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Contemporary Mathematics

Future directions in automorphisms of surfaces, graphs, and
other related topics

S. Allen Broughton, Jennifer Paulhus, and Aaron Wootton

Abstract. The study of Riemann surfaces and the groups which act on them

is a classical area of research dating back to the latter half of the 19th century.

Research in this field has wide-reaching implications in geometry and topology,
algebra, combinatorics, analysis, and number theory through related topics

such as the study of dessins d’enfants, mapping class groups, and graphs on
surfaces. Today, this is still a rich area of research with many open questions.

In this expository article we pose 78 open problems, contextualize them within

the field, and discuss partial results or progress toward answering the questions,
when relevant.

1. Introduction

As described in the preface, this volume focuses on the interests of a loose in-
ternational collaboration of dozens of researchers. At the heart of the collaboration
is a series of conferences and special sessions which have taken place over the last
two decades, and where over a hundred talks have been presented by more than
fifty different researchers. During this time, some of the senior researchers who laid
the foundations of the field in the 60’s and 70’s have retired from active research,
junior mathematicians who first entered the field at the start of this conference se-
ries have grown to become leaders, and new researchers have joined, and continue
to join, the community. With an eye toward the future of the field, in this article we
explore possible areas of future research, drawing upon both the persistent themes
from the conferences, as well as ideas submitted to us when we surveyed the re-
search community. These areas of research blend geometry and topology, algebra,
combinatorics, analysis, and number theory. This broad intersection with various
areas of mathematics helps to explain the longevity of this field.

The outline of this article is as follows. In Section 2 we provide some prelimi-
nary material in order to help the reader understand many of the problems in the
later sections. Readers who already work in the field may comfortably skip Section
2. The remaining sections focus on open problems and context around those prob-
lems. In Section 3 we consider problems about which groups can act on surfaces
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2 BROUGHTON, PAULHUS, AND WOOTTON

with given genus. In Section 4 we consider parametric families of surfaces and the
variation of the automorphism groups within the family. Of particular interest are
the moduli space, the Teichmüller space and Hurwitz spaces. Hyperelliptic and
superelliptic surfaces have the most tractable equations so that we can ask deeper
questions about these surfaces. This, as well as other questions about curves, is
the focus of Section 5. Section 6 covers dessins d’enfant and other graphs on sur-
faces, and quasiplatonic surfaces, while Section 7 discusses which surfaces support
symmetries, i.e., anti-conformal, involutary isometries. Finally, Section 8 explores
algorithmic and explicit methods. Many of the problems in other sections have
a strong computational component and we make links to those problems in this
section.

There are two caveats. First, though we have tried to include a thorough list of
references, with the sheer scope of the available literature it is possible we missed
some relevant references. Any such omissions are by accident. Second, to the
best of our knowledge, all the posed problems throughout this article remain open.
However, with the fast changing nature of mathematics, and once again with the
extensive literature in the area, there may be progress on some of these problems
that we are not aware of.

2. Preliminaries

In this section we introduce some preliminary material which will help the
reader understand many of the open problems outlined in this article. Readers who
already work in the field may skip this section.

2.1. Conformal group actions on surfaces and their construction. To
understand the problems posed in this paper we need to understand conformal
group actions, the construction of surfaces with actions, and their principal tools
of study. Surfaces with actions may be constructed in a variety of ways such
as by monodromy epimorphisms, surface kernel epimorphisms, defining equations,
and tilings by fundamental domains. The principal tools of study are signatures,
generating vectors, defining equations, and equivalence relations. More detail can
be found in the articles [20] and [25]. We introduce construction and equivalence
of actions in this section. Defining equations and tilings by fundamental domains
are deferred to Sections 3.2 and 6.3, respectively.

Definition 2.1. The finite group G acts conformally on the Riemann surface
S through a monomorphism:

ε : G→ Aut(S)

where Aut(S) denotes the full group of conformal automorphisms of S. The sub-
group ε(G) is called the image subgroup or action image.

Focusing on the action ε (using generating vectors) instead of the image sub-
group ε(G), allows us to consider the group G as the primary object. It also allows
us to construct surfaces with prescribed automorphisms without having to find
defining equations of the surface or worry about computing the full automorphism
group. The subgroup ε(G) ⊆ Aut(S) is determined by any of the actions ε ◦ ω for
ω ∈ Aut(G).
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2.1.1. Monodromy epimorphisms. The quotient surface S/G = T is a closed
Riemann surface of genus τ with a unique conformal structure so that

πG : S → S/G = T

is holomorphic.
The quotient map πG : S → T is ramified uniformly over a finite set BG =

{Q1, . . . , Qt} such that πG is an unramified covering exactly over T ◦ = T − BG.
We say that S lies over (T,BG).

Let S◦ = π−1G (T ◦) so that πG : S◦ → T ◦ is an unramified covering space whose
group of deck transformations, Gal(S◦/T ◦) = Gal(S/T ), equals ε(G) restricted to
S◦. This covering determines a normal subgroup ΠG = π1(S◦) C π1(T ◦) and an
exact sequence ΠG ↪→ π1(T ◦) � ε(G) by mapping loops to deck transformations.

Combine the last map with ε(G)
ε−1

→ G to get an exact sequence

(2.1) Πξ = ΠG ↪→ π1(T ◦)
ξ
� G,

using the notation Πξ if we need to distinguish different maps with the same T ◦.
We call ξ a (regular) monodromy epimorphism. We have left out base points to
simplify the exposition, and so ξ is ambiguous up to inner automorphisms, but this
is inconsequential.

Remark 2.2. The map from epimorphisms ξ to actions ε is given by

(2.2) ξ → ε = ξ̃−1,

where the tilde is the homomorphism π1(T ◦)→ π1(T ◦)/ΠG → Aut(S), defined by
lifting paths to deck transformations.

The fundamental group π1(T ◦) has the following presentation:

generators : {αi, βi, γj , 1 ≤ i ≤ τ, 1 ≤ j ≤ t},(2.3)

relation :

τ∏
i=1

[αi, βi]

t∏
j=1

γj = 1.(2.4)

The generating set

(2.5) G = (α1, . . . , ατ , β1, . . . , βτ , γ1, . . . , γt)

is not unique, but typically it is fixed for a discussion of all surfaces lying over
(T,BG).

Define

(2.6) ai = ξ(αi), bi = ξ(βi), cj = ξ(γj).

Then the (2τ + t)-tuple

(2.7) V = (a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct)

is called a generating vector for the action. We observe that

(2.8) G = 〈a1, . . . , aτ , b1, . . . , bτ , c1, . . . , ct〉 .

Defining

(2.9) nj = o(cj),
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we also have

(2.10)

τ∏
i=1

[ai, bi]

t∏
j=1

cj = cn1
1 = · · · = cntt = 1.

The (t+1)-tuple (τ ;n1, . . . , nt) is called the signature of the action (more precisely,
of the generating vector). For n-gonal actions, i.e., S/G is a sphere so that τ = 0,
we write (n1, . . . , nt). The number τ is called the orbit genus, namely the genus
of T , and the nj are called the periods of the action. The possible signatures are
constrained by the Riemann Hurwitz equation

(2.11)
2g − 2

|G|
= 2τ − 2 +

t∑
j=1

(
1− 1

nj

)
.

Now, given a generating vector V satisfying equations 2.8 - 2.10 above, a regular
monodromy epimorphism, as in equation 2.1, is determined by the equations 2.6.
The subgroup Πξ = ker(ξ) may be used to construct a covering space S◦ of T ◦,
whose compactification S is a Riemann surface with G-action, quotient T = S/G,
and the given generating vector and signature. The genus of S is determined by
the Riemann-Hurwitz equation 2.11. Thus, given the information (T,BG) and V, a
monodromy epimorphism may be constructed. We summarize the correspondence:

(2.12) ε : G → Aut(S) ←→ Πξ ↪→ π1(T ◦)
ξ
� G ←→ (T,BG) and V.

2.1.2. Surface kernel epimorphisms. Monodromy epimorphisms allow us to con-
struct actions using topological methods. To put geometrical structures on the
surface we use uniformizing Fuchsian groups and surface-kernel epimorphisms, a
homomorphic version of a monodromy epimorphism.

Consider any Fuchsian group Γ ⊂ PSL(2,R) with signature (τ ;n1, . . . , nt). The
group Γ has a presentation similar to that for π1(T ◦); the generators of Γ are given
by 2.3, satisfying the relation 2.4, as well as the additional relations

γ
nj
j = 1, j = 1, . . . , t.

Given a generating vector V as in equation 2.7, we may define a map η : Γ → G
using the formulas similar to those for ξ in equation 2.6. The kernel of η is a
torsion free Fuchsian group, isomorphic to ΠG; we denote it by Πη. We get an
exact sequence

Πη ↪→ Γ
η
� G.

