## Georgia Southern University

From the SelectedWorks of Alexander M. Stokolos

# A Note on the Maximal GurovReshetnyak Condition 

A. A. Korenovskyy, Odessa National University
A. K. Lerner, Bar-Ilan University, Israel

Alexander M. Stokolos, Georgia Southern University

# A NOTE ON THE MAXIMAL GUROV-RESHETNYAK CONDITION 

A. A. Korenovskyy, A. K. Lerner and A. M. Stokolos<br>Odessa National University, IMEM, Department of Mathematical Analysis<br>Dvoryanskaya, 2, 65026 Odessa, Ukraine; anakor@paco.net<br>Bar-Ilan University, Department of Mathematics<br>52900 Ramat Gan, Israel; aklerner@netvision.net.il<br>DePaul University, Department of Mathematical Sciences<br>Chicago, IL, 60614, U.S.A.; astokolo@depaul.edu

Dedicated to Professor Bogdan Bojarski on the occasion of his $75^{\text {th }}$ birthday.


#### Abstract

In a recent paper [17] we established an equivalence between the Gurov-Reshetnyak and $A_{\infty}$ conditions for arbitrary absolutely continuous measures. In the present paper we study a weaker condition called the maximal Gurov-Reshetnyak condition. Although this condition is not equivalent to $A_{\infty}$ even for Lebesgue measure, we show that for a large class of measures satisfying Busemann-Feller type condition it will be self-improving as is the usual Gurov-Reshetnyak condition. This answers a question raised independently by Iwaniec and Kolyada.


## 1. Introduction

Throughout the paper, $Q_{0}$ will be a bounded cube from $\mathbf{R}^{n}$, and $\mu$ will be a non-negative Borel measure on $Q_{0}$ absolutely continuous with respect to Lebesgue measure. For $f \in L_{\mu}\left(Q_{0}\right)$ and for any subcube $Q \subset Q_{0}$ set

$$
f_{Q, \mu}=\frac{1}{\mu(Q)} \int_{Q} f(x) d \mu, \quad \Omega_{\mu}(f ; Q)=\frac{1}{\mu(Q)} \int_{Q}\left|f(x)-f_{Q, \mu}\right| d \mu
$$

A function $f \in L_{\mu}\left(Q_{0}\right)$ is said to belong $B M O(\mu)$ if

$$
\sup _{Q \subset Q_{0}} \Omega_{\mu}(f ; Q)<\infty .
$$

Also we recall that the classes $A_{p}(\mu)$ and $R H_{r}(\mu), 1<p, r<\infty$, consist of all non-negative $f \in L_{\mu}\left(Q_{0}\right)$ for which there exists $c>0$ such that for all $Q \subset Q_{0}$,

$$
\left(f_{Q, \mu}\right)\left(\left(f^{-1 /(p-1)}\right)_{Q, \mu}\right)^{p-1} \leq c \quad \text { and } \quad\left(f^{r}\right)_{Q, \mu} \leq c\left(f_{Q, \mu}\right)^{r},
$$

respectively. In the unweighted case (i.e., in the case when $\mu$ is Lebesgue measure) these objects were first considered in the classical works by John and Nirenberg [15],

[^0]Muckenhoupt [20], Gehring [9], and Coifman and Fefferman [5]. It has been quickly realized that the theory developed in the unweighted case remains true for doubling measures (i.e., for those measures $\mu$ for which there exists a constant $c>0$ such that $\mu(2 Q) \leq c \mu(Q)$ for all cubes $Q)$. Only recently, it was shown in the papers by Mateu et al. [18] and by Orobitg and Pérez [21] that most of important results concerning $B M O(\mu), A_{p}(\mu)$ and $R H_{r}(\mu)$ still hold for any absolutely continuous measure $\mu$ (and even for a wider class of measures). First of all, we mention that all these objects are closely related. Namely (see [21]),

$$
\begin{equation*}
A_{\infty}(\mu) \equiv \bigcup_{1<p<\infty} A_{p}(\mu)=\bigcup_{1<r<\infty} R H_{r}(\mu) \tag{1.1}
\end{equation*}
$$

and $\log f \in B M O(\mu)$ for any $f \in A_{\infty}(\mu)$, and, conversely, given an $f \in B M O(\mu)$, there is $\lambda>0$ such that $e^{\lambda f} \in A_{\infty}(\mu)$. Also, conditions expressed in the above definitions represent a kind of so-called self-improving properties. Indeed, if $f \in$ $L_{\mu}\left(Q_{0}\right)$ belongs to $B M O(\mu)$, then $f$ belongs to $L_{\mu}^{p}\left(Q_{0}\right)$ for any $1<p<\infty$ (see [18]). Moreover, $A_{p}(\mu) \Rightarrow A_{p-\delta}(\mu)$ and $R H_{r}(\mu) \Rightarrow R H_{r+\delta}(\mu)$ for some small $\delta>0$ which may differ in each implication (see [21]).

