Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II), UV/H2O2/Fe (III) Processes

Alireza Khataee
N. Daneshvar
M. H. Rasoulifard
M. S. Doraji

Available at: https://works.bepress.com/alirezakhataee/37/
Removal of Organic Dyes from Industrial Wastewaters Using UV/H₂O₂, UV/H₂O₂/Fe (II), UV/H₂O₂/Fe (III) Processes

Nezamaddin Daneshvar¹, Alireza Khataee², Mohammad Hossien Rasoulifard³, Mirsaeed Seyed Dorraji³

(Received Oct. 4, 2006 Accepted Feb. 22, 2007)

Abstract
UV/H₂O₂, UV/H₂O₂/Fe (II) and UV/H₂O₂/Fe (III) processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B has been used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light) and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The

¹- Professor of Applied Chemistry, University of Tabriz, nezam.daneshvar@yahoo.com
²- PhD Student of Applied Chemistry, University of Tabriz
³- M.Sc Student of Applied Chemistry, University of Tabriz
effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H₂O₂ process. Investigation of the kinetics of the UV/H₂O₂ process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H₂O₂/Fe(II) and UV/H₂O₂/Fe(III) processes were higher than that in the UV/H₂O₂ process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H₂O₂ under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II) or Fe(III) to the solution containing 20 ppm of the dye and 5 mM H₂O₂ under UV light illumination decreased removal time to 10 min.

Keywords: Advanced Oxidation Processes, Photo-Fenton Process, Hydrogen Peroxide, Contaminated Water.

Mehran F.1, Mehrnoush Zare A.2, Sajjad Amini A.2, Maryam Bani Hashemi A.3, Maryam Amini A.1

1- M. F. Mehran, 2- M. Zare, 3- S. Amini

1- Mehran, Mehrnoush, Sajjad, Amini, Maryam, Bani Hashemi, Maryam, Amini, Mehran.

1 Lei et al.
جدول 1 - مكونات بيشتهادي برای فرایند $\text{H}_2\text{O}_2\cdot\text{Fe}^{2+}$

<table>
<thead>
<tr>
<th>واکنش شیمیایی</th>
<th>ثابت سرعت $(M^{-1}s^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{hv} \to 2\text{OH}^-$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{OH}^+ \to \text{H}_2\text{O} + \text{H}_2\text{O}^+$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{OH}^+ \to \text{O}_2 + \text{H}_2\text{O}$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{O}_2 \to \text{OH}^+ + \text{OH}^-$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{OH}^+ + \text{OH}^+ \to \text{H}_2\text{O}_2$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{OH}^+ + \text{H}_2\text{O}_2 \to \text{OH}_2$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{OH}^+ + \text{O}_2 \to \text{H}_2\text{O} + \text{O}_2$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + \text{hv} \to \text{2OH}^-$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{Fe}^{3+} + \text{H}_2\text{O} + \text{hv} \to \text{Fe}^{2+} + \text{OH}^+ + \text{H}^+$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{Fe}^{3+} + \text{H}_2\text{O}_2 \to \text{Fe}^{2+} + \text{HO}_2^+ + \text{H}^+$</td>
<td>$2/7\times10^6$</td>
</tr>
<tr>
<td>$\text{UV/H}_2\text{O}_2/\text{Fe}^{2+}$</td>
<td>$2/7\times10^6$</td>
</tr>
</tbody>
</table>

زیر تولید مِدَرِدَنِد

$\text{H}_2\text{O}_2 + \text{hv} \to \text{2OH}^-$

$\text{Fe}^{3+} + \text{H}_2\text{O} + \text{hv} \to \text{Fe}^{2+} + \text{OH}^+ + \text{H}^+$

$\text{Fe}^{3+} + \text{H}_2\text{O}_2 \to \text{Fe}^{2+} + \text{HO}_2^+ + \text{H}^+$

$\text{UV/H}_2\text{O}_2/\text{Fe}^{2+}$

مطلق و اکتشاف‌های زیر می‌باشد

$\text{H}_2\text{O}_2 + \text{hv} \to \text{2OH}^-$

$\text{Fe}^{3+} + \text{H}_2\text{O} + \text{hv} \to \text{Fe}^{2+} + \text{OH}^+ + \text{H}^+$