We set S = H/Πη and the action of G is given by

η → ε = η−1,

where the overbar denotes the natural quotient action of Γ/Πη on H/Πη.
Starting with a quotient surface pair (T,BG) and a generating vector V with

signature (τ ;n1, . . . , nt), a Fuchsian group Γ may be constructed such that T =
H/Γ and π : H → H/Γ is branched over BG. The group Γ and the map π are
uniquely determined up to a conjugating element in PSL(2,R). Then, using V to
get η : Γ→ G, we obtain the correspondence below, analogous to 2.12:

(2.13) ε : G → Aut(S) ←→ Πη ↪→ Γ
η
� G ←→ (T,BG) and V.
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Remark 2.3. The correspondence ξ ↔ η and the resulting relation between
2.12 and 2.13 is induced by a surjective homomorphism π1(T ◦)→ Γ. In turn, this
homomorphism maps the generating set G (equation 2.5) to a generating set for
Γ. We trust that using the same notation for both generating sets will not lead
to confusion. Using this identification, generating vectors may also be constructed
from surface kernel epimorphisms using equations analogous to 2.6 and 2.7. In this
case o(γj) = o(cj) so that Πη is torsion free.

The pair (T,BG) and V determine the same surface and action in both asso-
ciations 2.12 and 2.13, as long as G has the interpretation above. Thus (T,BG)
and V and may be used to specify surfaces and actions, which we call the quotient
viewpoint. The value of this viewpoint is that (T,BG) captures “continuous mod-
uli”, whilst the vectors V are finite in number and for each (T,BG) there are only
finitely many surfaces S lying over (T,BG). In addition, the generating vectors V
can be enumerated, computed directly if needed, and analyzed using finite group
theoretic methods.

2.2. Equivalence of actions. Later in Section 3 we will consider group ac-
tions under various types of equivalence. For a detailed discussion of equivalence
relations on actions, see [20] in this proceedings. We will focus on four types of
equivalences.

Definition 2.4. Two actions ε1, ε2 of G, on possibly different surfaces S1, S2 of
the same genus, are topologically equivalent if there is an intertwining, orientation
preserving homeomorphism h : S1 → S2 and an automorphism ω ∈ Aut(G) such
that

(2.14) ε2(a) = hε1(ω(a))h−1,∀a ∈ G.

Definition 2.5. In the definition above, if h is a conformal map, then we say
that the actions are conformally equivalent.

Geometrically, the mapping part of the equivalence equation 2.14 translates
the commutative diagram of branched covers:

S1
h−−−−→ S2yπε1 yπε2

T1
h−−−−→ T2

where the vertical arrow are different group action quotients by G and h is the
induced map on quotients. The diagram allows us to see that each equivalence
class of actions can be viewed as a set (which is finite) of surfaces which are regular
branched covers of a representative (T,BG) of an equivalence class of quotient pairs.

Topological equivalence classes can be interpreted as the orbits of a topological
action on any one of G-actions, monodromy epimorphisms, surface kernel epimor-
phisms, or generating vectors. Starting with G-actions on surfaces we write the
action as

ε2 = Adh ◦ ε1 ◦ ω−1,
where Adh(k) = h ◦ k ◦ h−1. This transfers to monodromies:

(2.15) ξ2 = ω ◦ ξ1 ◦ (h∗)
−1,
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according to equation 2.2. For a discussion of the action on surface-kernel epimor-
phisms see Section 8.2. The action on generating vectors is obtained by combining
equations 2.15 and 2.6. This action on generating vectors is particularly useful
for computer determination of topological equivalence classes, especially the braid
operations described in Example 2.8 below.

Remark 2.6. The condition 2.15 is slightly different than the one given in
equation 2.14. However, the formula in 2.14 is simpler to state and yields the same
equivalence relation.

Remark 2.7. Two actions related by ε2 = ε1 ◦ ω−1 and hence ξ2 = ω ◦ ξ1,
determine the same surface S with Aut(G) equivalent actions. Thus we really only
need to consider the action of the various (h∗)

−1 on the Aut(G) classes of generating
vectors to enumerate and analyze the surfaces lying over (T,BG), with the given
signature.

A major interest for the action of the various (h∗)
−1 are the so-called braid

operations described in the next example.

Example 2.8. For n-gonal actions the Aut(G)-action (Remark 2.7) along with
the basic braid maps (h∗)

−1, described following follows, generate the topological
action. Consider a homeomorphism which switches exactly two of the branch points
Qj ↔ Qj+1, even though this may alter the signature. Among the possibilities, a

homeomorphism h may be found such that

(h∗)
−1 : γj → γjγj+1γ

−1
j , γj+1 → γj ,

and all other generators fixed. The action on generating vectors is

cj → cjcj+1c
−1
j , cj+1 → cj ,

and all other elements fixed. We shall call any composition chain of the above braid
maps a braid operation. We think of them as operators on the spaces of generating
sets G and generating vectors V. The name derives from the action of the braid
group, which we do not describe here.

Definition 2.9. Suppose that two actions of G, on possibly different surfaces
S1, S2 of the same genus, have the same quotient pair (T,BG), and are defined
by the monodromies ξ1, ξ2, with corresponding generating vectors V1, V2. Then
the surfaces are called braid equivalent if V1 can be transformed to V2 by braid
operations. The two surfaces are called braid companions.

Signatures are a crude invariant of actions. The G-signature, which we define
next, defines an intermediate equivalence between the equivalence defined by signa-
tures and topological equivalence. Assuming that we have a generating vector as in
equation 2.7, let Cj denote the conjugacy class cGj and call the t-tuple (C1, . . . , Ct)
the G-signature or ramification type of the action. Just as the order of the periods
does not matter for a signature, it turns out that the order of the Cj does not
matter for the ramification type. For instance the braid operations simply permute
the Cj .

The G-signature can also be directly computed in the image group ε(G). For
each ε(g) ∈ ε(G), fixing a given P ∈ S, let ε(P, g) denote the rotation constant of
ε(g) at P . The rotation constant ε(P, g) is the multiplication on the cotangent space,
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T ∗P (S), induced by the transformation ε(g−1), which fixes P . We let C ′j denote the
subset in ε(G) satisfying ε(P, g) = exp(−2πi/o(g)) for any P lying over Qj . It can
be easily shown that C ′j = ε(Cj). Therefore, we also call the t-tuple (C ′1, . . . , C

′
t)

the ramification type. This interpretation is useful in the case of Hurwitz spaces
where there need not be a specific action of G. Also, in the positive characteristic
case with tame actions, the ramification type can be defined even though defining
generating vectors is problematic.

Definition 2.10. Two actions ε1, ε2 of G, on possibly different surfaces S1, S2

of the same genus, are called equivalent via G-signatures if and only if they have
the same G-signatures up to permutation.

3. Automorphism groups of Riemann surfaces

The study of automorphism groups of Riemann surfaces is classical with major
results dating back to Klein [54] Wiman [87], and Hurwitz [46], [47], [48]. It
is also a wide-reaching area with strong links to topology, number theory and
combinatorics, spanning topics like mapping class groups, Teichmüller spaces, and
the Grothendieck-Teichmüller theory of dessins d’enfant.

Early methods for finding automorphism groups were ad-hoc, and focused on
the geometry of the surfaces themselves. Later in the 1960’s and 1970’s, a more
systematic study began, using uniformizing Fuchsian groups, see [61], [62]. This
systematic approach laid the foundation for wide-ranging results such as classifica-
tion of certain families of group actions, see for example [36], [39], [40], and [63],
and analysis of Fuchsian subgroup containment and its relation to automorphism
groups, see [79], [80]. More recently, significant advances in technology and the
resolution of major mathematical results such as the classification of finite simple
groups and the Nielsen realization problem, have provided new tools to tackle once
insurmountable problems, and opened up new, fertile areas of study in the field.
These advances have led to results such as the complete classification of all group
actions on surfaces of low genus, see [15] and [13], they have allowed for more de-
tailed analysis of the actions of large, complicated groups, see for example [86] and
have provided insight into the structure of objects such as mapping class groups
and moduli space, see for example [2] and [12].

Due to its rich history, its links to other areas, and the diversity of approaches
to solving problems, there are many interesting open problems in the study of
automorphism groups of Riemann surfaces. Rather than provide a long list of such
questions, we shall break them up into several loose categories providing a little
background material for each as well as a sampling of some of the open problems
available. We refer the reader to [25] in this volume to learn more about the
background and technical details behind many of these problems.

3.1. Classification results. The most traditional and direct problems are
those of classification: that is, can we determine all mathematical objects that
satisfy some given property. Classification results related to automorphism groups
of Riemann surfaces date back to the very beginnings of work in this area and
continue to be prevalent in the literature today. Many open problems still exist
since, even though the technology has significantly improved over the years, many
classification results still require ad-hoc style arguments to complete.
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The first two problems are completely classical, but remain as big underlying
problems.