In the mid 70 's, Gurov and Reshetnyak [10, 11] introduced in analogy with the definition of $B M O(\mu)$ (in the unweighted case) the class $G R_{\varepsilon}(\mu), 0<\varepsilon<2$, which consists of all non-negative $f \in L_{\mu}\left(Q_{0}\right)$ such that for any $Q \subset Q_{0}$,

$$
\begin{equation*}
\Omega_{\mu}(f ; Q) \leq \varepsilon f_{Q, \mu} \tag{1.2}
\end{equation*}
$$

This class has found interesting applications in quasi-conformal mappings and PDE's (see, e.g., $[3,14]$ ). Observe that (1.2) trivially holds for $\varepsilon=2$, and therefore only the case $0<\varepsilon<2$ is of interest. It turned out that (1.2) also represents a kind of selfimproving property. It was established in $[3,10,11,14,19,26]$ for Lebesgue measure and in $[7,8]$ for doubling measures that if $\varepsilon$ is small enough, namely $0<\varepsilon<c 2^{-n}$, then the $G R_{\mu}(\varepsilon)$ implies $f \in L_{\mu}^{p}\left(Q_{0}\right)$ for some $p>1$. In [16], it was shown that in the case of $n=1$ and Lebesgue measure this self-improvement holds for the whole range $0<\varepsilon<2$. In a recent paper [17], the authors have established a rather surprising analogue of (1.1), namely for any absolutely continuous $\mu$,

$$
\begin{equation*}
A_{\infty}(\mu)=\bigcup_{0<\varepsilon<2} G R_{\varepsilon}(\mu) \tag{1.3}
\end{equation*}
$$

First, this result shows a close relation between the classes $G R_{\varepsilon}(\mu)$ and $A_{p}(\mu)$. Second, it follows immediately that for any absolutely continuous $\mu$ and $n \geq 1$ and for all $0<\varepsilon<2$ the $G R_{\varepsilon}(\mu)$ condition implies higher integrability properties of $f$.

Iwaniec and Kolyada independently asked the authors whether a weaker variant of (1.2):

$$
\begin{equation*}
f_{\mu, Q_{0}}^{\#}(x) \leq \varepsilon M_{\mu, Q_{0}} f(x) \quad \mu \text {-a.e. in } Q_{0} \tag{1.4}
\end{equation*}
$$

has an analogous self-improving property for all $\varepsilon<2$. Here, as usual,

$$
f_{\mu, Q_{0}}^{\#}(x)=\sup _{Q \ni x, Q \subset Q_{0}} \Omega_{\mu}(f ; Q) \quad \text { and } \quad M_{\mu, Q_{0}} f(x)=\sup _{Q \ni x, Q \subset Q_{0}}|f|_{Q, \mu}
$$

The property expressed in (1.4) we call the maximal Gurov-Reshetnyak condition, and denote it by $M G R_{\varepsilon}(\mu)$.

Observe that the passing to maximal operators is a quite natural and well-known approach to many questions mentioned above. For example, Gehring's approach to the reverse Hölder inequality [9] as well as Bojarski's proof of the Gurov-Reshetnyak Lemma for small $\varepsilon[3]$ were based on maximal function estimates. Actually, many papers establishing the self-improving property of $G R_{\varepsilon}(\mu)$ for small $\varepsilon$ contain implicitly the same for $M G R_{\varepsilon}(\mu)$ (see, e.g., [3, 7, 19]). On the other hand, author's proof of (1.3) cannot be directly generalized to the class $M G R_{\varepsilon}(\mu)$. Therefore, the question of Iwaniec and Kolyada is of interest for $c<\varepsilon<2$.

In this paper we show that for a large class of measures, including any doubling measures in $\mathbf{R}^{n}$ and any absolutely continuous measures in $\mathbf{R}^{1}$, the maximal GurovReshetnyak condition $M G R_{\varepsilon}(\mu)$ is self-improving for any $0<\varepsilon<2$. The relevant class of measures will be given in the following definition.

Definition 1.1. We say that a measure $\mu$ satisfies the Busemann-Feller type condition (BF-condition) if

$$
\varphi_{\mu}(\lambda) \equiv \sup _{E} \frac{\mu\left\{x: M_{\left.\mu, Q_{0} \chi_{E}(x)>\lambda\right\}}^{\mu(E)}<\infty \quad(0<\lambda<1), ~\right.}{\text {, }}
$$

where the supremum is taken over all measurable sets $E \subset Q_{0}$ of positive $\mu$-measure.
In the case of Lebesgue measure and the maximal operator associated with the homothety-invariant differential basis, this condition coincides with the well-known Busemann-Feller density condition (see, e.g., [4] or [12, p. 122]).

