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Abstract It is well known that magnetic energy of the piezoelectric beam is relatively
small, and it does not change the overall dynamics. Therefore, the models, relying
on electrostatic or quasi-static approaches, completely ignore the magnetic energy
stored/produced in the beam. A single piezoelectric beammodel without the magnetic
effects is known to be exactly observable and exponentially stabilizable in the energy
space. However, the model with the magnetic effects is proved to be not exactly
observable/exponentially stabilizable in the energy space for almost all choices of
material parameters. Moreover, even strong stability is not achievable for many values
of the material parameters. In this paper, it is shown that the uncontrolled system is
exactly observable in a space larger than the energy space. Then, by using a B∗-type
feedback controller, explicit polynomial decay estimates are obtained for more regular
initial data. Unlike the classical counterparts, this choice of feedback corresponds to
the current flowing through the electrodes, and it matches better with the physics
of the model. The results obtained in this manuscript have direct implications on
the controllability/stabilizability of smart structures such as elastic beams/plates with
piezoelectric patches and the active constrained layer (ACL) damped beams/plates.

Keywords Voltage-actuated piezoelectric beam · Current feedback ·
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220 A. Ö. Özer

1 Introduction

Piezoelectric material is an elastic beam/plate covered by electrodes at its top and
bottom surfaces, insulated at the edges (to prevent fringing effects), and connected to
an external electric circuit to create an electric field between the top and the bottom
electrodes (See Fig. 1). It has a unique characteristic of converting mechanical energy
to electrical and magnetic energy, and vice versa. Therefore these materials could be
used as both actuators or sensors. Moreover, since they are generally scalable, smaller,
less expensive and more efficient than traditional actuators, they have been employed
in civil, industrial, automotive, aeronautic, and space structures.

In classical mechanics, it is very well known that equations of motion can be formu-
lated either through a set of differential equations, or through a variational principle,
so-called Hamilton’s principle. In applying the Hamilton’s principle, the functional is
specified over a fixed time interval, and the admissible variations of the generalized
coordinates (independent variables) are taken to be zero. The set of field equations
for the piezoelectric beams/plates have been well established through the coupling of
beam/plate equations and Maxwell’s equations. There are many different mathemat-
ical models proposed in the literature depending on the type of actuation; voltage,
charge or current.

The linear models of piezoelectric beams incorporate three major effects and their
interrelations: mechanical, electrical, and magnetic effects. Mechanical effects are
mostly modeled through Kirchhoff, Euler–Bernoulli, or Mindlin–Timoshenko small
displacement assumptions. To include electrical andmagnetic effects, there aremainly
three approaches (due to Maxwell’s equations): electrostatic, quasi-static, and fully
dynamic [37]. Electrostatic approach is the most widely used among the others. It
completely excludes magnetic effects and their couplings with electrical and mechan-
ical effects ([10,17,33,36,37,43,45] and references therein). In this approach, even
though the mechanical equations are dynamic, electric field is not dynamically cou-
pled. In other words, the electrical effects are assumed to be stationary. In the case of
quasi-static approach [22,45], magnetic effects are not completely ignored and electric
charges have time dependence. The electromechanical coupling is still not dynamic
though.

Due to the small displacement assumptions, the stretching and bending motions
of a single piezoelectric beam are completely decoupled. The bending equation

Fig. 1 For a voltage-actuated beam/plate, when voltage V (t) is supplied to the electrodes, an electric field
is created between the electrodes, and therefore the beam/plate either shrinks or extends
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Further stabilization and exact observability results 221

without the electrical effects corresponds to the fourth order Euler–Bernoulli or
Rayleigh/Kirchhoff beam equations; see, i.e., [29]. Since the voltage control does
not affect the bending equations at all, we only consider the stretching equations in
this paper. For a beam of length L and thickness h, the beam model (no damping)
derived by Euler–Bernoulli small displacement assumptions, and electrostatic/quasi-
static assumptions describe the stretching motion as

where ρ, α1, γ denote mass density, elastic stiffness, and piezoelectric coefficients
of the beam, respectively, V (t) denotes the voltage applied at the electrodes, and
v denotes the longitudinal displacement of centerline of the beam. Throughout this
paper, we use dots to denote differentiation with respect to time.