Problem 1. Fix a group G (or family of groups) and let ∼ be some equivalence
of group actions on a surface such as those described in Section 2.2. Determine all
surfaces on which G, or a member of the family, can act up to the equivalence ∼.

Problem 2. Fix a surface S or family of surfaces S and let ∼ be some equiv-
alence of group actions on a surface. Determine all groups which act on S, or a
member of S, up to the equivalence ∼.

Each of these “big” problems can be broken down to a much more granular
level where there are a wealth of related open problems. For example, the action of
an automorphism group on a surface S can be coarsely classified up to signature.
This classification in turn is equivalent to finding subgroups of Fuchsian groups, so
many open problems involve studying Fuchsian groups, their subgroups and their
over groups. Such examples include the following.

Problem 3. For a given Fuchsian group Γ, find the number of subgroups of a
given index. This can be refined further by imposing additional properties on the
subgroup such as the corresponding orbit genus or whether or not the subgroup is
normal.

Further related problems focus on special classes of Fuchsian groups and their
quotients.

Problem 4. Given a Fuchsian group Γ, determine whether or not it is arith-
metic, meaning commensurable to a group derived from a quaternion algebra. This
can be refined further by imposing additional properties on Γ such as restricting to
torsion free groups, or restricting the number of generators.

Problem 5. For a given Fuchsian triangle group, or family of triangle groups,
determine all possible quotients.

Finally, rather than focusing on more granular classification results, there is
still significant benefit in determining general tools and techniques, either com-
putationally or theoretically, which can be used to make further progress in the
area.

Problem 6. Determine computational or theoretical methods to aide in the
types of classification problems previously mentioned.

3.2. Defining equations for surfaces and automorphisms. Another col-
lection of classical problems related to automorphisms of Riemann surfaces centers
around defining equations for surfaces, and their automorphisms. Recall that a
compact Riemann surface S is a smooth, irreducible, projective curve, i.e., S is the
set of common zeros in Pn(C) of a set of homogeneous polynomials, f1, . . . , fs, of
n+ 1 homogenous variables X0, . . . , Xn:

S = Sf1,...,fs = {X ∈ Pn(C) : f1(X) = · · · = fs(X) = 0}

which is smooth and irreducible. A typical scenario is to start with a single equation
defining an affine plane curve

Sf =
{

(x, y) ∈ C2 : f(x, y) = 0
}
.
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To get a Riemann surface S we need to take the projective completion of Sf in
P2(C), repair the singularities through normalization, and check for irreduciblity.
The resulting curve may no longer lie in P2(C). The function f is called a defining
equation.

There are two common types of questions centered around defining equations.
The first of these focus on finding defining equations for some object, such as a
compact Riemann surface, or its automorphisms, given some other information
such as a generating vector for an automorphism group. The second starts with
defining equations for some object, such as a surface, and instead asks to derive
some other property, such as its full automorphism group. Below are two such
problems, though many others exist.

Problem 7. Given a surface S = Sf (or S = Sf1,...,fs), determine explicit
equations for the elements of the automorphism group Aut(S).

Problem 8. For a surface S with a G-action constructed via a quotient sur-
face and set of branch points (T,BG), and a generating vector, V, find a defining
equation (or equations) for S and an explicit description of the G-action.

Being classical in nature, partial results and related problems appear widely in
the literature, see for example [69], [76], [77],[83]. The most tractable of surfaces
with defining equations are cyclic n-gonal surfaces with equation:

yn = f(x),

where f is a rational function. The map (x, y) → (x, uy), u an nth root of unity,
defines a cyclic action on S with genus zero quotient, see [19] and [26] for more
details. Such curves have been extensively studied, including determining defining
equations given full automorphism group in the special case where n = p, a prime,
see [90] and [91].

3.3. The genus spectrum of a group. For a given group G, we define its
genus spectrum to be the integer sequence IG of genera of surfaces on which G acts.
In [55] it is shown that there is a sequence of integers IG which depend only on the
structure of the Sylow-subgroups of G such that IG ⊂ IG and the set IG − IG is
finite. The smallest value of IG is called the strong symmetric genus of G (or the
symmetric genus if we allow orientation reversing automorphisms), and the smallest
integer n ∈ IG ∩ IG so that for i ≥ n the sets IG and IG are identical is called
the minimum stable genus of G. Many open problems exist in describing the genus
spectrum of a group.

Problem 9. For a given group G, determine its genus spectrum.

Problem 10. For a given group G, determine its strong symmetric genus, its
symmetric genus or its minimum stable genus.

We can also reverse these problems instead focusing on genus. Specifically:

Problem 11. Given a sequence of positive integers, are there groups, or fam-
ilies of groups, that act on surfaces of each genera in this sequence?

Problem 12. For a given positive integer n, what groups have n as their strong
symmetric genus, symmetric genus or minimum stable genus?
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3.4. Relationship with subgroups of mapping class groups. Due to
the resolution of the Nielsen realization problem by Kerckhoff, see [53], every finite
subgroup of the mapping class group MCGg is isomorphic to the image of a group
of conformal automorphisms by sending an automorphism to its homotopy class.
Moreover, two group actions are topologically equivalent if and only if the corre-
sponding subgroups in MCGg are conjugate. Thus the study of automorphisms of
Riemann surfaces up to topological equivalence is the same as the study of conju-
gacy classes of finite subgroups of the mapping class group (see, e.g., [14] and [40]).
This equivalency yields a number of interesting open problems.

One direction of study is to translate what is known about automorphism
groups into information about subgroups of MCGg. For example, the following,
which is equivalent to Problem 1 in the case where the equivalence ∼ is topological
equivalence:

Problem 13. For a given finite group G, enumerate the number of conjugacy
classes of subgroups of MCGg isomorphic to G.

Outside of a small number of examples, there has been little progress on this
problem, and so the following, which is a special case of Problem 6, would be
extremely useful.

Problem 14. Determine techniques, either computational or theoretical, to
enumerate conjugacy classes of finite subgroups of MCGg.

In the theme of Problem 2.19 from [34], we could ask a number of questions
regarding subgroups of MCGg with specific properties, such as:

Problem 15. For a fixed g, can we determine each group G such that G <
MCGg is unique up to conjugacy (or equivalently, can we determine the G-actions
on a surface S of genus g that are unique up to topological equivalence)?

Problem 16. Can we find which groups, or families of groups, are subgroups
of MCGg for all g?

Study of the mapping class groupMCGg and its finite subgroups is a very active
area independent of its link to automorphism groups of surfaces. This motivates
a second direction of study translating information we know about subgroups of
MCGg into information about automorphism groups. Such open problems include
the following.

Problem 17. For a set of generators of MCGg, each of finite order (such
as those given in [12]), describe the corresponding group action of each generator
on a surface of genus g. Further, what can we conclude about these actions? For
example, what does it tell us about the corresponding points in the branch locus of
moduli space of genus g?

3.5. Full automorphism groups and maximal group orders. The Hur-
witz bound derived in [47] shows that for a given genus g, the largest order of a
finite group of orientation preserving automorphisms is 84(g−1), and it was shown
in [60] that this bound is attained for infinitely many g. Moreover, it was shown
independently in both [1] and [64] that for any g, there always exists a group G
of automorphisms of order 8(g + 1) that acts on a surface S of genus g, and for
infinitely many g this is the largest possible order of a finite automorphism group.



FUTURE DIRECTIONS IN AUTOMORPHISMS 11

Taken together, these two results imply that the maximal order of a group of auto-
morphisms on a surface of genus g lies between 8(g+1) and 84(g−1) with these two
extremes being attained infinitely often. These observations motivate the following
problems.

Problem 18. For a given genus g, what is the largest possible order of a finite
group of automorphisms on a surface of genus g?

Problem 19. For a given positive integer n what is the sequence of integers
for which n is the maximum order of a group of automorphisms on a surface of
each genus in this sequence?

Though there has been significant progress in maximal group order problems
such as those outlined above, see for example [4], a complete answer remains elusive.
A closely related problem, which also is connected to Problems 1 and 2, is that of
the maximality of G as a group of automorphisms of a surface S. For example, in
[28] and [27], and independently in [75], the problem of when a conformal action
always extends to some larger group of automorphisms is considered, and in [73] the
problem of when a cyclic group of prime order extends topologically is considered.
Though previous work does provide explicit results in certain special cases, the
more general problem still exists.

Problem 20. For a given automorphism group G, or family of groups, acting
on a surface S up to some equivalence ∼, can we determine conditions for when G,
or a member of the family, acts as a full finite group of automorphisms of S?

