Fall October 25, 2013

My Lecture Notes (Heat Transfer 1) - (Chapter 2)
فصل دوم انتقال حرارة

Dr Alireza Zolfaghari

Available at: http://works.bepress.com/alireza_zolfaghari/68/
مقدمه‌ای بر هدایت گرمایی

فصل دوم

قانون هدایت فوریه

قانون هدایت فوریه در جهت \(x \):

\[q_x = -k \frac{dT}{dx} \]

قانون هدایت فوریه در جهت \(y \):

\[q_y = -k \frac{dT}{dy} \]

قانون هدایت فوریه در جهت \(z \):

\[q_z = -k \frac{dT}{dz} \]

شکل کلی قانون هدایت فوریه:

\[\vec{q} = -k \left(\frac{\partial T}{\partial x} \hat{i} + \frac{\partial T}{\partial y} \hat{j} + \frac{\partial T}{\partial z} \hat{k} \right) = -k \nabla T \]
فصل دوم
قانون هدایت فوریه

چند نکته در مورد قانون هدایت فوریه:

- قانون فوریه یک رابطه برداری است.
- قانون فوریه یک رابطه تجربی است: نه یک اصل علمی!

بر طبق قانون فوریه، حرارت در جهت عمود بر خطوط همدا (Isotherm) منتقل می‌شود.

فصل دوم
معادله پخش گرما در یک ماده

مختصات متداول

- دکترینی Cartesian
- استوانه ای Cylindrical
- کروی Spherical
فصل دوم

معادله پخش گرمای در یک ماده

بر طبق قانون اول ترمودینامیک
دایر می‌کنیم:

\[\dot{E}_{\text{in}} - \dot{E}_{\text{out}} + \dot{E}_{\text{gen}} = \frac{dE_{\text{sys}}}{dt} \]

کل انرژی ورودی به سیستم
- کل انرژی خروجی از سیستم
+ انرژی تولیدی در سیستم = تفسیر از کل انرژی سیستم

bulk:

\[\rho \left(\frac{\partial u}{\partial t} + \nabla \cdot (u \rho) \right) = \nabla \cdot (\tau + \rho f) \]

بنابراین:

\[
\begin{align*}
q_x &= q_x + \frac{\partial q_x}{\partial x} \, dx \\
q_y &= q_y + \frac{\partial q_y}{\partial y} \, dy \\
q_z &= q_z + \frac{\partial q_z}{\partial z} \, dz
\end{align*}
\]

از طرفی، با استفاده از بسط مربوط به تیمو نوری درای خواهیم داشت:
فصل دوم

معادله پخش گرم‌ما در یک ماده

$$- \frac{\partial q_x}{\partial x} \, dx - \frac{\partial q_y}{\partial y} \, dy - \frac{\partial q_z}{\partial z} \, dz + \dot{q}_{gen} \, dx \, dy \, dz = mC \frac{dT}{dt}$$

و در نتیجه:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q}_{gen} = \rho C \frac{dT}{dt}$$
فصل دوم
معادله پخش گرما در یک ماده

به طور مشابه برای مختصات استوایی ای داریم:

\[
\frac{1}{r} \frac{\partial}{\partial r} \left(k r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q}_{gen} = \rho C \frac{dT}{dt}
\]

فصل دوم
معادله پخش گرما در یک ماده

و نیز برای مختصات گروهی داریم:

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(k r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) \\
+ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(k \sin \theta \frac{\partial T}{\partial \theta} \right) + \dot{q}_{gen} = \rho C \frac{dT}{dt}
\]
مثال

فصل دوم

اکر ضریب هدایت حرارتی (k) ثابت باشد، معادله هدایت در مختصات دکارتی را در شرایط زیر بازنویسی کنید: (الف) شرایط کلی، (ب) حالت پاپا، (پ) حالت پاپا و بدون تولید کرما و (ج) حالت کنزا و بدون تولید کرما

معادله هدایت دکارتی

الف) شرایط کلی

\[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}_{\text{gen}}}{k} = \frac{1}{\alpha} \frac{dT}{dt} \]

پ) حالت پاپا

\[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \]

