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The Bird algorithm is a computationally efficient method for simulating dilute gas flows. However, 
due to the relatively large transport coefficients at low densities, high Rayleigh or Reynolds numbers are 
difficult to achieve by this technique. We present a modified version of the Bird algorithm in which the 
relaxation processes are enhanced and the transport coefficients reduced, while preserving the correct 
equilibrium and nonequilibrium fluid properties. The present algorithm is found to be two to three or­
ders of magnitude faster than molecular dynamics for simulating complex hydrodynamical flows. 

PACS number(s): 47.45.-n, 05.20.Dd, 61.20.Ja, 47.20.Bp 

Microscopic simulation of fluids is a promising tool for 
understanding the onset of instabilities in nonequilibrium 
systems [1,2]. Complex hydrodynamic phenomena such 
as shock waves [3], flow past an obstacle [4], and 
Rayleigh-Benard instability [5,6] have been successfully 
simulated through molecular dynamics (MD) simula­
tions. The next challenge is the microscopic simulation 
of high Reynolds number flows, yet traditional MD simu­
lations of such flows seem beyond the reach of present 
day computers. 

One possibility is to consider dilute systems for which 
there exist algorithms that are much faster than compa­
rable MD simulations. The most efficient algorithms are 
undoubtedly the lattice gas cellular automata (LGCA) or 
the lattice Boltzmann (LB) method, which indeed allow 
the simulation of relatively high Reynolds number flows 
[7] and other instabilities [8,9]. Our main interest, how­
ever, is to use microscopic simulations as an "experimen­
tal" tool to check the validity of theoretical approaches 
or to account for cases where high-precision laboratory 
experiments are difficult or impossible to perform. This 
requires a method whose validity goes beyond that of 
macroscopic hydrodynamics, and which is also able to 
reproduce the correct fluctuation spectrum. This last re­
quirement is crucial since most of the existing theories 
about turbulence are essentially statistical theories [10]. 
So far, it is not clear whether the LGCA or the LB 
method contains more information than the macroscopic 
Navier-Stokes equations [11]. 

A more suitable method which fully satisfies all the 
above requirements, is the Bird algorithm designed to 
simulate the Boltzmann equation [12]: It agrees with all 
experimental data concerning rarefied gas dynamics, in­
cluding peculiar situations where hydrodynamics fail; it 
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is in perfect agreement with Landau-Lifshitz fluctuating 
hydrodynamics, even in extreme nonequilibrium condi­
tions [13]; and it reproduces correctly the data obtained 
through hard sphere molecular dynamics in strong shock 
wave conditions (Mach number > 100), a domain far 
beyond the validity of Navier-Stokes equations [14]. Yet, 
although the Bird algorithm runs about three orders of 
magnitude faster than MD in comparable situations, its 
global performance is significantly reduced when applied 
to the simulation of high Reynolds number flows. There 
are two major reasons that this occurs. 

First, one is typically interested in simulating strictly 
subsonic flows; otherwise, the shock waves generated in 
the system make the analysis and the theoretical interpre­
tation of the results extremely difficult. The Reynolds 
number is proportional to the mean flow velocity and it is 
therefore limited by the value of the sound speed. Since 
the latter is about three times smaller in dilute gases than 
in liquids, the maximum possible value of the Reynolds 
number in subsonic flows remains also about three times 
smaller in dilute gases, and there seems to be no way to 
increase this ratio. 

Second, the Reynolds number is inversely proportional 
to the kinematic viscosity coefficient, and the latter 
proves to be significantly larger in dilute gases than in 
dense fluids. This property is a serious handicap which 
clearly limits the usefulness of the Bird algorithm in 
simulating high Reynolds number flows, unless one can 
find a way to modify the values of the transport 
coefficients. In other words, the question arises: is it pos­
sible to set up an algorithm allowing the simulation of a 
fluid with adjustable transport coefficients, while remain­
ing strictly within the Boltzmann limit? The main pur­
pose of this Brief Report is to show that indeed such an 
algorithm can be constructed. 

The method we proposed is directly based on the Bird 
algorithm. To understand its basic steps, we first summa­
rize Bird's method: As with usual molecular dynamics 
methods, the state of the system is the set of particle posi­
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tions and velocities, 

{r;,v;}, i=1, ... ,N, 

where N is the total number of particles. The evolution 
of the system is integrated in time steps ll.t, typically a 
fraction of the mean collision time for a particle. Within 
a time step, the free flight motion and the particle in­
teractions (collisions) are assumed to be decoupled. The 
free flight motion for each particle i is computed as 

along with the appropriate boundary conditions. After 
all the particles have been moved, they are sorted into 
spatial cells, typically a fraction of a mean free path, A., in 
length. A set of representative collisions, for the time 
step ll.t, is chosen in each cell. For each selected pair, a 
random impact parameter is generated and the collision 
is performed. After the collision process has been comp­
leted in all cells, the particles are moved according to 
their updated velocities and the procedure is repeated as 
before. 

