Skip to main content
Article
Coupling Evidence From Lower Atmosphere to Mesosphere and Ionosphere Through Quasi 27-Day Oscillation
Publications
  • Alan Z. Liu, Embry-Riddle Aeronautical University
  • Kaiming Huang, Wuhan University
  • Hao Cheng, Wuhan University
  • Shaodong Zhang, Wuhan University
  • Chunming Huang, Wuhan University
  • Yun Gong, Wuhan University
  • Gang Chen, Wuhan University
Submitting Campus
Daytona Beach
Department
Physical Sciences
Document Type
Article
Publication/Presentation Date
11-24-2022
Disciplines
Abstract/Description

Using meteor radar, radiosonde and digisonde observations and MERRA-2 reanalysis data from 12 August to 31 October 2006, we report a dynamical coupling from the tropical lower atmosphere to the mesosphere and ionospheric F2 region through a quasi 27-day intraseasonal oscillation (ISO). It is interesting that the quasi 27-day ISO is active in the troposphere and stratopause and mesopause regions, exhibiting a three-layer structure. In the mesosphere and lower thermosphere (MLT), the amplitude in the zonal wind increases from about 4 ms at 90 km to 15 ms at 100 km, which is different from previous observations that ISOs generally have the amplitude peak at about 80-85 km, and then weakens with height. OLR and specific humidity data demonstrate that there is a quasi 27-day periodicity in convective activity in the tropics, which causes the ISO of the zonal wind and gravity wave (GW) activity in the troposphere. GW energy in the stratosphere also exhibits a sharp spectral speak at 27-day period, meaning that the convectively modulated GWs play a vital role in driving the oscillation in the MLT. The quasi 27-day variability arises clearly in the hmF2. Wavelet analysis shows that the dominant period and active time of the hmF2 oscillation are in good agreement with those in the zonal wind of the MLT and OLR rather than in the F10.7 and Kp index. Hence, tropical convective activity has an influence on the dynamics of the MLT and F2 region through modulated waves and ISOs.

DOI
10.1002/essoar.10501034.1
Publisher
ESS Open Archive
Citation Information
Kaiming Huang, Hao Cheng, Alan Z Liu, et al. Coupling evidence from lower atmosphere to mesosphere and ionosphere through quasi 27-day oscillation. ESS Open Archive. September 24, 2019. DOI: https://doi.org/10.1002/essoar.10501034.1