Our main result is the following.
Theorem 1.2. Let $\mu$ satisfy the BF-condition, and let $0<\varepsilon<2$. Assume that a non-negative $f \in L_{\mu}\left(Q_{0}\right)$ satisfies the maximal Gurov-Reshetnyak condition $M G R_{\varepsilon}(\mu)$. Then there is $p_{0}>1$ depending on $\mu, \varepsilon$ and $n$ such that for all $1 \leq p<p_{0}$ one has

$$
\begin{equation*}
\left(f^{p}\right)_{Q_{0}, \mu} \leq c\left(f_{Q_{0}, \mu}\right)^{p}, \tag{1.5}
\end{equation*}
$$

where $c$ depends on $\mu, \varepsilon, p$ and $n$.
Some comments about this result are in order. By (1.1) and (1.3), the usual Gurov-Reshetnyak condition $G R_{\varepsilon}(\mu)$ implies (1.5) with any subcube $Q \subset Q_{0}$ instead of $Q_{0}$. Theorem 1.2 shows that although we cannot obtain from the $M G R_{\varepsilon}(\mu)$ condition such a nice conclusion, we still have a higher integrability result. In fact, $M G R_{\varepsilon}(\mu)$ is really much weaker than $G R_{\varepsilon}(\mu)$. Indeed, let $n=1, Q_{0}=(0,1), \mu$ is Lebesgue measure, and $f$, for example, is the characteristic function of the interval $(0,7 / 8)$. Then it is easy to see that $f_{Q_{0}, \mu}^{\#}(x) \leq 1 / 2$, while $M_{Q_{0}, \mu} f(x)>7 / 8$ for all $x \in(0,1)$. Thus, (1.4) holds for this function with $\varepsilon=4 / 7$. However, $f \notin A_{\infty}(\mu)$, since it is zero on a set of positive measure. Hence, in view of (1.3), (1.2) cannot hold for this $f$ with any $\varepsilon<2$. This example shows also that the class $G R_{\varepsilon}(\mu)$ in (1.3) cannot be replaced by $M G R_{\varepsilon}(\mu)$.

We make several remarks about the BF-condition. It is easy to see that this condition holds provided $M_{\mu}$ has a weak type $(p, p)$ property with respect to $\mu$ for some $p>0$. A standard argument shows that if $\mu$ is doubling in $\mathbf{R}^{n}$, then $M_{\mu}$ is of weak type $(1,1)$. It is well-known that in the case $n=1$ the doubling condition can be completely removed; namely in this case, $M_{\mu}$ is of weak type $(1,1)$ for arbitrary Borel measure $\mu$ (see [22]). It has been recently shown in [23] that in the case $n \geq 2$ for a large class of radial (and non-doubling, in general) measures, including, for example, a Gaussian measure, $M_{\mu}$ will be of strong type $(p, p)$ for any $p>1$. On the other hand, it was mentioned in [25] that there exists $\mu$ for which $M_{\mu}$ will not be of strong type $(p, p)$ for any $p>1$. In Section 3 below we give an example of $\mu$ (in the case $n=2$ ) for which the BF-condition does not hold.

We would like to emphasize that we still do not know whether the BF-condition in Theorem 1.2 is really necessary. In other words we do not know whether there exist an absolutely continuous measure $\mu$ on a cube $Q_{0} \subset \mathbf{R}^{n}, n \geq 2$, and a function $f \in L_{\mu}\left(Q_{0}\right)$ such that $\mu$ does not satisfy the BF-condition, $f$ satisfies (1.4) for some $\varepsilon<2$ and $f \notin L_{\mu}^{p}\left(Q_{0}\right)$ for any $p>1$.

Let us mention also that Theorem 1.2 gives yet another proof of the GurovReshetnyak Lemma for the whole range of $\varepsilon$ if $\mu$ is a BF-measure.

The paper is organized as follows. In the next section we prove our main result. Section 3 contains a detailed analysis of the BF-condition.

## 2. Proof of main result

2.1. Some auxiliary propositions. We first recall that the non-increasing rearrangement of a measurable function $f$ on $Q_{0}$ with respect to $\mu$ is defined by

$$
f_{\mu}^{*}(t)=\inf \left\{\alpha>0: \mu\left\{x \in Q_{0}:|f(x)|>\alpha\right\} \leq t\right\} \quad\left(0<t<\mu\left(Q_{0}\right)\right)
$$

Set also $f_{\mu}^{* *}(t)=t^{-1} \int_{0}^{t} f_{\mu}^{*}(\tau) d \tau$. Note that [2, pp. 43, 53]

$$
\begin{equation*}
\int_{0}^{t} f_{\mu}^{*}(\tau) d \tau=\sup _{E \subset Q_{0}: \mu(E)=t} \int_{E}|f| d \mu \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{Q_{0}}|f|^{p} d \mu=\int_{0}^{\mu\left(Q_{0}\right)} f_{\mu}^{*}(\tau)^{p} d \tau \quad(p>0) \tag{2.2}
\end{equation*}
$$