The resulting velocity distribution function obeys a 
Boltzmann-like equation [15]: 

ca, +v·ar)f(v,r,t)=B (//') , (1) 

where B represents a "model" collision operator. Since 
the free flight motions of the particles are computed ex­
actly, the left hand side of (1) is exact. As a consequence, 
the nondissipative parts of the resulting hydrodynamic 
equations are also exact. The nature of the dissipative 
terms, on the other hand, depends directly on the way the 
collision processes are modeled. Since B conserves ener­
gy and linear momentum, these dissipative parts are 
necessarily in the form of the divergence of a dissipative 
flux. Therefore, no matter how B is modeled, the general 
structure of the hydrodynamic equations is preserved. 
The Bird algorithm also gives the correct transport 
coefficients, as predicted by Chapman-Enskog theory 
[16], and the correct fluctuation spectrum, as given by 
Landau-Lifshitz fluctuating hydrodynamics [13]. 

Suppose now that we modify B, while preserving its 
conservation properties. The resulting hydrodynamics 
will still be correct, except for the fact that the transport 
coefficients will no longer agree with their Boltzmann ex­
pressions. We shall take advantage of this in the follow­
ing way. 

The values of the transport coefficients in dilute gases 
are directly related to the balance between two processes: 
collisions and free flights. During the collision step, the 
velocity distribution approaches locally a Maxwellian dis­
tribution. The free flight motions of the particles, on the 
other hand, destroy this local Maxwellian. These 
conflicting processes determine the "relaxation time" 7 of 
the system. The kinematic viscosity of the fluid is direct­
ly proportional to this relaxation time, as v ~7k8 T, 
where k8 and Tare the Boltzmann's constant and tem­
perature, respectively. A similar relation holds for the 
thermal diffusivity coefficient. Note that, in general, 7 is 
a function of the local temperature. 

Now suppose that we increase the time step used for 
the collisions by a scaling factor Sc, while keeping it un­
changed for the free flight step. The local velocity distri­
bution function will then be s. times "closer" to its local 
equilibrium value and, in turn, the resulting relaxation 
time and transport coefficients will also be s. times small­
er than their Boltzmann values. Of course, the effective 
time step allowed for the collisions S 5 1l.t cannot exceed 
the mean collision time per particle, since otherwise a 
given particle will experience, on average, more than one 
collision per time step. To be consistent, we must choose 
an integration time step Ss times smaller than its normal 
value, which in turn increases the CPU time of the com­
puter program by a similar amount. Moreover, since the 
mean free path A. is proportional to the relaxation time, 
decreasing the latter is equivalent to decreasing the form­
er. In other words, we need more accurate spatial resolu­
tion that can be achieved by multiplying the number of 
elementary cells by s. in each spatial direction, which in 
turn requires more memory space for the program. This 
is the price to be paid for this algorithm to be 
meaningful. Nevertheless, the "enhanced-relaxation" 
Bird algorithm still remains much faster than MD in 
comparable situations. 

The above arguments are heuristic and need to be care­
fully checked. To do so, we have performed extensive 
computer experiments in a variety of near equilibrium sit­
uations. The conclusion was that the present algorithm 
preserves the thermodynamic properties of the system 
(equation of state, sound speed, etc.), it reproduces the 
correct equilibrium fluctuation spectrum, and the trans­
port coefficients are indeed reduced by the scaling factor 
s. [17]. Here, we concentrate on nonlinear hydrodynam­
ic regimes in the case of the Rayleigh-Benard instability. 

In a fluid heated from below, the transition from con­
ductive to convective behavior is governed by the Ray­
leigh number Ra, defined as [18] 

all.TgLl
Ra (2) 

where Lz is the distance between the horizontal plates, 
A.r the thermal diffusivity coefficient, a the thermal ex­
pansion coefficient, g the acceleration field, and ll.T the 
temperature difference between the lower and upper hor­
izontal walls. The critical value of the Rayleigh number 
is about 660 for stress-free boundary conditions [6]. 

For the simulation, we consider an assembly of 40 000 
particles confined in a box whose dimensions are set to 
L, = 1A., Lz = Lx =lOA.. The fluid is subjected to an ad­
verse external gravitational acceleration g in the z direc­
tion. To ensure a nearly uniform spatial distribution of 
particles, we set g =k8 1l.T/m. Nonequilibrium con­
straints are imposed by stochastic horizontal walls that 
act as thermal reservoirs: Each time a particle strikes a 
horizontal wall, it is reinjected into the system conserving 
its tangential velocity component, while having its nor­
mal velocity component sampled from an equilibrium dis­
tribution at the wall's temperature. This thermalization 
mechanism simulates optimally stress-free boundary con­
ditions [5,6]. The vertical sides are modeled as specularly 
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reflecting walls (insulating stress-free boundary condi­
tions). The wall temperatures are set so that liTITa= 1, 
where Ta is the average temperature. For S8 = 1 (the nor­
mal Bird algorithm), the system is below the convection 
threshold since the Ra~65.2. Since v,A.rcx: l/S8 , using 
S sc = 10, we have Ra ~ 6520, well above its critical value. 

