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Abstract

We extend the result of Uzawa (1962) to settings which accommo-
date non-constant returns to scale. Therefore, the use of a cost func-
tion to estimate Allen/Uzawa elasticities of substitution is legitimate
without assuming linear homogeneity in the production function.

1 Introduction

The Allen elasticity of substitution � is a feature of the production tech-
nology that can be used to gauge how easily inputs can be substituted in
production. It measures the responsiveness of relative input demand to
changes in relative factor prices. If � is high, then factor inputs can be
easily substituted. In this case, a rapid rise in the price of one input will
result in a large decrease in demand for that input in favour of other inputs.
It should also lead to a small rise in overall cost, ceteris paribus.

The elasticity of substitution has been studied for 75 years. The elas-
ticity between capital and labour is a key parameter in macroeconomics.
It determines the level or growth rate of per-capita income, the speed of
convergence and the relative importance of productive factors and technical
e¢ ciency in explaining cross-country di¤erences in output per worker. In
the short term, it has an e¤ect on the monetary-policy transmission mecha-
nism and the potential relationship between interest rates and employment
(Chirinko, 2008). A recent volume of the Journal of Macroeconomics was
dedicated to the study of this parameter (Klump & Papageorgiou, 2008).

It is not surprising that the oil price shocks in the 1970s spurred many
studies on the elasticity of substitution between energy and other inputs
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in production.1 Recent swings in energy and other commodity prices make
this parameter no less relevant today. Furthermore, thinking of energy as an
output, investigations of the elasticity of substitution in power generation
are used to evaluate the e¤ectiveness of policies to reduce pollution through
substitution away from high-pollution inputs to low-pollution inputs.2

The elasticity of substitution between capital, skilled labour and un-
skilled labour informs the debate about causes of documented rising wage
inequality. For example, estimates suggest that capital and unskilled labour
are more substitutable than capital and less skilled labour. By this capital-
skill-complementarity argument, due to Griliches (1969), increased availabil-
ity of capital has decreased relative demand for unskilled labour. Through
Marshall�s Rules, together with information on a factor�s share, � can be
used to estimate the elasticity of factor demand, which for example can in-
form the impact of a rise in minimum wages (Hamermesh, 1993). It can
also be used to gauge the potential impact of education on wage inequality
(Bowles, 1969).

Many studies compute � by estimating cost functions rather than pro-
duction functions. One reason is that the elasticities can be non-linear or
inverse functions of the production parameters estimated, which can greatly
magnify the standard errors (Hamermesh, 1993). When estimating �exible
technologies, for example the translog, estimation of the cost function is far
more tractable. Furthermore, standard pro�t-maximizing conditions can be
used to improve the e¢ ciency of the estimates (Binswanger, 1974). In the
case where �rm-level data is used, it is arguably more appropriate to esti-
mate a cost function because the factor prices are exogenous and the inputs
used are endogenous.

Estimation of the elasticity via a cost function makes use of a result
due to Uzawa (1962). He exploits the duality between production function
q = f(x1; x2; :::; xn) and cost function C = C(w1; w2; :::; wn; q) to express
the elasticity of substitution as

�ij =
CCij
CiCj

; (1)

where Ci; Cj are �rst derivatives with respect to the prices of factors xi; xj
and Cij is the cross partial derivative. It is for this reason that � is often
referred to as the Allen/Uzawa elasticity.

The survey on labor demand by Hamermesh (1986) states equation (1)
only holds if the production technology is linearly homogeneous (pg 433).

1A pioneering study is by Christensen & Greene (1976).
2For a review, see Soderholm (1998). Recent work on this includes Tuthull (2007).
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Indeed, Uzawa�s proof uses a unit cost function, which only uniquely repre-
sents the underlying production function under linear homogeneity (Varian,
1992) and his result thus appears strictly applicable to constant returns to
scale only.

However, while it is common to impose constant returns in estimation,
many studies use this result in more general settings. For example, of the
twelve listed in the review by Chung (1994), only �ve have linearly homoge-
neous production technologies imposed. In a seminal paper on United States
electric power generation, Christensen & Greene (1976) present a translog
cost function that allows for varying returns to scale before invoking Uzawa�s
result to describe how to calculate the elasticity of substitution. There is
evidence of non-constant returns to scale in electric power generation (His-
nanick & Kymn, 1999) and more generally in production (Basu & Fernald,
1997).

In fact, Binswanger (1974) does not rely on constant returns when pre-
senting the cost fuction elasticity. However, the result is somewhat hidden in
the paper. This may be why, to our knowledge, there is no explicit reference
to a result of this type by individual papers or survey articles. Therefore it is
instructive to con�rm and document this in a note tailored for the purpose.

