May 16, 2017

LITERATURE REVIEWING WITH RESEARCH TOOLS, Part 2: Finding proper articles

Nader Ale Ebrahim
LITERATURE REVIEWING WITH RESEARCH TOOLS

Part 2: Finding proper articles

Nader Ale Ebrahim, PhD
Visiting Research Fellow
Centre for Research Services
Institute of Management and Research Services
University of Malaya, Kuala Lumpur, Malaysia

aleebrahim@um.edu.my
@aleebrahim
www.researcherid.com/rid/C-2414-2009
http://scholar.google.com/citations

16th May 2017
LITERATURE REVIEWING WITH RESEARCH TOOLS
Part 2: Finding proper articles

Nader Ale Ebrahim, PhD
===================================
Centre for Research Services
Institute of Management and Research Services
University of Malaya, Kuala Lumpur, Malaysia

www.researcherid.com/rid/C-2414-2009
http://scholar.google.com/citations

Abstract: “Research Tools” enable researchers to collect, organize, analyze, visualize and publicized research outputs. Dr. Nader has collected over 700 tools that enable students to follow the correct path in research and to ultimately produce high-quality research outputs with more accuracy and efficiency. It is assembled as an interactive Web-based mind map, titled “Research Tools”, which is updated periodically. “Research Tools” consists of a hierarchical set of nodes. It has four main nodes: (1) Searching the literature, (2) Writing a paper, (3) Targeting suitable journals, and (4) Enhancing visibility and impact of the research. This workshop continues the previous one and some other tools from the part 1 (Searching the literature) will be described. The e-skills learned from the workshop are useful across various research disciplines and research institutions.

Keywords: Literature Review, Improve citation, Research impact, Open access, h-index, Research Visibility, Bibliometrics, Systematic literature review
Outline

<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 2:</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Evaluate a paper quality</td>
</tr>
<tr>
<td>13</td>
<td>H-index</td>
</tr>
<tr>
<td>14</td>
<td>Publish or Perish</td>
</tr>
<tr>
<td>15</td>
<td>Evaluate a journal quality</td>
</tr>
<tr>
<td>16</td>
<td>The Institute for Scientific Information (ISI)</td>
</tr>
<tr>
<td>17</td>
<td>Impact Factor-Journal Ranking</td>
</tr>
<tr>
<td>18</td>
<td>Keeping up-to-date (Alert system)</td>
</tr>
<tr>
<td>19</td>
<td>How to Read a Paper</td>
</tr>
<tr>
<td>20</td>
<td>Mind mapping tools</td>
</tr>
</tbody>
</table>
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

For more information, visit www.prisma-statement.org.
Critically Analyzing Information Sources

1- Initial Appraisal:
 - **Author**
 - Date of Publication
 - Edition or Revision
 - Publisher
 - Title of Journal (Distinguishing Scholarly Journals from other Periodicals)

2- Content Analysis:
 - Intended Audience
 - Objective Reasoning
 - Coverage
 - Writing Style
 - Evaluative Reviews
A scientist has index h if h of [his/her] N_p papers have at least h citations each, and the other $(N_p - h)$ papers have at most h citations each.
H-index Example

Source: http://www.slideshare.net/librarian68/overview-of-citation-metrics

<p>|</p>
<table>
<thead>
<tr>
<th>Scholar A</th>
<th>Scholar B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

56 citations | 56 citations

h-index=6 h-index=4
A scientist has index h if h of his/her Np papers have at least h citations each, and the other $(Np-h)$ papers have no more than h citations each.

As an example, a researcher with an H-index of 15 has (of their total number of publications) 15 papers which have been cited at least 15 times each.

<table>
<thead>
<tr>
<th>Researcher</th>
<th>A</th>
<th>Researcher</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper rank</td>
<td>Citations</td>
<td>Paper rank</td>
<td>Citations</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1348</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
<td>159</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Neither researcher can have an H-index of more than 6.

Publish or Perish is a free program that retrieves citations from Google Scholar and allows users to calculate:

- Total number of papers
- Total number of citations
- Average number of citations per paper
- Average number of citations per author
- Average number of papers per author
- Average number of citations per year
- Hirsch's h-index and related parameters
- The contemporary h-index
- The age-weighted citation rate
- Two variations of individual h-indices
- An analysis of the number of authors per paper

