MC}_{n,T} = \mathcal{MC}_{n,U}$ if there is $\omega \in Aut(\mathbb{Z})$ and $\vartheta \in \Sigma_r$ such that

$$u_i = \omega(t_{\vartheta i}).$$

for all *i*.

• It is interesting to see how many different $\mathcal{MC}_{n,T}$ correspond to a given signature. The super-elliptic surfaces have signature (n, n, ..., n). See next slide.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Moduli spaces of cyclic n=gonal and super-elliptic surfaces

moduli spaces for n=gonal surfaces - 5

Table of numbers of multi-degrees for cyclic 35-gonal surfaces with 4 branch points.

(n_1, n_2, n_3, n_4)	# inequivalent multi-degrees	$lcm(n_1, n_2, n_3, n_4)$
(35, 35, 35, 35)	26	35
(35, 35, 35, 7)	18	35
(35, 35, 35, 5)	13	35
(35, 35, 7, 7)	12	35
(35, 35, 7, 5)	8	35
(35, 35, 5, 5)	6	35
(35, 7, 7, 5)	2	35
(35, 7, 5, 5)	3	35
(7,7,7,7)	4	7
(7,7,5,5)	1	35
(5, 5, 5, 5)	3	5

▲ロト▲圖ト▲画ト▲画ト 画 のへの

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fuchsian groups

Fuchsian groups

Fuchsian group technology

Classification of C < N < A

Fuchsian groups

Fuchsian groups - generators, presentation and signature

 A Fuchsian group Γ, a discrete group acting on the hyperbolic plane H, has a presentation by hyperbolic, elliptic, and parabolic generators and relations:

generators : { $\alpha_i, \beta_i, \gamma_j, \delta_k, 1 \le i \le \sigma, 1 \le j \le s, 1 \le k \le p$ }

relations :
$$\prod_{i=1}^{\sigma} [\alpha_i, \beta_i] \prod_{j=1}^{s} \gamma_j \prod_{k=1}^{p} \delta_k = \gamma_1^{m_1} = \dots = \gamma_s^{m_s} = 1$$

The signature of Γ is

$$\mathcal{S}(\Gamma) = (\sigma: m_1, \ldots, m_s, m_{s+1}, \ldots, m_{s+p})$$

with $m_{s+j} = \infty$, j = 1, ..., p (the parabolic generators).

 allow for parabolic generators to account for parametric families of *n*-gonal surfaces, such as Fermat curves.

Fuchsian group technology

Classification of C < N < A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fuchsian groups

Fuchsian groups - invariants

Important invariants of a Fuchsian group

- The genus of Γ : $\sigma(\Gamma) = \sigma$ is the genus of $S = \overline{\mathbb{H}/\Gamma}$
- The area of a fundamental region: $A(\Gamma) = 2\pi\mu(\Gamma)$ where,

$$\mu(\Gamma) = 2(\sigma - 1) + \sum_{j=1}^{s+\rho} (1 - \frac{1}{m_j})$$

 Teichmüller dimension d(Γ) of Γ: the dimension of the Teichmüller space of Fuchsian groups with signature S(Γ) given by

$$d(\Gamma) = 3(\sigma - 1) + s + p.$$

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Fuchsian group pairs

Fuchsian group pairs

Fuchsian group technology

Classification of C < N < A

Fuchsian group pairs

Fuchsian group pairs - index and codimension

• For finite index pair of Fuchsian groups $\Gamma < \Delta$,

$$[\Delta: \mathsf{\Gamma}] = \mu(\mathsf{\Gamma})/\mu(\Delta).$$

Also we call the quantity

$$c(\Gamma, \Delta) = d(\Gamma) - d(\Delta)$$

the Teichmüller codimension of (Γ, Δ)

- These quantities are determined entirely by the signatures S(Γ) and S(Δ).
- The signatures of a pair Γ < Δ must satisfy certain compatibility conditions.