2 Generalizing Uzawa

For n factors, the elasticity of substitution between factors xi and xj is
(Allen, 1938):

�ij =
fij
Pn
k fkxk

jf jxixj
(2)

jf j is the determinant of the bordered Hessian of equilibrium conditions
for a �rm�s cost-minimizing factor demands, holding output constant. fij is
the cofactor of fij in f . By Euler�s theorem, the summation term equals q
under constant returns to scale. Output and the prices of other factor prices
are held constant.

Theorem 1 For any production function q = f(x1; x2; :::; xn), we can use
cost function C = C(w1; w2; :::; wn; q) to express the elasticity of substitution
as:

�ij =
CCij
CiCj

(3)

where Ci; Cj are �rst derivatives with respect to the costs of factors i; j -
wi; wj- and Cij is the cross partial derivative.
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Proof. The conditional factor demands are derived from the cost minimiza-
tion problem:

min
X
i

wixi subject to q = f(x1; x2; :::; xn) (4)

The �rm�s �rst order conditions are, where � is the Lagrange Multiplier,

wi = �fi(i = 1; :::; n); (5)

q = f(x1; x2; :::; xn) (6)

and the cost function is

C(w1; w2; :::; wn; q) =
X
i

wixi(w1; w2; :::; wn; q) (7)

Following Allen (1938) but without assuming constant returns to scale, dif-
ferentiate the �rst order conditions with respect to w1 and divide each equa-
tion by �:

0 +f1
@x1
@w1

+f2
@x2
@w1

+: +fn
@xn
@w1

= 0
1
�f1
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@w1

+f11
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@w1

+f12
@x1
@w1

+: +f1n
@x1
@w1

= 1
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1
�f2

@�
@w1

+f21
@x1
@w1

+f22
@x1
@w1

+: +f2n
@x1
@w1

= 0

: : : : : :
1
�fn

@�
@w1

+fn1
@x1
@w1

+fn2
@x1
@w1

+: +fnn
@x1
@w1
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(8)

By Cramer�s Rule,

@x2
@w1

=

����������

0 f1 0 : fn
q1 f11

1
� : f1n

q2 f12 0 : f2n
: : : : :
qn f1n 0 : fnn

����������
�

����������
0 f1 f2 : fn
f1 f11 f12 : f1n
: : : : :
: : : : :
fn fn1 fn2 : fnn

����������
; (9)

so
@x2
@w1

=
1

�

f12
jf j (10)

As in (2), jf j is the determinant of the bordered Hessian of equilibrium condi-
tions for a �rm�s cost-minimizing factor demands, holding output constant,
and f12 is the cofactor of f12 in f . By (2):

�21 =

P
n fixi
x1x2

�
@x2
@w1

(11)
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By the �rst order conditions,

�
X
n

fixi = C (12)

and, by Shephard�s Lemma,
xj = Cj (13)

such that @x2
@w1

= C21. Thus �21 = CC21
C1C2

.
We have generalized the Uzawa (1962) result, which allows us to use cost

function parameters to �nd �.
By Slutsky symmetry (and more directly Euler�s Theorem), @x2@w1

= @x1
@w2

and C21 = C12, so �21 = �12. Furthermore, using equations (11) - (13),
�12 =

C
x1x2

@x1
@w2

= C
w2x2

@ log x1
@ logw2

. De�ning sj =
wjxj
C as the cost share of xj and

��ij as the constant output cross elasticity of factor demand, it follows that
�12 =

��12
s2
or, for any pair i; j,

��ij = sj�ij (14)

in accordance with Marshall�s Rules. Some texts (eg Heath�eld &
Wibe, 1987:61) assert the relationship between �� and � holds only under
conditions of constant returns, but we have con�rmed it holds for more
general technologies.

3 Conclusion

The use of cost functions to estimate elasticities of substitution is wide-
spread. Applications include the analysis of substitutability between labour
types and, with renewed interest, between methods of generating power.
The legitimate use of cost functions to estimate this technological parame-
ter rests on a result due to Uzawa (1962), which assumes a linearly homoge-
neous technology. On the one hand, it has been asserted that the result only
holds under constant returns to scale. On the other, empirical studies have
applied Uzawa�s result to more general technologies. We have documented
that the elasticity of substitution can be expressed in terms of the cost func-
tion for more general technologies. It is thus legitimate to use cost functions
to estimate this parameter even in industries where returns to scale may not
be assumed constant.
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