3.6. Signature realization. When considering the classification of group ac-
tions up to signature, Riemann’s existence theorem provides two conditions which
need to be checked to determine whether or not a group acts on a surface with a
given signature. The first one, satisfaction of the Riemann-Hurwitz formula 2.11, is
a simple arithmetic condition which is trivial to check given a specific G, provided
we know the orders of the elements of G. Signatures which satisfy this arithmetic
condition are called potential signatures and we denote the set of all potential sig-
natures for G by P. The second condition, the existence of a generating vector,
or surface kernel epimorphism, is much more computationally difficult and where
much current research lies. Signatures which satisfy the second condition (and
hence necessarily the first condition, see [31]) are called actual signatures for G and
we use the analogous notation A for the set of actual signatures of G. Signatures
in the set P − A are called non-signatures for G. Along the same lines as the big
classification problems, we have the following:

Problem 21. For a given finite group G, can we determine the set P −A, the
set of all non-signatures?

For example, in [31] necessary and sufficient conditions are given for when the
set of non-signatures is finite with a consequence being that all non-abelian simple
groups exhibit this property.

For an arbitrary finite group G, the sets P and A seem to be quite complicated,
so an alternate avenue of study is to instead analyze the sets Pg and Ag which are
defined to be the subsets of P and A respectively that satisfy the Riemann-Hurwitz
formula for given genus g. Restricting to these sets, the problem becomes:

Problem 22. For a given finite group G or family of finite groups, can we
determine the set Pg −Ag?
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In [10], limg→∞ |Pg|/|Ag| = 1, so asymptotically speaking, there are very few
potential signatures which are not also actual signatures once the genus gets large
enough. Moreover, in [11] in this volume these differences are explicitly described
for some special classes of groups, and based on this work, there seems to be a
tremendous amount of stability in these sets as the genus g grows. Therefore, a
related but possibly more tractable problem is the following:

Problem 23. For a given finite group G or family of groups, can we describe
the set Pg −Ag as g →∞?

4. Families of Riemann surfaces and their moduli

Two surfaces may have similar groups of automorphisms but not be conformally
equivalent. Mimicking the dichotomy in Problems 1 and 2 we are led to two avenues
of discussion regarding collections of surfaces with similar automorphism groups.
First, fixing the genus, describe the variation in the automorphism group among all
possible surfaces of that genus. Second, fixing the group G or a family of groups,
describe the collections of surfaces with G as a group of automorphisms. There are
three types of spaces that help us understand families of Riemann surfaces with
automorphisms: Hurwitz spaces, the moduli space, and Teichmüller space.

4.1. Hurwitz spaces. Let us first consider Hurwitz spaces. While there are
many definitions of Hurwitz spaces, we pick the following ones. Fix a group G and
a positive integer t and let H(G, t) be the set of conformal equivalence classes of
pairs (S, f) such that:

(1) S is a surface of genus g,
(2) f : S → T = P1(C) is regular branched covering with Gal(S/T ) w G, and
(3) f is branched over t distinct points.
(4) (S1, f1) and (S2, f2) are equivalent if and only if f2 = f1 ◦ h for some

isomorphism h : S2 → S1.

We can replace the equivalence relation in (4) by

(S1, f1) ∼ (S2, f2)⇔ α ◦ f2 = f1 ◦ h

for some linear fractional transformation α, and h as in (4), to construct a reduced
Hurwitz space Hred(G, t). There is a fiber bundle map H(G, t)→ Hred(G, t) with
fiber PSL(2,C). The reduced space captures all the information of H(G, t).

Let B =
(
P1(C)

)t−∆, where ∆ is the multi-diagonal of
(
P1(C)

)t
consisting of

tuples with at least two equal entries. The space B consists of ordered t-tuples of
distinct points of elements of P1(C). Using covering space techniques, Hred(G, t)
can be given a complex manifold structure as a possibly disconnected covering space

(4.1) Hred(G, t)→ B,

and by composition with H(G, t)→ Hred(G, t) a fiber bundle

(4.2) H(G, t)→ B.

The complex dimensions of H(G, t) and Hred(G, t) are t and t− 3, respectively. A
cover of the space Hred(G, t) maps in a finite-to-one fashion into the moduli space,
however H(G, t) can be easier to work with. Here we present some problems on
Hurwitz spaces.
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Problem 24. Determine the components of H(G, t) and relate them to braid
classes of Aut(G) classes of generating vectors. There is a similar question for
Hred(G, t). See Problem 78.

Problem 25. Describe the topology of H(G, t) and Hred(G, t) as completely as
possible, using the maps 4.1 and 4.2.

Problem 26. Describe the map from (the cover of) Hred(G, t) to its image in
moduli space as completely as possible.

The paper [23] in this volume uses the spaces Hred(G, 4) for determining one-
dimensional equisymmetric strata in moduli space.

Problem 27. For cyclic and abelian groups, H(G, t) and Hred(G, t) have nu-
merous components. For more complex groups, find Hred(G, t) and Hred(G, t) with
large numbers of components.

Problem 28. Do the different components of H(G, t) have similar topology?
Answer the same question for Hred(G, t).

4.2. Moduli and Teichmüller spaces. As a set, the moduli spaceMg, is the
set of closed Riemann surfaces of genus g, quotiented by the relation of conformal
(bi-holomorphic) equivalence. The spaceMg has the structure of a quasi-projective,
complex variety of complex dimension 3g − 3, with a complicated singularity set,
informally called the branch locus (at least for g ≥ 4). The moduli space may
be compactified to a complex projective variety Mg by adding a boundary ∂Mg

consisting of stable nodal curves which are limits of surfaces of genus g.
A marked Riemann surface of genus g is a pair (S, f) where S is a Riemann

surface and f : S0 → S is an orientation preserving homeomorphism (up to isotopy)
from a reference surface S0. As a set, the Teichmüller space, Tg, is the set of marked
Riemann surfaces of genus g, quotiented by the relation of conformal equivalence.
The space Tg is may be realized as an open set in C3g−3, diffeomorphic to an open
ball in R6g−6.

The mapping class group MCGg acts on Tg by changing the marking: (S, f)→
(S, f◦φ−1) for φ ∈MCGg. This action is holomorphic and discontinuous, so there is
complex orbifold quotient, Tg/MCGg, that is analytically equivalent to the moduli
space Mg. The map Tg →Mg given by (f, S)→ S is a realization of the quotient
map. The stabilizers of MCGg action are the conformal automorphism groups:{

φ ∈MCGg : (S, f) v (S, f ◦ φ−1)
}
' Aut(S).

The branch locus Bg ⊆Mg is defined as the image, under Tg →Mg of the points
with non-trivial stabilizers, i.e., the set of surfaces with non-trivial automorphisms
(at least for g ≥ 3). ( Various subvarieties of the branch locus are associated to
conjugacy classes of finite subgroups of the mapping class group MCGg. Given f :
S0 → S, a finite subgroup of MCGg is determined by pulling back Aut(S) through
f . As we vary φ ∈ MCGg, a conjugacy class Σ(S), of finite subgroups, called the
symmetry type of S, is determined by pullback through f ◦ φ−1. Two surfaces S1

and S2 are equisymmetric if they have the same symmetry type: Σ(S1) = Σ(S2).
Given a finite subgroup F < MCGg, then its conjugacy class (F ) determines the
(F )-equisymmetric stratum of Mg:

◦
M(F )

g = {S ∈Mg : Σ(S) = (F )} .
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A related set, “stratum closure”, is the image in Mg of the fixed point set of F on
Tg:

M(F )
g = {S ∈Mg : (F ) ≤ Σ(S)} .

If
◦
M(F )

g is non-empty then M(F )
g is its closure. The complex dimension of M(F )

g

is called the Teichmüller dimension of F .
For more background onMg, Tg, and Bg see [40], [14] and [18]. The following

problems are posed for moduli and Teichmüller space.

Problem 29. For low genus, determine all the equisymmetric strata and deter-
mine which strata lie in the closure of a given stratum. Problem 2 with topological
equivalence is relevant.

Problem 30. Lift the branch locus to Teichmüller space: B̃g ⊂ Tg. This set
is composed of a locally finite system of fixed point subsets for all conjugacy classes
of finite subgroups of the mapping class group. Each such fixed point subset is
isomorphic to the Teichmüller space of a Fuchsian group. Describe as completely

as possible the local and global properties of B̃g.

Problem 31. For n-gonal surfaces S with G-action, describe the corresponding
equisymmetric stratum S and its closure S in Mg as completely as possible. This
includes solving Problem 29. Problem 26 should also be used in solving this problem.

Problem 32. Let S be the equisymmetric stratum for an n-gonal G-action.
Describe the limiting surfaces in S ∩∂Mg and the G-action upon them. One might
need to solve Problem 33.

For our next problem consider the following family of cyclic n-gonal curves.