From the control theory point of view, it is well known that wave equation (1) can
be exactly controlled in the natural energy space (therefore the uncontrolled problem
is exactly observable if the observability time is large enough). If we have the choice
of a feedback in the form of a boundary damping V (t) = −k v̇(L , T ) with k > 0, the
solution of the closed-loop system is exponentially stable in the energy space (see, for
instance [24]).

In the fully dynamic approach, magnetic effects are included, and therefore the
wave behavior of the electromagnetic fields are accounted for, i.e., see [27]. These
effects are experimentally observed to be minor on the overall dynamics for polarized
ceramics (see the review article [46]). For a beam of length L and thickness h, the
Euler–Bernoulli model with magnetic effects is derived in [29] as

where ρ, α, γ, μ, β, and V denote mass density per unit volume, elastic stiffness,
piezoelectric coefficient, magnetic permeability, impermittivity coefficient of the
beam, and voltage prescribed at the electrodes of the beam, respectively, and

α = α1 + γ 2β. (3)
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222 A. Ö. Özer

Moreover, p = ∫ x
0 D3(x, t) dt is the total charge at the point x with D3(x, t)

being the electric displacement along the transverse direction. Observe that the term
μ p̈ in (2) is due to the dynamic approach. If this term is ignored, an elliptic-type
differential equation is obtained, and once this equation is solved and back substituted
to the mechanical equations, the system (2) boils down to the system (1) obtained in
electrostatic and quasi-static approaches.

By using (3), the boundary conditions (2d) can be simplified as the following

vx (L) = −γ V (t)

α1h
, px (L) = −αV (t)

βα1h
. (4)

The system (2) with the simplified boundary conditions (4) is a simultaneous con-
trollability problemwith the control V (t).Simultaneous controllability problemswere
first introduced by [24,34]. Controllability and stabilizability of the beam/plate with
a control applied to a point/a curve in the beam/plate cases were investigated by a
number of researchers including [7–9,16,21,41], and references therein. By using a
generalization of Ingham’s inequality (with a weakened gap condition) (i.e., see [23])
and Diophantine’s approximations [14], exact controllability (observability) in finite
time, and stabilizability are obtained depending on the Diophantine approximation
properties of the joints in the beam case, and how strategic the controlled curve is in
the plate case. Simultaneous controllability for general networks and trees is consid-
ered in [16]. The controllability of two interconnected beams (including the rotational
inertia) by a point mass is considered in [15]. In this problem the weakened gap con-
dition is a necessity. Notice that the system (2) is a strongly coupled wave system,
whereas in [1–3] various other weakly coupled systems are considered. The method-
ology used in these papers is slightly different from ours. There is also research done
in proving the controllability of various coupled parabolic systems, i.e., see [4,5,25].
The use of number theoretical results is unavoidable in [25].

In this paper, we consider a coupled wave system (2) where the coupling terms
are at the order of the principal terms. The eigenvalues of the uncontrolled system
(V (t) ≡ 0), are all on the imaginary axis, and for almost all choices of parameters,
they get arbitrarily close to each other (see Theorem 4). In other words, eigenvalues
do not have a uniform gap. Our first goal is to obtain the observability inequality for
the uncontrolled system in a less regular space. Next, we choose a B∗-type feedback,
i.e., V (t) = 1

2h ṗ(L) in (2), to obtain the closed-loop system
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Further stabilization and exact observability results 223

In fact, the system (5) is shown to be strongly stable [28], but not exponentially
stable in the energy space for almost all choices of parameters [29]. Based on the
observability inequality, we use the methods in [6,12] to obtain decay estimates for
the solutions of the closed loop system (5). Notice that this type of feedback is very
practical since it corresponds to the current flowing through the electrodes.

This paper is organized as follows: In Sect. 2, we first prove that the uncontrolled
system is well-posed in the interpolation spaces. In Sect. 3, we prove the exact observ-
ability results. In Sect. 4, we give explicit decay rates for the solutions of the closed-
loop system with the current feedback at the electrodes. Finally, in the Appendix, we
briefly mention known results from number theory which are needed to prove our
observability inequalities.