Fuchsian group technology

Classification of C < N < A

(日) (日) (日) (日) (日) (日) (日)

Fuchsian group pairs

Fuchsian group pairs - canonical generating sets

- Suppose that Γ has genus σ, s elliptic generators, and p parabolic generators and that Δ has genus τ, t elliptic generators, and q parabolic generators.
- For notational convenience, we denote the canonical generating sets of Γ and Δ, respectively, by:

$$\mathcal{G}_1 = \{\theta_1, \dots, \theta_{2\sigma+s+p}\}$$

and

$$\mathcal{G}_2 = \{\zeta_1, \ldots, \zeta_{2\tau+t+q}\},\$$

• In any calculation we will always assume that $\sigma = \tau = 0$.

Fuchsian group technology

Classification of C < N < A

Fuchsian group pairs

Fuchsian group pairs - monodromy

 The pair Γ < Δ determines a permutation or monodromy representation of Δ on the cosets of Γ

$$\rho: \Delta \to \Sigma_m$$

where *m* is the index of Γ in Δ .

Write

$$\mathcal{P}=(\pi_1,\pi_2,\ldots,\pi_{2\tau+t+q})$$

for $\pi_i = \rho(\zeta_i) \in \Sigma_m$, to construct the *monodromy vector* of the pair.

- The cycle types and other properties of *P* are determined by signatures *S*(Γ) and *S*(Δ) and the relations on the generators.
- M(Δ, Γ) = ρ(Δ) = ⟨π₁, π₂, ..., π_{2τ+t+q}⟩ is called the monodromy group of the pair.

Fuchsian group technology

Fuchsian group pairs

Fuchsian group pairs - word maps and monodromy

 The word map of the inclusion Γ → Δ is a set of words {w₁,..., w_{2σ+s+p}} in the generators in G₂ such that

$$\theta_i = w_i(\zeta_1 \dots, \zeta_{2\tau+t+q}), i = 1, \dots, 2\sigma + s + p$$

- Given a word map for the inclusion Γ → Δ a monodromy vector *P* is easily calculated using the Todd-Coxeter algorithm.
- Given monodromy vector *P* of a genus zero pair Γ < Δ (both groups), then the word map of the pair may be calculated, by an easily implemented algorithm.

Fuchsian group technology

Classification of C < N < A

Fuchsian group pairs

Fuchsian group pairs - example part 1

Suppose we have these signatures

$$\mathcal{S}_1 = (0; 2, 2, 2, 5), \mathcal{S}_2 = (0; 2, 4, 5)$$

• We want a pair $\Gamma < \Delta$ with

$$\mathcal{S}(\Gamma) = \mathcal{S}_1, \mathcal{S}(\Delta) = \mathcal{S}_2$$

Find a compatible monodromy vector in Σ₆

 $\pi_1 = (1,3)(4,6), \pi_2 = (1,2)(3,5,4,6), \pi_3 = (1,2,3,4,5),$

note that $M(\Delta, \Gamma) = A_6$.

Fuchsian group technology

Classification of C < N < A

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fuchsian group pairs

Fuchsian group pairs - example part 2

- Define $\rho: \Delta \to \Sigma_6$ by $\rho: \zeta_i \to \pi_i, i = 1 \dots 3$.
- Γ is the stabilizer of a point for the permutation action of Δ on {1,...,6}
- From the algorithm, a generating set for Γ is

•
$$\theta_1 = (\zeta_1\zeta_2)\zeta_1(\zeta_1\zeta_2)^{-1}$$

• $\theta_2 = \zeta_2\zeta_1\zeta_2^{-1}$
• $\theta_3 = \zeta_2^2$
• $\theta_4 = (\zeta_2^{-1}\zeta_1^{-1}\zeta_2^{-1}\zeta_1\zeta_3\zeta_1)\zeta_3(\zeta_2^{-1}\zeta_1^{-1}\zeta_2^{-1}\zeta_1\zeta_3\zeta_1)^{-1}$

Fuchsian group technology

Classification of C < N < A

Fuchsian group pairs

Constrained and tight pairs - 1

The following concept is introduced to account for families of pairs.