We will need a local variant of the well-known Herz-type estimate

$$
f_{\mu}^{* *}(t) \leq c\left(M_{\mu} f\right)_{\mu}^{*}(t)
$$

In the case of $Q_{0}=\mathbf{R}^{n}$ and Lebesgue measure this result can be found in [2, p. 122]. It was extended to arbitrary absolutely continuous measures $\mu$ in [1]. The case of the bounded cube $Q_{0}$ requires a slightly modified argument based on the following covering lemma from [18].

Lemma 2.1. Let $E$ be a subset of $Q_{0}$ with $\mu(E) \leq \rho \mu\left(Q_{0}\right), 0<\rho<1$. Then there exists a sequence $\left\{Q_{i}\right\}$ of cubes contained in $Q_{0}$ such that
(i) $\mu\left(Q_{i} \cap E\right)=\rho \mu\left(Q_{i}\right)$;
(ii) $\bigcup_{i} Q_{i}=\bigcup_{k=1}^{B_{n}} \bigcup_{i \in F_{k}} Q_{i}$, where each of the family $\left\{Q_{i}\right\}_{i \in F_{k}}$ is formed by pairwise disjoint cubes and a constant $B_{n}$ depends only on $n$;
(iii) $E^{\prime} \subset \cup_{i} Q_{i}$, where $E^{\prime}$ is the set of $\mu$-density points of $E$.

Proposition 2.2. For any $f \in L_{\mu}\left(Q_{0}\right)$ we have

$$
\begin{equation*}
f_{\mu}^{* *}(t) \leq c_{n}\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t) \quad\left(0<t<\mu\left(Q_{0}\right)\right), \tag{2.3}
\end{equation*}
$$

where $c_{n}$ depends only on $n$.
Proof. Let $\Omega=\left\{x \in Q_{0}: M_{\mu, Q_{0}} f(x)>\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t)\right\}$. Then for some $\delta_{0}$ and for any $\delta<\delta_{0}$ we have $\mu(\Omega) \leq t \leq(1-\delta) \mu\left(Q_{0}\right)$. Fix such a $\delta$ and apply Lemma 2.1 to the set $\Omega$ and number $\rho=1-\delta$. We get a sequence $\left\{Q_{i}\right\}$ satisfying properties (i)-(iii) of the lemma. It follows easily from (i) that $\mu\left(Q_{i} \cap \Omega^{c}\right)>0$, and hence, $|f|_{Q_{i}, \mu} \leq\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t)$. From this and from properties (i)-(iii) we obtain

$$
\int_{\Omega}|f| d \mu \leq \int_{U_{i} Q_{i}}|f| d \mu \leq \sum_{k=1}^{B_{n}} \sum_{i \in F_{k}} \mu\left(Q_{i}\right)|f|_{Q_{i}, \mu} \leq \frac{B_{n}}{1-\delta} t\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t) .
$$

Letting $\delta \rightarrow 0$ yields $\int_{\Omega}|f| d \mu \leq B_{n} t\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t)$. Therefore, for any measurable set $E \subset Q_{0}$ with $\mu(E)=t$,

$$
\begin{aligned}
\int_{E}|f| d \mu \leq \int_{E \backslash \Omega}|f| d \mu+\int_{\Omega}|f| d \mu & \leq\left(\mu(E \backslash \Omega)+B_{n} t\right)\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t) \\
& \leq\left(B_{n}+1\right) t\left(M_{\mu, Q_{0}} f\right)_{\mu}^{*}(t)
\end{aligned}
$$

Taking the supremum over all $E \subset Q_{0}$ with $\mu(E)=t$ and using (2.1) completes the proof.

Given a measurable $f$, define the local maximal function $m_{\lambda, \mu} f$ (cf. [24]) by

$$
m_{\lambda, \mu} f(x)=\sup _{Q \ni x, Q \subset Q_{0}}\left(f \chi_{Q}\right)_{\mu}^{*}(\lambda \mu(Q)) \quad(0<\lambda<1) .
$$

Proposition 2.3. Suppose that $\mu$ satisfies the BF-condition. Then for any measurable $f$,

$$
\begin{equation*}
\left(m_{\lambda, \mu} f\right)_{\mu}^{*}(t) \leq f_{\mu}^{*}\left(t / \varphi_{\mu}(\lambda)\right) \quad\left(0<t<\mu\left(Q_{0}\right)\right) . \tag{2.4}
\end{equation*}
$$

Proof. It follows from the definitions that

$$
\left\{x \in Q_{0}: m_{\lambda, \mu} f(x)>\alpha\right\}=\left\{x \in Q_{0}: M_{\mu, Q_{0}} \chi_{\{|f|>\alpha\}}(x)>\lambda\right\} .
$$

Therefore,

$$
\mu\left\{x \in Q_{0}: m_{\lambda, \mu} f(x)>\alpha\right\} \leq \varphi_{\mu}(\lambda) \mu\left\{x \in Q_{0}:|f(x)|>\alpha\right\}
$$

which is equivalent to (2.4).