2 Well-posedness

The energy associated with (2) is given by

E(t) = 1

2

∫ L

0

{
ρ|v̇|2 + μ| ṗ|2 + α1|vx |2 + β |γ vx − px |2

}
dx, t ∈ R. (6)

We define the Hilbert space

H1
L(0, L) = {v ∈ H1(0, L) : v(0) = 0}, X = (L2(0, L))2 (7)

and the complex linear space

H =
(
H1
L(0, L)

)2 × X (8)

equipped with the energy inner product

〈
⎛

⎜
⎜
⎝

u1
u2
u3
u4

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

v1
v2
v3
v4

⎞

⎟
⎟
⎠

〉

H

=
〈(

u3
u4

)

,

(
v3
v4

)〉

(L2(0,L)2
+

〈(
u1
u2

)

,

(
v1
v2

)〉

(
H1
L (0,L)

)2

:=
∫ L

0
{ρu3v̄3 + μu4v̄4} dx +

∫ L

0
{α1(u1)x (v̄1)x + β (γ (u1)x − (u2)x ) (γ (v̄1)x − (v̄2)x )} dx

=
∫ L

0

{

ρu3v̄3 + μu4v̄4 +
〈(

α1 + γ 2β −γβ

−γβ β

) (
u1x
u2x

)

,

(
v1x
v2x

)〉

C2

}

dx (9)

where 〈·, ·〉C2 is the inner product on C
2. Indeed, (9) is an inner product since the

matrix

(
α1 + γ 2β −γβ

−γβ β

)

is positive definite.
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224 A. Ö. Özer

Interpolation spaces

Define the operator

A : Dom(A) ⊂ X → X, A =
⎛

⎝
−α

ρ
D2
x

γβ
ρ
D2
x

γβ
μ
D2
x − β

μ
D2
x

⎞

⎠

where

Dom(A) = (H2(0, L))2
⋂

{(w1, w2)
T ∈ (H1

L(0, L))2

: w1x (L) = w2x (L) = 0}. (10)

The operator A can be easily shown to be a positive and self-adjoint operator, and
since the Dom(A) is compactly embedded in X, the operator A−1 is compact, and
therefore A−1 has only countable many positive eigenvalues in its point spectrum, and
all of its eigenvalues converge to zero. Therefore, the operator A has only countable
many positive eigenvalues {λ j } j∈N in its point spectrum, and |λ j | → ∞ as j → ∞.

Now we find the eigenvalues of A. Consider the eigenvalue problem

A

(
z1
z2

)

= λ

(
z1
z2

)

. (11)

Solving (11) is equivalent to solving

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αz1xx − γβz2xx = −ρλz1

βz2xx − γβz1xx = −μλz2,

z1(0) = z2(0) = z1x(L) = z2x(L) = 0.

(12a)

(12b)

(12c)

Define

ζ1 = 1√
2

√√
√
√γ 2μ

α1
+ μ

β
+ ρ

α1
+

√(
γ 2μ

α1
+ μ

β
+ ρ

α1

)2

− 4ρμ

βα1
(13)

ζ2 = 1√
2

√√
√
√γ 2μ

α1
+ μ

β
+ ρ

α1
−

√(
γ 2μ

α1
+ μ

β
+ ρ

α1

)2

− 4ρμ

βα1
(14)

b1 = 1

γμ
(α1ζ

2
1 − ρ) = 1

2

⎛

⎝γ + α1

γβ
− ρ

γμ
+

√(

γ + α1

γβ
− ρ

γμ

)2

+ 4ρ

μ

⎞

⎠

(15)
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b2 = 1

γμ
(α1ζ

2
2 − ρ) = 1

2

⎛

⎝γ + α1

γβ
− ρ

γμ
−

√(

γ + α1

γβ
− ρ

γμ

)2

+ 4ρ

μ

⎞

⎠ .