Sλ : yn = xn1(x− 1)n2(x+ 1)n3(x− λ)n4 ,

where Sλ is projectively completed and desingularized. Assume that the exponents
satisfy relations given in [19] to force the Sλ to be irreducible and unramified at
∞. The canonical map Sλ → T : (x, y) → x is branched over 0,−1, 1, and λ and,
for all but finitely many λ, the surfaces are equisymmetric. However, in the moduli
space as λ approaches 0,−1, 1 the limiting surface in ∂Mg may not be S0, S−1 or
S1.

Problem 33. Let Sλ be a holomorphic family of surfaces in a neighborhood
D ⊂ C of λ0. Assume that the surfaces Sλ, λ ∈ D − λ0 have a holomorphically
varying G-action. Assume that Sλ goes to the boundary of moduli space as λ→ λ0.
Per the Stable Reduction Theorem, determine a limiting stable nodal surface Sλ0 ,
determine its structure, and the action of G upon it.

5. Curves

As compact Riemann surfaces are in natural bijection with smooth, irreducible
projective curves, studying Riemann surfaces provides insight into questions about
curves.

5.1. Extending results from hyperelliptic and superelliptic curves.
Recall that a curve S is hyperelliptic if it admits a cyclic 2-gonal automorphism
which is necessarily central in Aut(S). Hyperelliptic curves, as natural extensions
of elliptic curves, have been deeply studied and are generally quite well understood.
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A further generalization of elliptic curves is the family of superelliptic curves. One
common definition for a curve S to be superelliptic (and there is some disagreement
in the literature as to the exact definition) is if it admits a cyclic n-gonal group
of automorphisms which is central in Aut(S). As seen in Section 3.2, such curves
are defined by an affine model yn = f(x) where n ≥ 2 and f(x) is a polynomial
of degree at least 3. Note that hyperelliptic curves comprise the special case when
n = 2. Malmendier and Shaska [65] give a thorough survey of the state of research
into superelliptic curves, as well as provide 12 open problems which we will not
reproduce here.

A natural next area to explore is other families of curves which are general-
izations of superelliptic curves, and ask which properties that superelliptic curves
exhibit extend to these other families. The most closely related curves are the cyclic
n-gonal curves.

Problem 34. Which results about superelliptic curves generalize to cyclic n-
gonal curves for which the group generated by the n-gonal morphism is normal?
Which results generalize to all cyclic n-gonal curves?

There is a wide amount of research in the literature on cyclic n-gonal curves,
though a starting point for this problem would be the papers [26] and [56]. The
next natural family of surfaces to consider are abelian covers of the projective line.

Problem 35. Which results about superelliptic curves generalize to elementary
abelian covers of the projective line? Which results generalize to all abelian covers?

One way to develop abelian covers is to build them up via a fiber product
construction which would be a good place to start exploring Problem 35. See [43]
in this proceedings for more information, and some general results on fiber products
of connected Riemann surfaces.

Other problems of interest in the study of superelliptic curves revolve around
defining equations and the fields over which such equations are defined. Formally,
a field of definition of a curve S is a field K ⊆ Q so that S may be defined as the
zero locus of polynomials in K[x]. The intersection of all the fields of definition of
a curve is called the field of moduli of the curve. Clearly the field of moduli is a
subfield of any field of definition, but the moduli field may or may not be a field of
definition itself. In general, determining if the field of moduli is a field of definition
is difficult, yet also a question of significant interest. This motivates the following
problems.

Problem 36. In a similar vein to Problem 8, for a given curve, can we find
defining equations, and if so, what are the minimal defining equations (those of
minimal discriminant)?

Problem 37. For a given curve S, what are its fields of definition, and what
is its field of moduli? Is the field of moduli also a field of definition?

There are well-known examples of curves where the field of moduli is not a field
of definition, see, for example [42], [45], and [57]. On the other hand, an affirmative
answer to this question is known for two different families of curves. First, if S has a
trivial automorphism group, then by Weil’s Galois descent theorem [85] it is always
possible to write defining equations for S over the field of moduli. Second, from
[88] and [89], the field of moduli is a field of definition for quasiplatonic curves (see
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Section 6.2 for more details on quasiplatonic curves). Since quasiplatonic curves
often have large automorphism groups, it follows that Problem 37, in some respects,
holds true for two extremes: curves with no automorphisms, and curves with a large
number of automorphisms. Thus, a meaningful analysis of this problem requires
looking at curves which admit non-trivial automorphisms, but not a significant
number of them.

Since their automorphism groups are well understood, there has been signif-
icant progress in answering Problem 37 in the case of superelliptic curves. For
example, in [7] it is shown that every superelliptic curve is defined over at most
a quadratic extension of its field of moduli, and in [44] the authors determine for
which superelliptic curves with extra automorphisms the field of moduli is a field
of definition. This leads to the question of whether similar techniques used for the
family of superelliptic curves can be modified or adapted to other families of curves.
The most obvious case would be in the following problem.

Problem 38. For each member of the family of cyclic n-gonal surfaces, can
we determine its field of moduli and is its field of moduli the same as a field of
definition?

As mentioned above, fiber products provide a way to build up abelian covers.
We can ask the same questions of these constructions.

Problem 39. For a fiber product what is the field of moduli? Is it the same as
a field of definition? What can the fiber product construction tell us about fields of
definition and the field of moduli for abelian covers of the projective line?

5.2. Jacobian varieties. The natural map from a curve to its Jacobian va-
riety connects the automorphism group of the curve to endomorphisms of the Ja-
cobian variety which leads to many interesting questions. For example, the auto-
morphism group of a curve may be used to decompose its Jacobian variety (see for
example [30] or [71]). Ekedahl and Serre [33] posed several questions about curves
with completely decomposable Jacobians, i.e., those Jacobians which are isogenous
to a product of elliptic curves. They ask

Problem 40. Are there curves of arbitrarily large genus with completely decom-
posable Jacobians? Is there a curve of every genus with a completely decomposable
Jacobian?

There has been some limited work done to try to answer this question [70], [92],
[72]. There are also many interesting questions about the factors in the decomposi-
tions. Of particular interest is whether the factors of a given Jacobian variety have
complex multiplication. For elliptic curves, this would mean the endomorphism
ring of the curve is larger than Z. A dimension d abelian variety A is said to be of
CM-type if there is a commutative subring of dimension 2d over Q in End(A)⊗Q.
The special case of elliptic curves corresponds in both definitions.

Problem 41. Given a curve S with a decomposable Jacobian variety, which
factors of the Jacobian have complex multiplication and, when they do, what are
the CM-fields?

We also note that Moonen and Oort [68] study Jacobian varieties of curves of
genus g via the map from the moduli space Mg to the moduli space of principally
polarized abelian varieties, Ag. Their paper includes a series of open questions
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about Jacobian varieties, and the corresponding Torelli locus, which is the closure
(under the Zariski topology) of the image of the injective map from Mg to Ag.

6. Graphs, dessins d’enfant and quasiplatonic surfaces

Dating back centuries to the study of the Platonic solids, graphs and surfaces
have been analyzed synonymously with insight from each providing valuable infor-
mation about the other. Over the last few decades, the close link between surfaces
and their graphs have resulted in the development of discrete versions of the clas-
sical theory of Riemann surfaces with graphs playing the role of Riemann surfaces
and morphisms between graphs playing the role of branched coverings. Within
these discrete versions, many of the fundamental ideas, such as the genus or Ja-
cobian of a surface, and many of the major results, such as the Riemann-Hurwitz
formula and Riemann-Roch, naturally adapt to their discrete counterparts, see for
example [66] in this volume. This translation between the two fields naturally gives
rise to new directions of study in both fields. Specifically, many open problems in
Riemann surfaces translate into problems about the corresponding graphs and vice
versa. In this section, we outline some of the open problems in the theory of graphs
as related to Riemann surfaces. Since much of the focus on graphs in our series of
special sessions is on the theory of dessins d’enfants and quasiplatonic surfaces, we
primarily emphasize these topics in our discussion. However, we do provide some
further directions of study at the end of this section.

6.1. Dessins d’enfants. We start with a brief summary of the main defini-
tions, terminology and results in the theory of dessins d’enfants. For conciseness,
we provide a loose general overview avoiding the more technical details, instead
deferring a more detailed analysis to the widely available literature in the area such
as [52] or [37].

A dessin d’enfant D is a bipartite graph embedded in some closed orientable
surface S where its vertices are alternately colored black and white. A hypermap
H is an ordered pair of permutations x and y generating a finite group G that acts
transitively on a set S. Given a dessin D, we can create a hypermap H as follows:
we let S be the set of edges of D and let x and y be the cycles corresponding to
rotation of edges around the black and white vertices of the dessin, respectively.
Note also that this process can be reversed – that is, given a hypermap H, we can
also construct a dessin on some compact oriented surface. This provides a natural
correspondence between hypermaps and dessins.