Definition

Let $\rho : \Delta \to \Sigma_m$ be as previously defined.

- A pair Γ < Δ is called *constrained* if Δ has no parabolic generators and o(ζ_i) = o(ρ(ζ_i)) = o(π_i) for each elliptic generator ζ_i.
- A pair Γ < Δ is called *tight* if Δ has at least one parabolic generator and o(ζ_i) = o(ρ(ζ_i)) = o(π_i) for each elliptic generator ζ_i.

Remark

The definition depends only on the cycle types, and hence only on the signature pair.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Fuchsian group pairs

Constrained and tight pairs - 2

Proposition

Let $\Gamma < \Delta$ be a tight pair where Δ has q parabolic elements. Then there is a q-parameter family $\Gamma(\ell_1, \ldots, \ell_q) < \Delta(\ell_1, \ldots, \ell_q)$ such that each member of the family has

- the same codimension $d(\Gamma, \Delta)$
- the same index [Δ : Γ]
- the same monodromy $M(\Delta, \Gamma)$ and monodromy vector \mathcal{P} .
- the same word map
- The pair Γ(ℓ₁,..., ℓ_q) < Δ(ℓ₁,..., ℓ_q) is hyperbolic for almost every choice of the ℓ_i.

Fuchsian group technology

Classification of C < N < A

Fuchsian group pairs

Constrained and tight pairs - 3

Remark

Every Fuchsian group pair is constrained or belongs to a unique family as above. The tight pair defining the family is called the parent tight pair.

Example

The previous example and the pair T(7,7,7) < T(2,3,7), are constrained pairs.

Example

The family of triangle group pairs T(2, d, 2d) < T(2, 3, 2d)comes from the tight pair $T(2, \infty, \infty) < T(2, 3, \infty)$. The monodromy vector is ((1, 2), (1, 2, 3), (1, 3)).

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Classification via Fuchsian groups

Classification via Fuchsian groups

• For S a cyclic *n*-gonal surface, we have a covering diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for an exact sequence

$$\Pi \ \hookrightarrow \ \Gamma_{A} \ \overset{\eta}{\twoheadrightarrow} \ A$$

• such that Π is torsion free and $S = \mathbb{H}/\Pi$

 Cyclic *n*-gonal surfaces
 Super-elliptic surfaces
 Fuchsian group technology
 Classification of *C < N < A*

 Classification via Fuchsian groups
 Lifting actions - 2
 2

Also

 $M(\Gamma_A, \Gamma_N) = M(A, N)$ $M(\Gamma_N, \Gamma_C) = M(N, C) = M(N/C, \langle 1 \rangle) \simeq K$ $M(\Gamma_A, \Gamma_C) = M(A, C) \simeq A.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The last holds because of the super-elliptic condition.

Fuchsian group technology

Classification of C < N < A

Classification via Fuchsian groups

Overview of classification method - 1

- Each triple of groups C < N < A gives a triple of Fuchsian groups Γ_C < Γ_N < Γ_A.
- Classify, using computational group theory methods on
 - Fuchsian group signatures
 - monodromy of Fuchsian group pairs $\Gamma_C < \Gamma_N$, $\Gamma_N < \Gamma_A$
 - "word maps" of Fuchsian group pairs $\Gamma_C < \Gamma_N$, $\Gamma_N < \Gamma_A$
- Using the monodromy and word maps, the monodromy of the pairs C < N and N < A, may be fused together to produce A.

Fuchsian group technology

Classification of C < N < A

Classification via Fuchsian groups

Overview of classification method -2

- The superelliptic condition limits the possible triples.
- There are finitely many cases of parametric families and finitely many exceptional cases to consider. The two types of cases need separate computational methods.
- The methods used are a specific application of methods developed to study pairs of Fuchsian groups. For more details, see [1] and [2] in the references.