After a short transient time of about 1000 collisions 
per particle (CPP), the system evolves to a stable convec­
tive roll. After a relaxation period of 10000 CPP, statis­
tics are taken over ten sequences of 20 000 CPP. This 
procedure allows an estimation of statistical errors; mea­
sured velocities and temperature are accurate to about 
8%. 

To verify our results from the Bird simulation, we 
compare them with those obtained from the Navier­
Stokes equations. Because of the complexity of this prob­
lem (non-Bousinesq fluid, state-dependent transport 
coefficients, mixed boundary conditions, etc.), we solve 
the full macroscopic hydrodynamic equations numerical­
ly using standard techniques [6]. Figure 1 illustrates the 
x component of the velocity profile versus z. The convec­
tive velocity profile measured in the enhanced-relaxation 
Bird simulation is in quantitative agreement with hydro­
dynamic theory. The same quantitative agreement is ob­
served for all other hydrodynamic variables (temperature, 
pressure, etc.). 

One important question remains: What are the advan­
tages of using the present algorithm for the study of hy­
drodynamic instabilities, instead of traditional hard disk 
or hard sphere MD? The answer depends very much on 
the sensitivity of the simulated flows to the compressibili­
ty of the fluid since, as discussed earlier, the flow must 
remain strictly subsonic. 

Best performances are obtained in situations where the 
sound speed is difficult to reach, such as, for example, in 
buoyancy induced convections (Rayleigh-Benard instabil­
ity). Detailed analysis shows that in this case the 
enhanced-relaxation Bird algorithm runs about three or­
ders of magnitude faster than the corresponding hard 
disk MD. For instance, reaching a Rayleigh number as 
high as 80 000 through hard disk simulation requires 

FIG. 1. Horizontal component of the velocity profile (scaled 
by the sound speed) at x = Lx /2 versus z (scaled by the mean 
free path) for Rayleigh-Bimard convection. The solid circles are 
from Bird simulation with S.., = 10; the solid line represents the 
solution of hydrodynamic equations. 

about 15 days of CPU time on an IBM 3090 supercom­
puter [19]; the enhanced-relaxation Bird algorithm simu­
lation of the same situation requires only an hour of CPU 
time on a typical RISC workstation. 

For the simulation of shear-induced instabilities, the 
relative gain does not exceed two orders of magnitude in 
computational speed, mainly because in this case the 
sound speed can be reached quite easily. Moreover, the 
CPU time of the simulation increases very rapidly with 
the Reynolds number (as Rea, with 4 >a > 3). We are 
thus still limited to flows with moderate Reynolds num­
ber (Re-20 in three-dimensional flows). We are present­
ly using the enhanced-relaxation Bird method to study 
two-dimensional Kolmogorov flow [20] and have been 
able to observe the first few instabilities (Re ~ 200) using 
modest computational resources (RISC workstations). 

At this point one may ask: "Are there other 
modifications to the Bird algorithm that would allow us 
to reach higher Reynolds number?" There are various 
ways to increase the Reynolds number in a simulation: 
increase the flow velocity, increase the system size, or de­
crease the fluid viscosity. Since one is principally interest­
ed in subsonic problems, the flow velocity is limited by 
the sound speed. Unfortunately, since the Bird algorithm 
is based on the Boltzmann equation, we are restricted to 
simulating a dilute gas so the speed of sound is fixed by 
the ideal gas law and the ratio of the specific heats, 
y=CPICv. 

One way to increase the system size is to increase the 
collisional cell size, holding the number of particles fixed. 
We know that, as a rule of thumb, collisional cells in the 
Bird algorithm should be a fraction of a mean free path 
in size. However, numerical experiments indicate that 
cells as large as two mean free paths may often give accu­
rate results [21]. One might also obtain better computa­
tional efficiency by using a cell-subcell hierarchy [22]. 
While these techniques might increase the Reynolds 
number by one order of magnitude, their applicability 
still needs to be established. 

It is also possible to increase the Reynolds number by 
finding other ways of lowering the transport coefficients. 
For example, alternative collision rules (which preserve 
conserve quantities) have been tried. Collision rules that 
violate detailed balance are found to dramatically reduce 
the transport coefficients. Unfortunately, they also pro­
duce unphysical artifacts in the flows [23]. Still, it may 
be expected that the various ideas presented above, com­
bined with the enhanced-relaxation Bird algorithm, will 
eventually lead to new ways of efficient simulation of high 
Reynolds number flows at the microscopic level. 
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