(16)

Obviously, ζ1, ζ2 > 0 since

(
γ 2μ

α1
+ μ

β
+ ρ

α1

)2

− 4ρμ

βα1
=

(
γ 2μ

α1
+ μ

β
− ρ

α1

)2

+ 4ρμγ 2

α2
1

> 0,

and

b1, b2 �= 0, b1 �= b2, b1b2 = −ρ

μ
.

Theorem 1 Let σ j = (2 j−1)π
2L , j ∈ N. The eigenvalue problem (11) has distinct

eigenvalues

λ1 j = σ 2
j

ζ 2
1

, λ2 j = σ 2
j

ζ 2
2

, j ∈ N (17)

with the corresponding eigenfunctions

y1 j =
(

1
b1

)

sin σ j x, y2 j =
(

1
b2

)

sin σ j x, j ∈ N. (18)

Proof Using α = α1 + γ 2β reduces (12a) and (12b) to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1xx =
−λ

α1
(ρz1 + γμz2)

z2xx = −λ

(
γρ

α1
z1 +

(
γ2μ

α1
+

μ

β

)
z2

)
.

(19a)

(19b)

First, we find the eigenvalues of (17). It is obvious that λ = 0 is not an eigenvalue
since the solution of (19) with (12c) is z1 = z2 = 0.

We look for solutions of the form

z1 j = f j sin σ j x, z2 j = g j sin σ j x . (20)

Solutions of this form satisfy all the homogeneous boundary conditions (12c). We
seek f j , g j and λ j so that the system (19) is satisfied. Substituting (20) into (19) we
obtain
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226 A. Ö. Özer

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2
j fj =

λ

α1
(ρfj + γμgj)

σ2
j gj = λ

(
γρ

α1
fj +

(
γ2μ

α1
+

μ

β

)
gj

)
.

The system above has nontrivial solutions if the following characteristic equation
is satisfied

y2j −
(

γ 2μ

α1
+ μ

β
+ ρ

α1

)

y j + ρμ

βα1
= 0.

where y j = σ 2
j

λ
. Since

(
γ 2μ
α1

+ μ
β

+ ρ
α1

)2− 4ρμ
βα1

=
(

γ 2μ
α1

+ μ
β

− ρ
α1

)2+ 4ργ 2μ

α2
1

> 0, a

simple calculation shows that we have solutions y j1 = ζ 2
1 , y j2 = ζ 2

2 where ζ1, ζ2 ∈ R

are defined by (13) and (14), respectively. Therefore λ1 j = σ 2
j

ζ 21
, λ2 j = σ 2

j

ζ 22
, j ∈ N,

and (17) follows.
Now we find the eigenvectors (18). Let λ = λ1 j . Choosing f j = 1 yields g j =

b1. The first eigenvector y1 j follows from the solution z1 j = sin σ j (x) and z2 j =
b1 sin σ j (x). Similarly, let λ = λ2 j . Choosing g j = 1 yields f j = 1/b2. Hence
the second eigenvector y2 j follows from the solution z1 j = 1

b2
sin σ j (x) and z2 j =

sin σ j (x). �
Obviously, the eigenvectors (18) of A are mutually orthogonal in (H1

L(0, L))2

by using the inner product defined by (9). Therefore, they form a Riesz basis in
(H1

L(0, L))2.Nowwe introduce the spaceXθ = Dom(Aθ ) for all θ ≥ 0 with the norm
‖ · ‖θ = ‖Aθ · ‖X. For example, using the definition of inner product 〈·, ·〉(H1

L (0,L))2 in
(9) yields

〈z1, z2〉X1/2 =
〈
A1/2z1, A

1/2z2
〉

X

= 〈Az1, z2〉X = 〈z1, z2〉(H1
L (0,L))2 .

The space X−θ is defined to be the dual of Xθ pivoted with respect to X. For
example, the inner product on X−1/2 is defined by

〈z1, z2〉X−1/2 :=
〈
A−1/2z1, A

−1/2z2
〉

X

=
〈
A−1z1, z2

〉

X

.