Fuchsian group technology

Classification of C < N < A

Classification via Fuchsian groups

Steps of classification - 1

- Using a computer search determine all signature pairs *S*(Γ_N) and *S*(Γ_A) for codimension 0,1,2,3, treating constrained and tight pairs separately.
- The group K and the signature S(Γ_C) is automatically determined.
- For each candidate signature pair, compute all the compatible monodromy vectors up to conjugacy. Use the classification of primitive permutation groups (Magma or GAP).
- Some extra work, using towers of groups, is required in using the primitive data base to calculate all the *M*(Γ_A, Γ_N), since the monodromy group it is only a transitive group, not necessarily primitive.

Fuchsian group technology

Classification of C < N < A

Classification via Fuchsian groups

Steps of classification - 2

- From monodromy vectors of Γ_N < Γ_A and Γ_N < Γ_C compute the word maps of Γ_C → Γ_N and Γ_N → Γ_A
- Compute the word map of $\Gamma_C \hookrightarrow \Gamma_A$ by substitution.
- Compute the monodromy group *M*(Γ_A, Γ_C) using the Todd-Coxeter algorithm.
- If the stabilizer of a point in *M*(Γ_A, Γ_C) ≃ *A* is not cyclic then reject this case. Generally C = Γ_C/Π is weakly malnormal, it is just not cyclic.
- There are 202 constrained pairs and 597 tight pairs
 Γ_N < Γ_A that could potentially lead to cyclic *n*-gonal surfaces. Obviously this cannot be done by hand unless we are missing something clever.

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Restrictions on signatures and structure

Restrictions on signatures and structure

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Restrictions on signatures and structure

Super-elliptic restriction on signatures - 1

Theorem

If *S* is super-elliptic then Γ_N has at most 3 more periods than Γ_A . If Γ_A and Γ_N have the same number of canonical generators, then they appear in Singerman's list [5]. The signatures for Γ_A and Γ_N appear as a pair in following table. In the table

- (a_1, a_2, a_3) or (k, k) is the signature of $K = \Gamma_N / \Gamma_C$,
- the m_i equal either 1 or n,
- the number of periods denoted by n is the same for each, and could be zero.

The signature for Γ_C is automatically determined from Γ_N .

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Restrictions on signatures and structure

Super-elliptic restriction on signatures - 2

Case	Signature of Γ_N	Signature of Γ_A	
0 <i>A</i>	$(0; a_1m_1, a_2m_2, a_3m_3, n, \ldots, n)$	$(0; b_1, b_2, b_3, n, \ldots, n)$	
0 <i>B</i>	$(0; km_1, km_2, n, \dots, n)$	$(0; b_1, b_2, n, \ldots, n)$	
1 <i>A</i>	$(0; a_1m_1, a_2m_2, a_3m_3, n, \dots, n)$	$(0; b_1, b_2, n, \ldots, n)$	
1 <i>B</i>	$(0; km_1, km_2, n, \ldots, n)$	$(0; b_1, n,, n)$	
2 <i>A</i>	$(0; a_1m_1, a_2m_2, a_3m_3, n, \ldots, n)$	$(0; b_1, n,, n)$	
2 <i>B</i>	$(0; km_1, km_2, n, \dots, n)$	(0; <i>n</i> , , <i>n</i>)	
3 <i>A</i>	$(0; a_1m_1, a_2m_2, a_3m_3, n, \dots, n)$	(0; <i>n</i> , , <i>n</i>)	

Table : Signatures for Γ_A and Γ_N

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

Restrictions on signatures and structure

Non self-normalizing case.

Theorem

If N is not self normalizing in A then N contains a copy of $\mathbb{Z}_n \times \mathbb{Z}_n$ and there are three possibilities given in the table below.

In this table $m = |\Gamma_A / \Gamma_N|$.