Next, for a given hypermap H, since G acts transitively on a set S, it is equiv-
alent to a permutation representation of the free group F2 → G on two generators
acting on the cosets of a subgroup of finite index. Likewise, letting, z = (xy)−1,
since xyz = 1, it is also equivalent to the action of some Fuchsian triangle group
∆ whose periods are divisible by the orders of x, y and z on the cosets of some
finite index subgroup Γ. This gives rise to a pair (S, β), called a Belyi pair, where
S = H/Γ is a compact Riemann surface and β : H/Γ→ H/∆ is a meromorphic func-
tion branched over three points where, as usual, H denotes the upper half plane.
We call β a Belyi function and S a Belyi surface. Moreover, by Theorem 3.10 of
[52], given a Belyi pair, (S, β) we get a corresponding pair of Fuchsian groups ∆
and Γ where ∆ is a triangle group whose periods are divisible by the branching
orders of the meromorphic function, and Γ is a finite index subgroup, and hence
a corresponding hypermap H given by the action of ∆ on the cosets of Γ. Thus
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we get a correspondence between hypermaps, Belyi pairs and conjugacy classes of
subgroups of finite index in the free group on two generators.

Finally, by Belyi’s theorem, [5], a compact Riemann surface S is defined as a
projective algebraic curve over the field Q̄, the algebraic closure of Q, if and only if
there is a Belyi function on S setting up an equivalence between algebraic curves
defined over Q̄ and hypermaps. Thus, in sum, the theory of dessins d’enfants, or
Belyi Theory as introduced by Grothendieck in his Esquisse d’un Programme, [38],
establishes equivalences between the following:

(1) complex projective algebraic curves defined over number fields;
(2) Belyi pairs;
(3) dessins;
(4) Riemann surfaces uniformised by subgroups of finite index in triangle

groups;
(5) compact oriented hypermaps;
(6) pairs of permutations generating transitive finite permutation groups;
(7) conjugacy classes of subgroups of finite index in the free group of rank 2.

In some of these cases, the equivalences are fairly explicit, so that in specific
examples one can translate data from one context to another, e.g., translating from
pairs of permutations to conjugacy classes of subgroups of finite index in the free
group of rank 2 using permutation representations. In other cases, however, this
translation process is much more challenging. For example, finding an explicit
model for a Belyi curve, given combinatorial data, is very difficult. This leads to
the following question.

Problem 42. Determine explicit translations between these equivalences.

Through the correspondence with algebraic curves defined over Q̄ there is a
natural action of the absolute Galois group on the objects above induced by its
action on the coefficients of the polynomials and rational functions defining Belyi
pairs. Determining the orbits of this group requires a good supply of Galois invari-
ants. Some, such as genus, type, and automorphism group are simple but rather
crude, in the sense that inequivalent objects (i.e., those in different orbits) can often
share these properties. Therefore, an extremely useful problem is the following:

Problem 43. Determine further invariants which are simple to apply but more
discriminating than those that already exist.

Related to this problem are the following.

Problem 44. Given any finite set of Galois invariants (for the action of the
absolute Galois group on dessins), are there always two dessins which are not Galois
equivalent, but which share the given invariants?

Problem 45. Given two dessins, is there always a finite set of Galois invari-
ants (they may depend on the chosen dessins) which determines if they are Galois
equivalent?

With much of this work still in its relative infancy, little is known about many
of these different objects and the relations between them, even for relatively “small”
examples (small here being intentionally ambiguous with various meanings such as
low genus of the Riemann surface, small group order or highly symmetric dessins,
see for example [41] in this volume). Many conjectures are often formulated based
on specific examples, so the following would be useful:
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Problem 46. Build a database of examples of the objects listed above.

A database containing several of the objects listed above of low degree is in
progress. A description of the database and the mathematics used to create it is in
[69] and the data so far may be found at [58].

6.2. Quasiplatonic surfaces. The most symmetric of dessins are the regular
dessins, or those for which there exists a corresponding Belyi pair (S, β) where β is a
regular covering of the projective line. In this case, we call S a quasiplatonic surface
and we call the covering groupG a quasiplatonic group. By the described correspon-
dence, S is uniformized by a normal surface subgroup of a triangle Fuchsian group
∆, and G is a quotient of ∆ with torsion free kernel. Quasiplatonic surfaces have
applications in number theory, group theory and graph theory through the theory
of dessins. However, they also provide geometric and algebraic information about
Riemann surfaces and their automorphism groups. For example, quasiplatonic sur-
faces have relatively large automorphism groups and so their study is intimately
related to Problem 18 and the other related problems. As another example, such
surfaces define unique points in the moduli space Mg in genus g and typically lie
at the intersection of many different strata in the branch locus of moduli space, so
their existence can help describe these different strata.

The first and most obvious problems are those of existence and are closely
tied to the classification problems in Section 3. It is well known that for every
genus g there exists a quasiplatonic surface S uniformized by a triangle group with
signature (0; 2, 4, 2g+ 2), see [1] and [64]. Further infinite families of quasiplatonic
surfaces have been constructed for various sequences of genera, see for example
[60]. There is still no clear picture however of which groups or families of groups
regularly occur as quasiplatonic groups, and which genera they appear in. These
observations motivate a number of different problems.

First, a group G can be realized as a quasiplatonic group if and only if it is
generated by a pair of elements. Though it is straightforward to check this condition
for a specific group, it doesn’t give us a wider picture of which groups, or families
of groups, can appear as quasiplatonic groups. This motivates the following.

Problem 47. Determine alternative necessary and sufficient conditions for
when a group can be realized as a quasiplatonic group.

A more granular approach is to focus on conditions for when members of a
specific family are quasiplatonic. For example, an abelian group G is quasiplatonic
if and only if it has 2 or fewer invariant factors.

Problem 48. For a given family of groups, determine necessary and sufficient
conditions for when a member of this family can be realized as a quasiplatonic group.

With a greater understanding of which specific groups, or families of groups,
can be realized as quasiplatonic surfaces, other more specific questions arise such
as the following.

Problem 49. For a given group G which can be realized as a quasiplatonic
group, determine the corresponding signatures with which it acts as a quasiplatonic
group, and the genera of surfaces on which it acts.
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Further directions could focus instead on the number of, or the growth rate
of, quasiplatonic surfaces. In [74], for example, it is shown that the number of
isomorphism classes of quasiplatonic Riemann surfaces of genus less than or equal
to g has a growth of type glog g, but not much is known about how these surfaces are
distributed over genera. In [6], enumeration formulas are developed for counting
the number of distinct isomorphism classes of quasiplatonic cyclic groups, and these
formulas are used in [29] to develop closed enumeration formulas for the total
number of quasiplatonic cyclic group actions for a specific cyclic group, but outside
of cyclic groups, similar enumeration formulas do not exist. Problems along these
lines include the following.

Problem 50. How many topologically distinct quasiplatonic actions are there
of a finite group G on a given surfaces of genus g? For that same group, how many
total actions are there over all genera?

Problem 51. Are there upper or lower bounds for the number of quasiplatonic
surfaces of a fixed genus g?

6.3. Building surfaces and actions from a tiling. Up until this point,
the construction of most actions of a group G on a surface S of genus g have been
defined either topologically using monodromy epimorphisms or geometrically using
surface kernel epimorphisms. We shall see in this section how to construct S and
G using a tiling, and we provide a number of related open problems regarding this
construction.

Using notation from Section 2, given a specific pair (T,BG), where T is a
quotient surface and BG a branching set, the surfaces lying over (T,BG) are finite
in number and can all be constructed as a tiling of identical “puzzle pieces”, using
the G-action as a recipe for putting the pieces together. Specifically, let E be
an embedded graph in T such that BG is contained in the vertex set of E and
D◦ = T − E is an open disc. Let e and v denote the number of edges and arcs of
E . We have e = v + 2τ − 1, by an Euler characteristic argument (τ = genus of T ).

We can lift the triple (T, E , BG) to a tiling of H which projects to a tiling on S
such that G simply transitively permutes the tiles (puzzle pieces). The pair (T,BG)
and the signature, determine the uniformizing group Γ and the map π : H→ H/Γ
up to conjugation in PSL(2,R). Since BG is contained in E , π is a diffeomorphism
of each connected component of π−1(D◦) onto D◦. Therefore, the inverse image

π−1(D◦) is a disjoint collection of open curvilinear polygons in H,
{
γD̃◦ : γ ∈ Γ

}
,

where D̃◦ is a distinguished component of π−1(D◦). Each γD̃◦ has 2t − 2 sides

and 2t − 2 vertices. The closure γ̃D◦ of each open γ̃D◦ is a closed fundamental

domain for Γ. Now pick a specific D0 among the
{
γD̃◦ : γ ∈ Γ

}
. The sides of D0

are paired by certain elements of Γ and under this pairing we can construct the
triple (T, E , BG). To construct S, we start with |G| copies of D0 labelled by the
elements of G, written as {(D0, g) : g ∈ G}. Applying the epimorphism η : Γ→ G
to the side pairing elements we determine how to glue the tiles, i.e., the |G| elements

of {(D0, g) : g ∈ G}, together. Each Aut(G)-class of epimorphisms Πη ↪→ Γ
η
� G

determines a distinct recipe for putting together the puzzle pieces.
Though there are many different avenues of research that could be pursued

related to this construction, we are mainly interested in the case where T is the
Riemann sphere and E is a tree whose vertex set consists of the t points in BG,
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and has t− 1 “nice” arcs, e.g., line segments. Of special interest is the case where
the arcs in E form a segment of the real line, as this allows for the possibility of
symmetries of S, see Section 7.