$\text{Fe}^{3+} + \text{H}_2\text{O}_2 \to \text{Fe}^{2+} + \text{HO}_2^+ + \text{H}^+$

$\text{UV/H}_2\text{O}_2/\text{Fe}^{2+}$

کارآی بالایی این فرایند باعث شده که این روش مورد توجه دانشمندان و محققان در زمینه تصفیه آب و پسابهای صنعتی قرار گیرد. مطالعات صورت گرفته نشان می‌دهد که فرآیند قطعی این UV/H2O2/Fenton باعث تولید رادیکال‌های هیدروپراکسیس و هیدروکسیل مطلق و اکتشاف‌های زیر می‌باشد.

بلات اولین رنگ، مقادیر مختلف (Fe(II) و Fe(III)) مورد مطالعه ای در نور اتصالی قرار گرفت.

فتو راکتور نیویوسته انجام گردید که در این سیستم این همان نظام مغناطیسی در پیک سیستم گذشته را کاشت باعث گردید که در این نمونه پلاسکی‌خیابی به عنوان راکتور کردن لامب و سیستم، بشر ۴۵۰ میلیویلایی به عنوان پلاسکی‌خیابی شکل ۱- ساختار رادیکال

شکل ۱ - ساختار رادیکال

1. Fluka
2. Philips
شکل ۳- نمودار کالیبراسیون برای اندازه‌گیری غلظت رنگ ردامین B در نمونه‌های مجهول در طول موج ۵۵۵ نانومتر

\[X = \frac{C_1 - C_0}{C_0} = 1 - \frac{C_0}{C_1} \] (۱۰)

۳- نتایج و بحث

بررسی نتایج، نشان می‌دهد که در هر سه نمونه، حالت غلظت رنگ ردامین B با استفاده از سیستم قرار گرفته و به طور متوسط افزایش یافته است. این افزایش در حدود ۲۰ میلی‌گیرم در هر لیتر از محدوده ۰-۴۰۰ نانومتر به‌کار رفته است. دیگر نتایج نشان داد که در طول موج ۵۵۵ نانومتر، تغییرات محسوسی در نانو اندازه‌گیری، محول‌های غلظت‌های منفی و مثبت از رنگ ردامین B به جای ذوب آبی در طول موج ۵۵۵ نانومتر با اندازه‌گیری یکسان، مقدار حذف رنگ در طول آزمایش‌ها با مساحت کسر تبدیل رنگ (X) بر اساس رابطه ۲۰ دسته آماده شده در آب C گل‌نامه اولیه رنگ، غلظت رنگ در هر لحظه و X کسر تبدیل رنگ می‌باشد.
3-3- بررسی تأثیر غلظت‌های اولیه مختلفی از رنگ در فرآیند

UV/H₂O₂

با توجه به شکل 4، می‌گردد که با ثابت ماده مقدار H₂O₂ و میزان این کمیت به طور قابل ملاحظه‌ای کاهش می‌یابد. علت این امر به این صورت توجه می‌کند که با وجود یکسانی بودن تمام شرایط، مقدار رادیکال‌های هیدروکسیل تولید شده برای نما از نمونه‌ها برابر خواهد بود. بنابراین در نمونه‌های با غلظت کم از آن‌ها سرعت تجزیه با خواهد بود.

18 میلی‌میلی‌متر می‌باشد (9).

3-3- بررسی حذف ماده رنگ‌زای در فرآیند

UV/H₂O₂/Fe(II) و UV/H₂O₂/Fe(III)

همان طور که در شکل‌های 7 و 8 مشاهده می‌شود، زمانی که محلول Fe(III) با Fe(II) در ناحیه UV نقط حاوی پین های باشد، کمتر تبدیل، افزایش قابل توجهی نشان نمی‌دهد و لیزیمان که