Defining (H1
L(0, L))∗ to be the dual space of H1

L(0, L) pivoted with respect to
L
2(0, L), we have

X0 = X, X1/2 = (H1
L(0, L))2, X−1/2 = ((H1

L(0, L))∗)2 (22)

Moreover,X1 = Dom(A) by the definition above. Note that the operator A : Xθ →
Xθ−1 can be boundedly extended or restricted for each θ ∈ R.
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Further stabilization and exact observability results 227

In fact, since the eigenvectors (18) are mutually orthogonal in Xθ for all θ ∈ R,

every U ∈ Xθ has a unique expansion U = ∑
k=1,2

∑
j∈N ck j yk j where c1 j , c2 j are

complex numbers. Define the operator Aθ for all θ ∈ R by

AθU :=
∑

k=1,2

∑

j∈N
ck jλ

θ
k j yk j .

Then

‖U‖2
Xθ/2

= 〈
AθU,U

〉
X

=
∑

k=1,2

∑

j∈N
λθ
k j |ck j |2‖yk j‖2X. (23)

Similarly,

‖U‖2
X−θ/2

= 〈
A−θU,U

〉
X

=
∑

k=1,2

∑

j∈N
λ−θ
k j |c2k j |‖yk j‖2X.

Semigroup formulation

Let ψ = (ψ1, ψ2, ψ3, ψ4)
T = (v, p, v̇, ṗ)T. Then the system (2) with the output

y(t) = 1
h ṗ(L , t) can be put into the following state-space formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ̇ = Aψ + BV (t) =

⎛
⎝ 0 I2×2

−A 0

⎞
⎠ ψ +

⎛
⎝ 02×2

B0

⎞
⎠ V (t),

ψ(x, 0) = ψ0

y(t) = −B∗ψ = (02×2 B∗
0) ψ

(24a)

(24b)

(24c)

where

B0 ∈ L(C,X−1/2), with B0V (t) =
(

0
− 1

h δ(x − L)

)

V (t),

B∗
0 ∈ L(X1/2,C), with B∗ψ = (02×2 B∗

0 )Tψ = − 1
hψ4(L), (25)

By the notation above we write H = X1/2 ×X. The operatorA : Dom(A) ⊂ H →
H with the choice of the domain

Dom(A) = X1 × X1/2 (26)

= (H2(0, L))2 × (H1
L(0, L))2

⋂
{ψ ∈ H : ψ1x (L) = ψ2x (L) = 0} (27)

is densely defined in H.

123



228 A. Ö. Özer

Lemma 1 [29] The infinitesimal generator A satisfies A∗ = −A on H, and A and
A∗ are unitary, i.e.,

Re 〈Aψ,ψ〉H = Re
〈A∗ψ,ψ

〉
H = 0. (28)

Also, A has a compact resolvent.

Consider the uncontrolled system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇ = Aϕ,

ϕ(x, 0) = ϕ0

y(t) = −B∗ϕ.

(29a)

(29b)

(29c)

Definition 1 The operator B ∈ L(C,H−1) is an admissible control operator for
{eAt }t≥0 if there exists a positive constant c(T ) such that for all u ∈ H1(0, T ),

∥
∥
∥
∥

∫ T

0
eA(T−t)Bu(t)dt

∥
∥
∥
∥
H

≤ c(T )‖u‖L2(0,T ).

Definition 2 Theoperator B∗ ∈ L(Dom(A),C) is an admissible observation operator
for {eA∗t }t≥0 if there exists a positive constant c(T ) such that for all ϕ0 ∈ Dom(A)

∫ T

0
‖B∗eA∗tϕ0‖2 dt ≤ c(T )‖ϕ0‖2H.

The operator B∗ is an admissible observation operator for {eA∗t }t≥0, if and only if
B is an admissible control operator for {eAt }t≥0 [42, pg.127]).

It is proved in [29] that both B and B∗ operators are admissible. Now the theorem
on well-posedness of (24) is now immediate.