For the following, assume that T has genus zero, and that (T,BG) and the
generating set G for either Γ or π1(T ◦) are given. We also assume that the tree E
has vertex set BG exactly.

Problem 52. Given (T, E , BG) and G, determine the labelling of the vertices
and sides of the fundamental region D0, i.e., the quotient map ∂D0 → E, and the
side pairing transformations. See also Problem 57.

Problem 53. What conditions on (T, E , BG) ensure that the sides of the fun-
damental region D0 are geodesic arcs in H and not just smooth arcs?

Problem 54. What conditions on (T, E , BG) ensure that the fundamental re-
gion D0 is convex?

Now we add a generating vector V into the mix and ask questions about S.

Problem 55. Assume that Problem 52 is solved. Determine an algorithm
and/or conditions on (T, E , BG) that constructs a “nice” fundamental region for
Πη and hence a construction of S as a “nice” region with boundary identifications.
Describe the boundary and the side pairing map. Specifying “nice” is part of the
problem. A good starting point is symmetric quasiplatonic surfaces and n-gonal
actions with a small number of branch points.

Problem 56. Assume that Problem 55 is solved. Determine explicitly the
linear fractional transformations that determine the side pairings. These transfor-
mations generate the subgroup Πη.

The paper [16] can be of use in solving the preceding problem for 4 branch
points.

For our next two problems we construct a Cayley graph on S. Pick an interior
point x0 ∈ D0 and construct 2t− 2 smooth arcs, intersecting only at x0, to interior
points on the sides of D0, meeting the sides at a right angle. The interior points
must be selected so that they match under the side pairing transformations. Now
translate the arcs by Γ. The resulting graph is an infinite, smooth Cayley graph
for Γ with respect to the generating set of side-pairing transformations. The graph
projects to a Cayley graph for G on S. The Cayley graph is dual to the graph
determined by the tiling on S.

Problem 57. Determine an algorithm for constructing the Cayley graph for
the G-action as described above. This problem is related to Problem 52.

Problem 58. Construct a Cayley graph for a G-action as described above.
Can any useful geometric information be extracted from this Cayley graph? In
particular, can properties of this Cayley graph be used to distinguish surfaces and
actions derived from distinct Aut(G) classes of generating vectors, but the same
quotient pair (T,BG)?

For our final two problems we consider Petrie paths along the edges of the tiling
on S. Briefly, a Petrie path on S is a zig-zag path along the edges of the tiling, such
that no three consecutive edges lie on the same polygon. See [82], for example, for
background on Petrie paths. A Petrie path is an important invariant of regular
maps.
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Problem 59. Determine an algorithm for constructing and describing the
Petrie path for the G-regular tiling constructed above.

Problem 60. As in Problem 58 determine if any useful geometric information
can be extracted from the Petrie path, including distinguishing different surfaces
arising form different generating vectors.

6.4. Further directions. Though most of the focus on graphs in both this
volume and the series of conferences we have organized is centered around dessins
d’enfants, there are numerous other topics in graphs which are directly related
to Riemann surfaces and their automorphism groups. One possible direction is
the study of groups acting harmonically on a graph. An automorphism group
acts harmonically (or semi-regularly) on a graph if it acts freely on the set of
directed edges of the graph. Such an action is a natural discrete generalization
of the group of conformal automorphism on a Riemann surface, and from this
point of view, discrete versions of many well-known theorems are obtained, such as
Hurwitz’s classical upper bound for the maximal size of an automorphism group,
[46], or generalizations of the Accola–Maclachlan surfaces found in [1] and [64].
Such results estimate the size of a group acting harmonically on a graph of given
homological genus with some additional restrictions such as being cyclic, having an
invariant set of prescribed order, or specifying the number of fixed points. These
results motivate the following.

Problem 61. Find sharp upper and lower bounds for the size of abelian, nilpo-
tent or other classes of groups acting harmonically on a graph of given genus, where
the genus is the Betti number of the graph.

Another possible direction is the study of the Jacobian for a graph which can
be considered as a discrete counterpart of a notion of the Jacobian for a Riemann
surface. The Jacobian for a graph is also known as a sandpile group, critical group,
dollar group, or Picard group of a graph. The Jacobian group is isomorphic to
the torsion part of the co-kernel of the Laplacian of a graph and is an important
algebraic invariant of a finite graph. In particular, its order coincides with the
number of spanning trees in the graph. Of particular interest are families of cubic
graphs built up from trees of the shape I, Y , or H. These graphs are summarized
in [8, pg. 147].

Problem 62. Find the structure of the Jacobian group for circulant graphs and
their generalizations to I-graphs, Y -graphs and H-graphs.

There are some known results about Jacobians of I-graphs [67]. For a gener-
alization to circulant foliation, see [49].

7. Symmetries of surfaces

A symmetry φ of a surface S is an anti-conformal, involutary (order 2), auto-
morphism φ of the surface, and a surface with a symmetry is called a symmetric
surface. Symmetries of surfaces arise naturally as follows. If S has defining equa-
tions with real coefficients then complex conjugation induces a symmetry on S.
Symmetries of S may also arise from reflections in the edges of kaleidoscopic poly-
gons, i.e., S is a “hyperbolic kaleidoscope”. See [16], [24], and [17] for background
on kaleidoscopic polygons and symmetries of surfaces.
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For a symmetry φ of a symmetric surface S, the fixed point subset,Mφ = {x ∈
S : φx = x}, if non-empty, consists of a finite number of disjoint circles called
ovals. Motivated by the construction of symmetries from kaleidoscopes, the fixed
point subset Mφ, is called the mirror of the symmetry. For symmetries arising as
complex conjugations, the fixed point subset equals the set of real points of the
curve.

The complement of the fixed point set S −Mφ consists of one or two com-
ponents, depending on whether the Klein surface, S/〈φ〉, possibly with boundary,
is non-orientable or orientable. A symmetry (and hence its mirror) is said to be
separating or orientable if S −Mφ has two components, otherwise it is called non-
separating or non-orientable. If k is the number of ovals of the mirrorMφ, then the
species of φ is said to be k if φ is separating and −k if φ is non-separating. A sym-
metry with empty mirror has species 0. The symmetry type of a surface is the list of
species of all conjugacy classes of symmetries occurring in Aut∗(S) = 〈φ,Aut(S)〉.

For a symmetric surface the determination of the symmetry type requires an-
swers to three questions, which we formulate as the next problem.

Problem 63. For any symmetric surface S answer the following:

(1) Classify all the symmetries of S.
(2) For each symmetry, compute the number of ovals in the mirror.
(3) For each symmetry, determine whether it is separating or not.

7.1. Symmetries of quasiplatonic surfaces. We know that a generating
triple (a, b, c) of a group G defines a quasiplatonic action on some surface S. It
is well known, e.g., [81] that S has a symmetry φ normalizing the action of G if
and only if there is an involutary automorphism θ satisfying one of the following
conditions:

(1) θ(a) = a−1, θ(b) = b−1,
(2) θ(a) = b−1, θ(b) = a−1.

The automorphism θ is defined by θ(g) = φgφ−1.
Some examples of families of quasiplatonic actions with symmetries are given

in [81], [22], [21], and [84]. For G an abelian group, it is straightforward to see that
the surface is symmetric [81]. For G = PSL(2, q) it can be shown that every triple
yields a symmetric surface [81] and [84]. These examples lead to the following
problems.

Problem 64. Are there any conditions on a group G such that the quasiplatonic
actions of G are always symmetric?

Problem 65. More specifically, for what simple groups are quasiplatonic sur-
faces always symmetric?

More generally, we have:

Problem 66. For a given group G there are only finitely many generating
triples. What proportion of the triples yield symmetric actions? Of particular
interest is the case where the fraction is small.