Publish or Perish

Harzing's Publish or Perish 5.26.2.6249

Google Scholar query

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Title</th>
<th>Publication</th>
<th>Publisher</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lotfi A. Zadeh</td>
<td>1965</td>
<td>Fuzzy sets</td>
<td>Information and control</td>
<td>Elsevier</td>
<td>HTML</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>The concept of a linguistic variabil...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>Fuzzy logic: computing with words...</td>
<td>IEEE transactions on fuzzy systems</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td>Similarity relations and fuzzy ord...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td>BOOK</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>Toward a theory of fuzzy informa...</td>
<td>Fuzzy sets and systems</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>The concept of a linguistic variabili...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>Linear system theory</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>The concept of a linguistic variabili...</td>
<td>Computers & Mathematics</td>
<td>Elsevier</td>
<td>HTML</td>
</tr>
<tr>
<td></td>
<td>1979</td>
<td>A computational approach to fuzz...</td>
<td>Fuzzy algorithms</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Fuzzy logic and approximate reas...</td>
<td>Synthese</td>
<td>Springer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>A fuzzy-set-theoretic interpretation...</td>
<td>Information and control</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Toward a generalized theory of fu...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Is there a need for fuzzy logic?</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Soft computing and fuzzy logic</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Fuzzy sets as a basis for a theory ...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>A simple view of the Dempster-Shafer theory</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Knowledge representation in fuzzy...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>An introduction to fuzzy L...</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>Quantitative fuzzy semantics</td>
<td>Information sciences</td>
<td>Elsevier</td>
<td></td>
</tr>
</tbody>
</table>

©2017-2018 Nader Ale Ebrahim
Figure 1: Mean H-index Scores by Field of Study

- Sciences: 10.6
- Agricultural sciences: 8.9
- Engineering: 8.5
- Social sciences: 5.2
- Applied health sciences: 4.9
- Business: 3.8
- Humanities: 2.3
- Architecture and design: 0.9
- Fine arts: 0.8

Source: Making Research Count: Analyzing Canadian Academic Publishing Cultures

©2017-2018 Nader Ale Ebrahim
Web of Science

• Web of Science® is perhaps the most well-known tool for determining the number of times a publication has been cited.

• **Web of Science®** is made up of three citation indexes owned by Thomson Scientific:
 – Science Citation Index ®
 – Social Sciences Citation Index ®
 – Arts & Humanities Citation Index ®.

Modelling Mathematical Reasoning in Physics Education
Another guide to paper/journal quality is the general reputation of the association, society, or organization publishing the journal. Leading professional associations such as American Psychological Association (APA) or the Institute of Electrical and Electronics Engineers (IEEE) publish a range of journals that are highly regarded.
The Institute for Scientific Information (ISI)

The Institute for Scientific Information (ISI) was founded by Eugene Garfield in 1960. It was acquired by Thomson Scientific & Healthcare in 1992, became known as Thomson ISI and now is part of the Healthcare & Science business of the multi-billion dollar Thomson Reuters Corporation.

ISI offered bibliographic database services. Its speciality: citation indexing and analysis, a field pioneered by Garfield. It maintains citation databases covering thousands of academic journals, including a continuation of its long time print-based indexing service the Science Citation Index (SCI), as well as the Social Sciences Citation Index (SSCI), and the Arts and Humanities Citation Index (AHCI). All of these are available via ISI's Web of Knowledge database service.
The most commonly used measure of journal quality is Impact Factor. This is a number which attempts to measure the impact of a journal in terms of its influence on the academic community. Impact Factors are published by Thomson-ISI.
What are journal impact factors?

Impact factors are a measure of the "quality" of a journal - they identify the most frequently cited journals in a field.

Impact factors can be used to:
- identify journals in which to publish
- identify journals relevant to your research
- confirm the status of journals in which you have published

The Impact factor formula

The impact factor of a journal is based on the average number of times that articles published in that journal in the two previous years (e.g. 2008 and 2009) were cited in the subsequent year (i.e. 2010). This is calculated using the following formula:

\[
\text{Impact Factor} = \frac{\text{Cites in 2010 to items published in 2008 and 2009}}{\text{Number of items published in 2008 and 2009}}
\]

If an impact factor is lower than 1.0 that means there were more articles published in the journal than there were cites to those articles in any given year.

Be aware that...

- Many journals do not have an impact factor (sources other than JCR need to be consulted).
- The impact factor cannot assess the quality of individual articles.
- Only research articles, technical notes and reviews are “citable” items. Editorials, letters, news items and meeting abstracts are “non-citable items”.

CiteScore 2015 methodology

CiteScore 2015 counts the citations received in 2015 to documents published in 2012, 2013 or 2014, and divides this by the number of documents published in 2012, 2013 and 2014.

3-year publication window
The 3-year CiteScore time window was chosen as a best fit for all subject areas. Research shows that a 3-year publication window is long enough to capture the citation peak of the majority of disciplines.

Frequency

<table>
<thead>
<tr>
<th></th>
<th>CiteScore</th>
<th>CiteScore Tracker (on Scopus.com)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated</td>
<td>Annually</td>
<td>12 times per year</td>
</tr>
<tr>
<td>Updates</td>
<td>None</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

Document types
All types of documents (research articles, review articles, conference proceedings, editorials errata, letters, notes, and short surveys) are included in the CiteScore calculation. Although articles in press are included in Scopus they are not included in the calculation.

