Skip to main content
Article
Delivering Broadband Light Deep into Diffusive Media
2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 (2023)
  • Alexey Yamilov, Missouri University of Science and Technology
Abstract
Waves propagate diffusively through disordered media, such as biological tissue, clouds, and paint, due to random scattering. Recent advances in optical wavefront shaping techniques have enabled controlling coherent light propagation in multiple-scattering samples. We overcome wave diffusion to deliver optical energy into a target region of arbitrary size and shape anywhere inside a strong-scattering system. This is particularly important for applications such as photoacoustic microscopy and optogenetics, where light needs to be deposited deep into biological tissue. For monochromatic light, we previously introduced the deposition matrix (DM) Z(ω), which maps its input wavefront to the field distribution in the target region [1]. The eigenchannel with the largest eigenvalue provides the wavefront for maximal energy delivery. Since the enhancement is achieved via constructive interference of scattered waves, the optimal wavefront will vary with input wavelength.
Disciplines
Publication Date
Winter January 1, 2023
DOI
10.1109/CLEO/EUROPE-EQEC57999.2023.10232038
Citation Information
Alexey Yamilov. "Delivering Broadband Light Deep into Diffusive Media" 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 (2023)
Available at: http://works.bepress.com/alexey-yamilov/135/