ب) حالت پاپا و بدون تولید کرما

(ج) حالت کنزا و بدون تولید کرما

\[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0 \]

\[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}_{\text{gen}}}{k} = 0 \]
فصل دوم

معادله هدایت یک بعدی برای ۳ دستگاه مختصات

معادله هدایت یک بعدی برای ۳ دستگاه مختصات (دکارتی، استوانه ای و کروی) می توان در قالب یک فرم ساده به صورت زیر نوشته:

\[
\frac{1}{r^n} \frac{\partial}{\partial r} \left(kr^n \frac{\partial T}{\partial r} \right) + \dot{q}_{gen} = \rho C \frac{dT}{dt}
\]

که

اگر \(n=0 \) باشد، معادله هدایت یک بعدی در مختصات دکارتی (برای دیوار گول) بدست می‌آید.

اگر \(n=1 \) باشد، معادله هدایت یک بعدی در مختصات استوانه‌ای (برای اسناد بلند) بدست می‌آید.

اگر \(n=2 \) باشد، معادله هدایت یک بعدی در مختصات کروی (برای کره با شرایط منقارن) بدست می‌آید.

مثال

یک دیوار تخت با خواص حرارتی ثابت و بدون تولید حرارت را در نظر بگیرید. توزیع دما در دیوار را در شرایط پایانی با فرض یک بعدی بودن انتقال حرارت در دیوار محاسبه نمایید.

\[
\frac{d^2 T}{dx^2} = 0
\]

\[
\Rightarrow \frac{dT}{dx} = C_1
\]

\[
\Rightarrow T(x) = C_1 x + C_2
\]

توییب دما خطی است.

\(T(0) = 50^\circ C \) و \(T(L) = 15^\circ C \).

\(\rho \) تیلنگ که محاسبه می‌شود؟\(C_1 \) و \(C_2 \)
فصل دوم

شرايط مرزي

براي حل كامل معادله انتقال حرارت، باید شرایط فیزیکی موجود در مرزهای ماده مشخص باشد.

در ادامه، به معرفی شرایط مرازي در انتقال حرارت می پردازيم.

1- شرط مرزي دما مشخص (شرط مرزي نوع اول- دیريکله)

\[T(0, t) = T_1 \]
\[T(L, t) = T_2 \]
شرايط مربي

فصل دوم

3- شرط مربي شار مشخص (شرط مربي نوع دوم - نیومن)

$\frac{\partial T}{\partial x} = 0$

$T(L, t) = 60^\circ \text{C}$

$T(0, t) = 0$

$q = -k \frac{\partial T}{\partial x}$

شرائط حراري در جهت مشابه محور مختصات

الحل خاص 2-1: مراز عایق

$\frac{k \partial T(0, t)}{\partial x} = 0$

or

$\frac{\partial T(0, t)}{\partial x} = 0$
شرايط مرزي

فصل دوم

شرايط مرزي شار مشخص (شرط مرزي نوع دوم - نيوبور)

حالت خاص ۲-۲: تقارن حراري

\[\frac{\partial T(L/2, t)}{\partial x} = 0 \]

شرايط مرزي نوع دوم - نيومن

شرايط مرزي جابه جابي

\[-k \frac{\partial T(0, t)}{\partial x} = h_1[T_{w1} - T(0, t)] \]

\[-k \frac{\partial T(L, t)}{\partial x} = h_2[T(L, t) - T_{w2}] \]
۳- شرط مرزی تابش

\[-k \frac{\partial T(0, t)}{\partial x} = e_1 \sigma [T_{\text{sur.1}} - T(0, t)^4] \]

\[-k \frac{\partial T(L, t)}{\partial x} = e_2 \sigma [T(L, t)^4 - T_{\text{sur.2}}^4] \]

۵- شرط مرزی مرز مشترک (با فرض تماس کامل)

\[T_A(x_0, t) = T_B(x_0, t) \]

\[-k_A \frac{\partial T_A(x_0, t)}{\partial x} = -k_B \frac{\partial T_B(x_0, t)}{\partial x} \]
فصل دوم

٦- شرایط مرزی عمومی

انتقال گرمایه سطح به تمام روشها

انتقال گرمایه از سطح به تمام روشها