Lemma 2.4. ([20, Lemma 4]) Let $h$ be a non-negative and non-increasing function on the interval $[0, a]$, and assume that

$$
\frac{1}{s} \int_{0}^{s} h(\tau) d \tau \leq D h(s) \quad(0<s<a / r)
$$

for some $D, r>1$. Then if $1 \leq p<D /(D-1)$,

$$
\int_{0}^{a} h^{p}(\tau) d \tau \leq c\left(\int_{0}^{a} h(\tau) d \tau\right)^{p}
$$

where $c$ depends on $r, p$ and $D$.
Actually, this lemma was proved in [20] with $r=20$ but exactly the same argument works for any $r>1$.
2.2. Proof of Theorem 1.2. Choose some constants $\alpha, \lambda \in(0,1)$ such that $(1-\alpha) \lambda>\varepsilon / 2$. Take an arbitrary $\delta \in(0,1-\lambda)$. Given a cube $Q \subset Q_{0}$, set $E_{Q}=\left\{x \in Q: f(x)>f_{Q, \mu}\right\}$, and let

$$
\mathscr{Q}=\left\{Q \subset Q_{0}: \mu\left(E_{Q}\right) \geq \alpha \mu(Q)\right\} .
$$

Observe that if $Q \subset \mathscr{Q}$, then $f_{Q, \mu} \leq\left(f \chi_{Q}\right)_{\mu}^{*}(\alpha \mu(Q))$. Therefore,

$$
\begin{equation*}
M_{\mu, Q_{0}} f(x) \leq \max \left(m_{\alpha, \mu} f(x), \sup _{Q \ni x, Q \not \subset \mathscr{Q}} f_{Q, \mu}\right) \tag{2.5}
\end{equation*}
$$

Assume that $Q \not \subset \mathscr{Q}$. Set $E_{Q}^{c}=Q \backslash E_{Q}$,

$$
A_{1}(Q)=\left\{x \in E_{Q}^{c}: f_{Q, \mu}-f(x)>\left(\left(f_{Q, \mu}-f\right) \chi_{E_{Q}^{c}}\right)_{\mu}^{*}\left(\lambda \mu\left(E_{Q}^{c}\right)\right)\right\}
$$

and

$$
A_{2}(Q)=\left\{x \in E_{Q}^{c}: f(x)>\left(f \chi_{E_{Q}^{c}}\right)_{\mu}^{*}\left((1-\lambda-\delta) \mu\left(E_{Q}^{c}\right)\right)\right\}
$$

Then $\mu\left(A_{1}(Q) \cup A_{2}(Q)\right) \leq(1-\delta) \mu\left(E_{Q}^{c}\right)$ and $\mu\left(E_{Q}^{c}\right) \geq(1-\alpha) \mu(Q)$. Therefore we obtain

$$
\begin{aligned}
& f_{Q, \mu} \leq \inf _{y \in E_{Q}^{c} \backslash\left\{A_{1}(Q) \cup A_{2}(Q)\right\}}\left(\left(f_{Q, \mu}-f(y)\right)+f(y)\right) \\
& \leq\left(\left(f_{Q, \mu}-f\right) \chi_{E_{Q}^{c}}^{*}\right)_{\mu}^{*}\left(\lambda \mu\left(E_{Q}^{c}\right)\right)+\left(f \chi_{E_{Q}^{c}}\right)_{\mu}^{*}\left((1-\lambda-\delta) \mu\left(E_{Q}^{c}\right)\right) \\
& \leq \frac{\mu(Q)}{\mu\left(E_{Q}^{c}\right)} \frac{1}{2 \lambda} \frac{2}{\mu(Q)} \int_{E_{Q}^{c}}\left(f_{Q, \mu}-f\right) d \mu+\left(f \chi_{E_{Q}^{c}}\right)_{\mu}^{*}\left((1-\lambda-\delta) \mu\left(E_{Q}^{c}\right)\right) \\
& \leq \frac{1}{2 \lambda(1-\alpha)} \Omega_{\mu}(f ; Q)+\left(f \chi_{Q}\right)_{\mu}^{*}((1-\lambda-\delta)(1-\alpha) \mu(Q))
\end{aligned}
$$