Source: https://journalmetrics.scopus.com/ ©2017-2018 Nader Ale Ebrahim
Important papers

The most important papers and other sources are identified below using three importance measures: 1) in-degree in the citation network, 2) citation count provided by Web of Science (only for papers included in the dataset), and 3) PageRank score in the citation network. The top 25 highest scoring papers are identified using these measures separately. The results are then combined and duplicates are removed. Results are sorted by in-degree, and ties are first broken by citation count and then by the PageRank.

Source: http://nailsproject.net/ & http://hammer.nailsproject.net/analyses/new
Keeping up-to-date (Alert system)
What is an alert service?

- Many journal databases and book publishers offer free alert services. These are an effective means of keeping track of the latest research.
- Alert services come in different forms. The most common include:
 - a search alert. This is a saved search which alerts you when a book or article that matches your search terms is published.
 - a TOC (Table of Contents) alert. Such an alert notifies you when a new issue of a journal is published, and provides you with the issue's table of contents.
 - a citation alert. This advises you when a new article cites a particular work.
 - Most alert services are email-based. An increasing number are now offered as an RSS feed. If you are just beginning, you might like to try email alerts first. These are generally easier to create.
Keeping up-to-date

Create a Google Alert

• Enter the topic you wish to monitor.
• Search terms:
• Type:
• How often:
• Email length:
• Your email:
Keeping up-to-date
How to Read a Paper
THE THREE-PASS APPROACH

1-The first pass

The first pass is a quick scan to get a bird’s-eye view of the paper. You can also decide whether you need to do any more passes. This pass should take about five to ten minutes and consists of the following steps:

1. Carefully read the title, abstract, and introduction
2. Read the section and sub-section headings, but ignore everything else
3. Read the conclusions
4. Glance over the references, mentally ticking off the ones you’ve already read.

1- The second pass

In the second pass, read the paper with greater care, but ignore details such as proofs. It helps to jot down the key points, or to make comments in the margins, as you read. The second pass should take up to an hour. You should be able to summarize the main idea of the paper, with supporting evidence, to someone else.

1. Look carefully at the figures, diagrams and other illustrations in the paper. Pay special attention to graphs.
2. Remember to mark relevant unread references for further reading (this is a good way to learn more about the background of the paper).

1- The third pass
To fully understand a paper, particularly if you are reviewer, requires a third pass. The key to the third pass is to attempt to virtually re-implement the paper: that is, making the same assumptions as the authors, re-create the work. By comparing this re-creation with the actual paper, you can easily identify not only a paper’s innovations, but also its hidden failings and assumptions. This pass can take about four or five hours for beginners, and about an hour for an experienced reader.

Mind Map Tools

Source: Mind Map Tools, By: Seyyed Ali Fattahi Computer PhD Candidate FTSM UKM

©2017-2018 Nader Ale Ebrahim
Task for second session

- Measure the downloaded papers/journal's quality
- Turn on Alert system in WoS and other databases
- Create your literature review Mind Map
My recent publications

Iranian Journal of Public Health

Mediterranean Journal of Social Sciences

The Rise of "Trade Liberalization": Bibliometric Analysis of Trade Liberalization

Abstract

The purpose of this research is to assess the universal scientific trends and examine the patterns in the intellectual research published on trade liberalization over a period of 35 years (1980-2015). The data were collected from a leading indexing and abstracting database Thomson Reuters Web of Science. The Kruskal-Wallis test, ANOVA, and Pearson's correlation were employed in analyzing the retrieved data. Based on the citation trend of first 100 highly cited published articles with the least number of authors are found to have received the highest number of citations. Our result shows that there is actual statistical significance (p < 0.05) between the total citations attracted by articles published by 1 author and those published by 3 and 4 authors. The word trade liberalization has become dominant and consistent in the field of the study. These research trends and interest could provide focus to researchers for future research.

ABSTRACT

A BIBLIOGRAPHIC ANALYSIS ON "FERTILITY RESEARCH TRENDS

Shalini Nagartram, Nader Ali Ebrahim, Muzafar Shah Habibullah

International Journal of Prosthodontics

Journal of Aging and Physical Activity

Impact of Article Public Related Fields: A by

Sign in / Create an Account / My Information / Help Us / Contact Us / Log in to Springer

©2017 - 2018 Nader Ale Ebrahim

Qualitative and quantitative solar hydrogen generation 2001 to 2014

Mohammad Reza Maghimi, Shalini Ebrahim, Chanda Gomes
Questions?

E-mail: aleebrahim@um.edu.my
Twitter: @aleebrahim

www.researcherid.com/rid/C-2414-2009
http://scholar.google.com/citations

Nader Ale Ebrahim, PhD
Centre for Research Services
Institute of Management and Research Services
University of Malaya, Kuala Lumpur, Malaysia
www.researcherid.com/rid/C-2414-2009
http://scholar.google.com/citations
References

4. Mind Map Tools, By:Seyyed Ali Fattahi Computer PhD Candidate FTSM UKM

My recent publication:

My recent presentations:
1. Ale Ebrahim, Nader (2017): Citation Tracking for Future Collaboration and Improving H-index. https://doi.org/10.6084/m9.figshare.4982114.v1