شکل 4- نقش مؤثر اشعه UV و محلول H₂O₂ در ترکیب رادیکال در فرآیند

شکل 5- اثر مقادیر مختلفی از H₂O₂ در میزان ترکیبی رادیکال در فرآیند

شماره 11- سال 1387
[H$_2$O$_2$] = 18 mM

UV/H$_2$O$_2$/Fe(III) شرایط عمل: تحت همزدون مناسب

UV/H$_2$O$_2$/Fe(II) شرایط عمل: تحت همزدون مناسب

UV/H$_2$O$_2$/Fe(II) شرایط عمل: تحت همزدون مناسب

UV/H$_2$O$_2$/Fe(III) شرایط عمل: تحت همزدون مناسب
شکل 9- اثر مقادیر مختلف Fe(III) در میزان تجزیه ردیمیان B در فرانشید (FRACP) UV/H2O2/Fe(III) ترکیب عامل: تحت هر هر مناسب ppm.

شکل 10- اثر مقادیر مختلف Fe(II) در میزان تجزیه ردیمیان B در فرانشید (FRACP) UV/H2O2/Fe(II) ترکیب عامل: تحت هر هر مناسب ppm.

محصول رنگ حاوی UV قرار می‌گیرد به UV تحت ناشی نور H2O2 رنگ به صورت کامل حذف می‌گردد. به طوری که مقدار به‌هنه Fe(II) با این 200 میلیمولار در فرانشید /Fe(III) /Fe(III) پایین‌تر باشد و در فرانشید UV/Fe2O3 باشد UV/Fe2O3/Fe(II) نظر گرفتن شرایط تابث برای تمام نمونه‌ها کسر تبدیل رداًمین B Fe(III) افزایش گذشته افزایش پیدا می‌نماید و مقدار به‌هنه Fe(III) نیز پایین‌تر/100 میلیمولار خواهد بود.

شکل 3- بررسی سیتیک فرانشید (FRACP) UV در حذف ماده رنگی آلی همان طور که در شکل 11 مشاهده می‌شود، با توجه به خطی بودن تغییرات-Ln(C/C0) بر حسب زمان و همچنین خطی بالایی نمودار فوق نسبت به نمودار تغییرات بر حسب زمان، می‌توان مدل تولید رنگ UV/H2O2/Fe(II) UV/H2O2/Fe(III) و UV/H2O2/Fe(II) UV/H2O2/Fe(III) رنگ در فرانشید (FRACP) UV تحت ناشی نور H2O2 و UV تحت ناشی نور H2O2 رنگ دارهای چنانچه در شکل‌های 9 و 10 مشاهده می‌شود با در نظر گرفتن شرایط تابث برای تمام نمونه‌ها کسر تبدیل رنگ Fe(II) کسر تبدیل رنگ Fe(III)
شکل 11- تیبینگ ترتیب سرعت ظاهری تجزیه ماده رنگی در فرآیند \(\text{Fe(III)} \) رنگ در حضور 18 میلی‌میلئر آب اکسیژن برابر با 0/27/0 به دست آمد.

نتیجه‌گیری
نتایج حاصل از آزمایش‌ها نشان می‌دهد که فرآیندهای UV/H\(\text{H}_2\text{O}_2 \)/Fe(II) و UV/H\(\text{H}_2\text{O}_2 \)/Fe(III) UV/H\(\text{H}_2\text{O}_2 \) قادر به حذف ماده رنگی یک پروری می‌کند. مقدار ثابت سرعت ظاهری درجه اول تجزیه رنگ از روش شیب نمودار در محولی حاوتی 0-30 ppm در حضور 18 میلی‌میلئر آب اکسیژن برابر با 0/27/0 به دست آمد.

5- نتیجه‌گیری
نتایج حاصل از آزمایش‌ها نشان می‌دهد که فرآیند UV/H\(\text{H}_2\text{O}_2 \)/Fe(II) و UV/H\(\text{H}_2\text{O}_2 \)/Fe(III) UV/H\(\text{H}_2\text{O}_2 \) قادر به حذف ماده رنگی یک پروری می‌کند. مقدار ثابت سرعت ظاهری درجه اول تجزیه رنگ از روش شیب نمودار در محولی حاوتی 0-30 ppm در حضور 18 میلی‌میلئر آب اکسیژن برابر با 0/27/0 به دست آمد.

شماره 11 سال 1386
آب و فاضلاب 31