This along with the maximal Gurov-Reshetnyak condition (1.4) yields

$$
\sup _{Q \ni x, Q \not \subset \mathscr{Q}} f_{Q, \mu} \leq \frac{\varepsilon}{2 \lambda(1-\alpha)} M_{\mu, Q_{0}} f(x)+m_{\gamma, \mu} f(x),
$$

where $\gamma=(1-\lambda-\delta)(1-\alpha)$. From this and from (2.5) we obtain

$$
M_{\mu, Q_{0}} f(x) \leq c m_{\alpha^{\prime}, \mu} f(x),
$$

where $c=\frac{2 \lambda(1-\alpha)}{2 \lambda(1-\alpha)-\varepsilon}$ and $\alpha^{\prime}=\min (\alpha, \gamma)$. Taking the rearrangements of both parts and using Propositions 2.2 and 2.3, we have

$$
f_{\mu}^{* *}(t) \leq c f_{\mu}^{*}\left(t / \varphi_{\mu}\left(\alpha^{\prime}\right)\right) \quad\left(0<t<\mu\left(Q_{0}\right)\right) .
$$

This implies easily

$$
f_{\mu}^{* *}(t) \leq c \varphi_{\mu}\left(\alpha^{\prime}\right) f_{\mu}^{*}(t) \quad\left(0<t<\mu\left(Q_{0}\right) / \varphi_{\mu}\left(\alpha^{\prime}\right)\right)
$$

which along with (2.2) and Lemma 2.4 completes the proof.

## 3. On the BF-condition

First of all, we observe that we do not know whether for some absolutely continuous $\mu$ the function $\varphi_{\mu}$ can take both finite and infinite values. The following proposition represents only a partial answer to this question.

Proposition 3.1. There exists a constant $\gamma<1$ depending only on $n$ such that if $\varphi_{\mu}(\gamma)<\infty$, then $\varphi_{\mu}(\lambda)<\infty$ for all $0<\lambda<1$.

Proof. Given a set $E \subset Q_{0}$ and $0<\lambda<1$, let $E_{\lambda}=\left\{x \in Q_{0}: M_{\mu, Q_{0}} \chi_{E}(x)>\lambda\right\}$. By Proposition 2.2, for any $E \subset Q \subset Q_{0}$,

$$
\min (1, \mu(E) / t) \leq c_{n}\left(M_{\mu, Q} \chi_{E}\right)_{\mu}^{*}(t)
$$

or, equivalently,

$$
\frac{\mu(E)}{c_{n} \lambda} \leq \mu\left\{x \in Q: M_{\mu, Q} \chi_{E}(x)>\lambda\right\} \leq \mu\left(Q \cap E_{\lambda}\right)
$$

Hence,

$$
M_{\mu, Q_{0}} \chi_{E}(x) \leq c_{n} \lambda M_{\mu, Q_{0} \chi_{E_{\lambda}}}(x) \quad\left(x \in Q_{0}\right),
$$

which yields

$$
\begin{equation*}
\mu\left\{x \in Q_{0}: M_{\mu, Q_{0}} \chi_{E}>c_{n} \xi \lambda\right\} \leq \mu\left\{x \in Q_{0}: M_{\mu, Q_{0}} \chi_{E_{\lambda}}>\xi\right\} . \tag{3.1}
\end{equation*}
$$

Therefore,

$$
\varphi_{\mu}\left(c_{n} \lambda \xi\right) \leq \varphi_{\mu}(\lambda) \varphi_{\mu}(\xi) \quad\left(\lambda, \xi \in(0,1): \lambda \xi<1 / c_{n}\right)
$$

This clearly implies the desired result if $0<\lambda<1 / c_{n}$. The case $1 / c_{n}<\lambda<1$ follows from the monotonicity of $\varphi_{\mu}(\lambda)$.

Remark 3.2. The last proposition means that Theorem 1.2 still holds if one relaxes the BF-condition to

$$
\mu\left\{x \in Q_{0}: M_{\mu, Q_{0}} \chi_{E}>\gamma\right\} \leq c \mu(E) \quad \forall E \subset Q_{0}
$$

with some $0<\gamma<1$. Note that a similar condition with $\gamma=1 / 2$ for the directional maximal operator appeared in [6] (see also [12, p. 372]), where it was called a Tauberian condition.

Remark 3.3. Inequality (3.1) is a full analogue of the Lemma from [13], which was proved there in a different context.

We give now an example of the absolutely continuous measure $\mu$ on the unit cube $(0,1)^{2}$ which does not satisfy the BF-condition.