$\mathcal{S}(\Gamma_A)$	$\mathcal{S}(\Gamma_N)$	т	C	genus	Group
(2,3,2 <i>n</i>)	(2, <i>n</i> , 2 <i>n</i>)	3	<i>n</i> ≥ 5	$\frac{(n-1)(n-2)}{2}$	$\Sigma_3 imes (\mathbb{Z}_n \ltimes \mathbb{Z}_n)$
(2, 2, 2, n)	(2, 2, <i>n</i> , <i>n</i>)	2	<i>n</i> ≥ 3	$(n-1)^2$	$V_4 \ltimes (\mathbb{Z}_n imes \mathbb{Z}_n)$
(2,4,2 <i>n</i>)	(2,2 <i>n</i> ,2 <i>n</i>)	2	<i>n</i> ≥ 3	$(n-1)^2$	$D_4 \ltimes (\mathbb{Z}_n \ltimes \mathbb{Z}_n)$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Super-elliptic surfaces

Fuchsian group technology

Classification of $C < \overline{N} < A$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Examples and results

Examples and results

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples and results

cyclic *n*-gonal groups from constrained pairs

We think these are the only possibilities.

$\mathcal{S}(\Gamma_A)$	$\mathcal{S}(\Gamma_N)$	$\mathcal{S}(K)$	$ \Gamma_A/\Gamma_N $	C	genus	Group
(2,4,5)	(4,4,5)	(4,4)	6	5	4	Σ ₆
(2,3,7)	(3,3,7)	(3,3)	8	7	3	$PSL_2(7)$

Fuchsian group technology

Classification of C < N < A

Examples and results

cyclic n-gonal groups from tight pairs

- Here are some examples, admittedly calculated by hand.
- Some tight pairs admit only a finite number of n-gonal surfaces, see lines 1 and 2
- The authors are currently working out a uniform method to deal with the family of cases arising from a single tight pair.

• In this table
$$m = |\Gamma_A / \Gamma_N|$$

$\mathcal{S}(\Gamma_A)$	$\mathcal{S}(\Gamma_N)$	т	C	genus	Group
(2,3,4 <i>n</i>)	(2, 2, 3, <i>n</i>)	4	<i>n</i> = 2	2	GL(2,3)
(2,3,3 <i>n</i>)	(3, <i>n</i> , 3 <i>n</i>)	4	<i>n</i> = 4	3	<i>SL</i> (2,3)/ <i>CD</i>
(2,3,2 <i>n</i>)	(2, <i>n</i> , 2 <i>n</i>)	3	<i>n</i> ≥ 5	$\frac{(n-1)(n-2)}{2}$	$\Sigma_3 \ltimes (\mathbb{Z}_n imes \mathbb{Z}_n)$
(2, 2, 2, n)	(2, 2, <i>n</i> , <i>n</i>)	2	<i>n</i> ≥ 3	$(n-1)^2$	$V_4 \ltimes (\mathbb{Z}_n imes \mathbb{Z}_n)$
(2,4,2 <i>n</i>)	(2,2 <i>n</i> ,2 <i>n</i>)	2	<i>n</i> ≥ 3	$(n-1)^2$	$D_4 \ltimes (\mathbb{Z}_n \ltimes \mathbb{Z}_n)$

Cyclic n-g	onal	surfaces
0000000		

Fuchsian group technology

Classification of C < N < A

Examples and results

References

- 1 S. Allen Broughton, Fuchsian Group Pairs I, forthcoming
- 2 S. Allen Broughton, talk at UNED http://www.rosehulman.edu/~brought/Epubs/UNED/UNED.html.
- Brandt, Rolf, Stichtenoth, Henning, Die Automorphismengruppen hyperelliptischer Kurven. Manuscripta Math. 55 (1986), no. 1, 83–92.
- 4 Bujalance, E., Gamboa, J. M., Gromadzki, G. *The full automorphism groups of hyperelliptic Riemann surfaces.* Manuscripta Math. 79 (1993), no. 3-4, 267-282.
- 5 D. Singerman, *Finitely Maximal Fuchsian Groups*, J. London Math. Society(2) 6, (1972),17-32
- 6 Wootton, A. *The Full Automorphism Group of a Cyclic p-gonal Surface*, Journal of Algebra

Super-elliptic surfaces

Fuchsian group technology

Classification of C < N < A

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Examples and results

- Any questions?
- The slides of this talk will be available at http://www.rosehulman.edu/~brought/Epubs/Oslo/Oslo.html