7.2. Existence of symmetries. If there is a symmetry φ normalizing the
action of G, we say that the action is a “symmetric G-action”. There is a subtlety
here, namely a surface might be symmetric but the symmetry does not normalize
the G-action. In this case ε(G) is strictly contained in Aut(S).
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We can build a surface with G-action from a quotient surface pair (T,BG) and
a generating vector V. We would like to do the same for symmetries. Assuming
the existence of φ, there is a quotient symmetry φ of T . To lift a symmetry φ of T
to S two conditions that must be considered are:

• The branch points in BG and the branch orders themselves must be in-
variant under φ.

• The hypothesised automorphism of G, θ(g) = φgφ−1 imposes some con-
straints on the generating vector.

For example the conditions are quite simple in the quasiplatonic section as discussed
above. For greater numbers of branch points the problem becomes more complex.
The following problem is interesting though it might be easy.

Problem 67. For low orbit genus h and low number of branch points t, assume
we are given the orbit space (T,BG) and a generating vector V for a G-action.

• Enumerate the possible geometric configurations of BG that would be in-
variant under some symmetry φ of T .

• For each geometric configuration above determine the constraints that the
hypothesised automorphism of G, θ(g) = φgφ−1 imposes upon the gener-
ating vector.

7.3. Symmetric n-gonal actions. Assume that we have solved Problem 67.
Here are some problems for general n-gonal surfaces that are similar to the quasi-
platonic case.

Problem 68. For a specific (non-abelian) group G, work out all the actions
with four branch points and determine which ones are symmetric.

Problem 69. Are there any (non-abelian) groups G for which all the actions
with four branch points and correct geometry of BG are symmetric?

Problem 70. Repeat the same problems as above with more than 4 branch
points.

Problem 71. Repeat the same problems as above with orbit genus 1 and one
or more branch points.

Since, for t > 3, the geometric constraints show that symmetric surfaces form
a proper, possibly non-empty, subset of all surfaces with G-action of a given topo-
logical type, this prompts the following problem.

Problem 72. For a given group action G with a non-empty equisymmetric
stratum, determine the structure of the symmetric surfaces as a subset of the equi-
symmetric stratum. Start with 4 branch points.

8. Algorithms, computations, and explicit methods

The advancement of computational power over the last 30 years has added rich
new areas of study, and within each of the areas discussed above there are ques-
tions which may be answered (or partially answered) by computational methods.
Computational data has also led to new conjectures, as well as evidence for (and
against) other conjectures. For many of the problems given in the other sections,
such as Problems 6, 7, 8, 14, 46, 56, 67, and 68, computation is an integral part of
a strong solution, either for exploration or complete classification. For almost all
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problems in this paper, computation can be used to generate examples beyond toy
examples.

8.1. Classifications. Breuer [13] began the new millennium with a complete
classification of automorphisms of Riemann surfaces up to genus 48. His contribu-
tion was to devise an algorithm to generate a list of all groups and corresponding
signatures for which there is a surface kernel epimorphism η : Γ → G for a fixed
genus. His computer code outputs group and signature pairs. While his algorithm
did compute generating vectors, he did not record these generating vectors in his
original data.

The only obstacle to computing higher genus data is that his algorithm requires
a complete classification of groups of order up to the maximum order for the given
genus. The computer algebra programs Magma [9] and GAP [35] have complete
classifications of groups of order up to 2000 (except for order 1024). Some of
Breuer’s data (along with additional information about the corresponding Riemann
surfaces) may be found at [59].

In addition, Conder [32] computed all automorphism groups of size greater
than 4(g − 1) for a given genus g, up to genus 101, by using the theory in Section
2.1.2 and the LowIndexNormalSubgroups routine in Magma. The size conditions
on the automorphism group guarantees that g0 = 0 and that the cover is branched
at 3 or 4 places. His data includes the generating vectors for each action up to
simultaneous conjugation, i.e., up to the action of an inner automorphism of the
automorphism group.

While Breuer and Conder both provide extensive lists of group and signature
pairs, their algorithms do not compute equations (or models) of the corresponding
Riemann surfaces. Recall the definition of Hurwitz spaces from Section 4.1. In
particular, if we are given a group G and an unordered r-tuple C = (C1, . . . , Cr)
of conjugacy classes of G, the Hurwitz space of this data consists of those surfaces
with ramification type C. There are many cases where computing C is feasible,
but where we do not know equations for the family of curves in the Hurwitz space.
Yet there are many applications where knowing equations for the curves would give
additional information.

Problem 73. Is there an explicit algorithm that, given as input the ramification
type C of the Hurwitz space, produces as output explicit equations for the associated
Hurwitz space in a reasonable amount of time?

Gröbner basis methods may play a role in these computations, and their run
time is double exponential in the input size, so one interpretation of “reasonable
amount of time” is doubly exponential. Even the special case of producing equations
for Riemann surfaces “with many automorphisms” is already interesting. Swinarski
has some work in this direction [83].

Recall Belyi maps which were discussed in Section 6.1. There are many com-
putational questions surrounding these objects, and which have been already cata-
logued by Sijsling and Voight in [78] and which we will not reproduce here, except
to highlight one particular question.

Problem 74. Suppose we are given a Beyli map β : S → P1 with coefficients
in a number field K, and a fixed complex embedding K ↪→ C. Can we compute the
permutation triple which describes the monodromy around the three branch points
0, 1, and ∞?
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While there are some numerical methods which can be used to compute mon-
odromies (see [78, Section 8] for more details), guaranteeing a rigorous output with
those numerical techniques may not be tractable. Are there other techniques which
might work here, particularly given that there are already known techniques to find
the monodromy group itself? And, as with any computational problem, run time
estimates for such algorithms are always welcome!

8.2. Equivalence relations. While Breuer’s data computes generating vec-
tors up to simultaneous conjugation, as discussed in Section 2.2, it is often sufficient
to only ask for classifications of the actions up to braid, topological or conformal
equivalence. For the next few problems, we need to reformulate the definition of
topological equivalence for surface kernel epimorphisms. Two actions η1 and η2
defined as in Section 2.2 are topologically equivalent if there exists an ω ∈ Aut(G)
and φ ∈ Aut+(Γ) (the orientation preserving automorphisms of the Fuchsian group
Γ) so that the following diagram commutes [15].

Γ
η1−−−−→ Gyφ yω

Γ
η2−−−−→ G

.

Notice this means that η2 = ω ◦ η1 ◦ φ−1 where φ is an element of Aut+(Γ) and
ω ∈ Aut(G). As such, two actions are topologically equivalent precisely when they
are in the same orbit under the action of Aut(G)×Aut+(Γ) [15, Proposition 2.2].

This translates the definition of topological equivalence to an algebraic condi-
tion and using this result for cases where h = 0, code is implemented in Sage [3]
which computes, given a group and a signature, the orbits under the corresponding
action and returns one representative of each orbit. There is also similar code in
GAP to compute mapping class orbits [50] including the cases where h > 0. These
programs work well for many examples of modest genus or with a modest number
of branch points. However, these programs are not effective as the size of the group
or the number of branch points get large. In addition, little has been done compu-
tationally to determine actions up to conformal equivalence. As such, the following
two problems are of interest.

Problem 75. Improve on current algorithms to compute orbits under topolog-
ical equivalence.

Problem 76. Determine algorithms to compute orbits under conformal equiv-
alence, given a group and signature pair, or a group and ramification type.

8.3. Problems on enumerating actions. Enumerating generating vectors
leads to our last set of computational problems. Consider the following two action
spaces. Given a G-signature, or ramification type, (C1, . . . , Ct) and any subgroup
H ≤ G, define the sets

XH(C1, . . . , Ct) =

{
(x1, . . . , xt) ∈ (C1 × · · · × Ct) :
x1 · · · · · xt = 1, 〈x1, . . . , xt〉 ≤ H

}
and

X◦H(C1, . . . , Ct) =

{
(x1, . . . , xt) ∈ (C1 × · · · × Ct) :
x1 · · · · · xt = 1, 〈x1, . . . , xt〉 = H

}
.

The special case X◦G(C1, . . . , Ct) is the set of generating vectors. We may use Hall
Möbius inversion to compute the values {|X◦H(C1, . . . , Ct)| , H ≤ G} from the set of
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values {|XH(C1, . . . , Ct)| , H ≤ G} There are formulas using character theory [51]
that can be used to compute XH(C1, . . . , Ct). To use the formulas we also need to
know how H ∩ Cj breaks up into conjugacy classes of H, and computation of the
character tables of H.

These formulas lead to the following questions.

Problem 77. Find an efficient algorithm that, given a potential G-signature
(C1, . . . , Ct), determines the number of generating vectors in (C1 × · · · × Ct). Ob-
viously, we only need to look at subgroups such that H ∩Cj is non-empty for every
Cj.

Problem 78. Given a potential G-signature (C1, . . . , Ct) determine how many
braid equivalence classes are contained in (C1 × · · · × Ct)

As with many other problems in the paper, solving these problems for the
n-gonal case would be a good starting point.
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