Let $\delta, L>0$ and

$$
d \mu=\left(\delta \chi_{(-L, 0)^{2}}(x, y)+\chi_{(0, L)^{2}}(x, y)\right) d x d y
$$

Given a point $(x, y) \in(0, L)^{2}$, let $Q$ be a minimal cube contained in $(-2 L, 2 L)^{2}$ and containing $(x, y)$ and the cube $(-L, 0)^{2}$. Then $\mu(Q)=x y+\delta L^{2}$. Hence, setting $E=(-L, 0)^{2}$, we get

$$
\begin{equation*}
M_{\mu,(-2 L, 2 L)^{2}} \chi_{E}(x, y) \geq \frac{\mu(Q \cap E)}{\mu(Q)}=\frac{\delta L^{2}}{x y+\delta L^{2}} \tag{3.2}
\end{equation*}
$$

Denote $c_{\lambda}=\frac{1}{\lambda}-1$. Assuming $\delta c_{\lambda}<1$, we get, by (3.2),

$$
\begin{align*}
\frac{\mu\left\{M_{\mu,(-2 L, 2 L)^{2}} \chi_{E}(x, y)>\lambda\right\}}{\mu(E)} & \geq \frac{\mu\left\{(x, y) \in(0, L)^{2}: x y<\delta L^{2} c_{\lambda}\right\}}{\delta L^{2}} \\
& \geq c_{\lambda} \int_{\delta c_{\lambda} L}^{L} \frac{d x}{x}=c_{\lambda} \log \frac{1}{\delta c_{\lambda}} \tag{3.3}
\end{align*}
$$

Choose now a sequence of cubes $\left\{Q_{i}\right\}$ such that the cubes $2 Q_{i}$ are pairwise disjoint and $\bigcup_{i=1}^{\infty} 2 Q_{i} \subset(0,1)^{2}$. We divide each cube $Q_{i}$ into four equal quadrants, and let $Q_{i}^{\prime}$ and $Q_{i}^{\prime \prime}$ be the first and the third quadrants respectively. Let $\left\{\delta_{i}\right\}$ be a sequence of positive numbers such that $\delta_{i} \rightarrow 0$ as $i \rightarrow \infty$. Set

$$
d \mu=\sum_{i=1}^{\infty}\left(\delta_{i} \chi_{Q_{i}^{\prime \prime}}(x, y)+\chi_{Q_{i}^{\prime}}(x, y)\right) d x d y
$$

Given a $\lambda \in(0,1)$, there is an $N$ such that $\delta_{i} c_{\lambda}<1$ for all $i \geq N$. Hence, by (3.3),

$$
\begin{equation*}
\frac{\mu\left\{M_{\mu,(0,1)^{2}} \chi_{Q_{i}^{\prime \prime}}>\lambda\right\}}{\mu\left(Q_{i}^{\prime \prime}\right)} \geq c_{\lambda} \log \frac{1}{c_{\lambda} \delta_{i}} \quad(i \geq N) \tag{3.4}
\end{equation*}
$$

This shows that $\mu$ does not satisfy the BF-condition, since the right-hand side of (3.4) tends to $\infty$ as $i \rightarrow \infty$.

In conclusion we give one more proposition concerning the function $\varphi_{\mu}$ which is probably of some independent interest. We recall that the operator $M_{\mu}$ is said to be of restricted weak type $(p, p)$ if there exists $c>0$ such that

$$
\begin{equation*}
\varphi_{\mu}(\lambda) \leq c \lambda^{-p} \quad(0<\lambda<1) \tag{3.5}
\end{equation*}
$$

By the well-known interpolation theorem of Stein and Weiss [2, p. 233], (3.5) implies the strong type $(q, q)$ of $M_{\mu}$ for $q>p$. The following proposition shows first that a slightly better estimate than (3.5) allows us to get the strong type ( $p, p$ ), and, second, it yields a very simple proof of the Stein-Weiss theorem for $M_{\mu}$.

Proposition 3.4. If $\int_{0}^{1} \varphi_{\mu}(\lambda)^{1 / q} d \lambda<\infty$, then $M_{\mu}$ is bounded on $L_{\mu}^{q}$ and

$$
\left\|M_{\mu} f\right\|_{L_{\mu}^{q}} \leq\left(\int_{0}^{1} \varphi_{\mu}(\lambda)^{1 / q} d \lambda\right)\|f\|_{L_{\mu}^{q}} \quad(1 \leq q<\infty)
$$

Proof. By (2.2),

$$
\frac{1}{\mu(Q)} \int_{Q}|f| d \mu=\int_{0}^{1}\left(f \chi_{Q}\right)_{\mu}^{*}(\lambda \mu(Q)) d \lambda
$$

and thus,

$$
M_{\mu} f(x) \leq \int_{0}^{1} m_{\lambda, \mu} f(x) d \lambda
$$

Applying Minkowski's inequality along with Proposition 2.3 yields

$$
\left\|M_{\mu} f\right\|_{L_{\mu}^{q}} \leq \int_{0}^{1}\left\|m_{\lambda, \mu} f\right\|_{L_{\mu}^{q}} d \lambda \leq\left(\int_{0}^{1} \varphi_{\mu}(\lambda)^{1 / q} d \lambda\right)\|f\|_{L_{\mu}^{q}},
$$

as required.

