Skip to main content
Article
Direct Probe of Interfacial Structure during Mechanical Contact between Two Polymer Films Using Infrared Visible Sum Frequency Generation Spectroscopy
The Journal of Adhesion
  • Gary P. Harp, The University Of Akron
  • Ali Dhinojwala, The University Of Akron
Document Type
Article
Publication Date
9-4-2006
Abstract

Infrared-visible sum frequency generation spectroscopy (SFG) has been used to study the interface between poly(vinyl-N-octadecylcarbamate-co-vinyl acetate) (PVNODC) and polystyrene (PS) films during mechanical contact. The films were contacted using a deformable semispherical poly(dimethylsiloxane) (PDMS) lens that can be easily adapted to incorporate friction and adhesion force measurements. A strong methyl symmetric peak and Fermi resonance band associated with the alkyl side chains of PVNODC are observed in the SFG spectrum. This suggests that the interface structure during mechanical contact is more ordered than the structure observed for PS/PVNODC bilayer films annealed above the melting and glass transition temperatures of PVNODC and PS. Complementary contact mechanics measurements reveal a small adhesion hysteresis supporting our hypothesis that the interface structure during mechanical contact is not significantly different from the structure of the air interfaces before contact.

Citation Information
Gary P. Harp and Ali Dhinojwala. "Direct Probe of Interfacial Structure during Mechanical Contact between Two Polymer Films Using Infrared Visible Sum Frequency Generation Spectroscopy" The Journal of Adhesion Vol. 81 Iss. 3-4 (2006) p. 371 - 379
Available at: http://works.bepress.com/ali_dhinojwala/82/