## References

[1] Asekritova, I. U., N. Ya. Krugljak, L. Maligranda, and L.-E. Persson: Distribution and rearrangement estimates of the maximal function and interpolation. - Studia Math. 124:2, 1997, 107-132.
[2] Bennett, C., and R. Sharpley: Interpolation of operators. - Academic Press, New York, 1988.
[3] Bojarski, B.: Remarks on the stability of reverse Hölder inequalities and quasi-conformal mappings. - Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 1985, 89-94.
[4] Busemann, H., and W. Feller: Zur Differentiation der Lebesgueschen Integrale. - Fund. Math. 22, 1934, 226-256.
[5] Coifman, R. R., and C. Fefferman: Weighted norm inequalities for maximal functions and singular integrals. - Studia Math. 15, 1974, 241-250.
[6] Cordoba, A., and R. Fefferman: On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis. - Proc. Natl. Acad. Sci. USA 74, 1977, 423-425.
[7] Franciosi, M.: Weighted rearrangements and higher integrability results. - Studia Math. 92:2, 1989, 131-139.
[8] Franciosi, M.: On weak reverse integral inequalities for mean oscillations. - Proc. Amer. Math. Soc. 113:1, 1991, 105-112.
[9] Gehring, F. W.: The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping. - Acta Math. 130, 1973, 265-277.
[10] Gurov, L. G.: On the stability of Lorentz mappings. Estimates for derivatives. - Dokl. Akad. Nauk 220, 1975, 273-276 (Russian); Engl. transl.: Sov. Math. Dokl. 16, 1975, 56-59.
[11] Gurov, L. G., and Yu. G. Reshetnyak: A certain analogue of the concept of a function with bounded mean oscillation. - Sibirsk. Mat. Zh. 17:3, 1976, 540-546 (Russian).
[12] de Guzman, M.: Real variable methods in Fourier analysis. - North-Holland Math. Stud. 46, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1981.
[13] Hunt, R., and D. S. Kurtz: The Hardy-Littlewood maximal function on $L(p, 1)$. - Indiana Univ. Math. J. 32, 1983, 155-158.
[14] Iwaniec, T.: On $L^{p}$-integrability in PDEs and quasiregular mappings for large exponents. Ann. Acad. Sci. Fenn. Ser. A I Math. 7:2, 1982, 301-322.
[15] John, F., and L. Nirenberg: On functions of bounded mean oscillation. - Comm. Pure Appl. Math. 14, 1961, 415-426.
[16] Korenovskif, A, A.: The connection between mean oscillations and exact exponents of summability of functions. - Mat. Sb. 181:12, 1990, 1721-1727 (Russian); Engl. transl.: Sb. Math. 71:2, 1992, 561-567.
[17] Korenovskyy, A.A., A.K. Lerner, and A. M. Stokolos: A note on the GurovReshetnyak condition. - Math. Res. Lett. 9:5-6, 2002, 579-585.
[18] Mateu, J., P. Mattila, A. Nicolau, and J. Orobitg: BMO for nondoubling measures. - Duke Math. J. 102:3, 2000, 533-565.
[19] Milman, M.: A note on interpolation and higher integrability. - Ann. Acad. Sci. Fenn. Math. 23:1, 1998, 169-180.
[20] Muckenhoupt, B.: Weighted inequalities for the Hardy maximal function. - Trans. Amer. Math. Soc. 165, 1972, 207-227.
[21] Orobitg, J., and C. Pérez: $A_{p}$ weights for nondoubling measures in $\mathbf{R}^{n}$ and applications. - Trans. Amer. Math. Soc. 354:5, 2002, 2013-2033.
[22] Sjögren, P.: A remark on the maximal function for measures in $\mathbf{R}^{n}$. - Amer. J. Math. 105, 1983, 1231-1233.
[23] Sjögren, P., and F. Soria: Sharp estimates for the non-centered maximal operator associated to Gaussian and other radial measures. - Adv. Math. 181:2, 2004, 251-275.
[24] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. - Indiana Univ. Math. J. 28, 1979, 511-544.
[25] Vargas, A.: On the maximal function for rotation invariant measures in $\mathbf{R}^{n}$. - Studia Math. 110:1, 1994, 9-17.
[26] Wik, I.: Note on a theorem by Reshetnyak-Gurov. - Studia Math. 86:3, 1987, 287-290.

Received 15 June 2006


[^0]:    2000 Mathematics Subject Classification: Primary 42B25.
    Key words: Maximal Gurov-Reshetnyak condition, self-improving properties, non-doubling measures.