Theorem 2 [29] Let T > 0, and V (t) ∈ L
2(0, T ). For any ψ0 ∈ H, there exists

positive constants c1(T ), c2(T ) and a unique solution to (24) with ψ ∈ C([0, T ];H),

and

‖ψ‖2H ≤ c1(T )
{
‖ψ0‖2H + ‖V (t)‖2

L2(0,T )

}
, (30)

‖y(t)‖2
L2(0,T )

dt ≤ c2(T )
{
‖y(0)‖2H + ‖V (t)‖2

L2(0,T )

}
. (31)

We have the following theorem characterizing the eigenvalues and eigenfunctions
of A.
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Further stabilization and exact observability results 229

Theorem 3 Letσ j = (2 j−1)π
2L , j ∈ N.The eigenvalue problemAY = λY has distinct

eigenvalues

λ̃∓
1 j = ∓i

√
λ1 j = ∓iσ j

ζ1
, λ̃∓

2 j = ∓i
√

λ2 j = ∓iσ j
ζ2

, j ∈ N (32)

Since λ̃−
1 j = −λ̃+

1 j , λ̃−
2 j = −λ̃+

2 j , j ∈ N, the corresponding eigenfunctions are

Y1 j =

⎛

⎜
⎜
⎜
⎜
⎝

1
λ̃+
1 j
b1
λ̃+
1 j

1
b1

⎞

⎟
⎟
⎟
⎟
⎠
sin σ j x, Y−1 j =

⎛

⎜
⎜
⎜
⎜
⎝

1
λ̃+
1 j
b1
λ̃+
1 j

−1
−b1

⎞

⎟
⎟
⎟
⎟
⎠
sin σ j x,

Y2 j =

⎛

⎜
⎜
⎜
⎜
⎝

1
λ̃+
2 j
b2
λ̃+
2 j

1
b2

⎞

⎟
⎟
⎟
⎟
⎠
sin σ j x, Y−2 j =

⎛

⎜
⎜
⎜
⎜
⎝

1
λ̃+
2 j
b2
λ̃+
2 j

−1
−b2

⎞

⎟
⎟
⎟
⎟
⎠
sin σ j x, j ∈ N (33)

where ζ1, ζ2, b1 and b2 are defined by (13)–(16). The function

ϕ(x, t) =
∑

j∈N

[
c1 j Y1 je

λ̃+
1 j t + d1 j Y−1 je

−λ̃+
1 j t + c2 j Y2 je

λ̃+
2 j t + d2 j Y−2 je

−λ̃+
2 j t

]
(34)

solves (29) for the initial data

ϕ0 =
∑

j∈N

[
c1 j Y1 j + d1 j Y−1 j + c2 j Y2 j + d2 j Y−2 j

]

=
∑

j∈N

⎛

⎜
⎜
⎜
⎜
⎝

1
λ̃+
1 j

(c1 j + d1 j ) + 1
λ̃+
2 j

(c2 j + d2 j )

b1
λ̃+
1 j

(c1 j + d1 j ) + b2
λ̃+
2 j

(c2 j + d2 j )

(c1 j − d1 j ) + (c2 j − d2 j )
b1(c1 j − d1 j ) + b2(c2 j − d2 j )

⎞

⎟
⎟
⎟
⎟
⎠
sin σ j x (35)

where {ck j , dkj , k = 1, 2, j ∈ N} are complex numbers such that

‖ϕ0‖2H � ∑

j∈N

(|c1 j |2 + |d1 j |2 + |c2 j |2 + |d2 j |2
)
, i.e., (36)

C̃1 ‖ϕ0‖2H ≤ ∑

j∈N

(|c1 j |2 + |d1 j |2 + |c2 j |2 + |d2 j |2
) ≤ C̃2 ‖ϕ0‖2H (37)

with two positive constants C̃1, C̃2 which are independent of the particular choice of
�0 ∈ H.
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Proof LetW = (W1,W2)
T. Solving the eigenvalue problemAW = λ̃W is equivalent

to solving AW1 = −λ̃2W1 and W2 = λ̃W1. Since {λ1 j , λ2 j , j ∈ N} defined by (17)
are the eigenvalues of A, it follows that λ̃∓

1 j = ∓i
√

λ1 j and λ̃∓
2 j = ∓i

√
λ2 j , j ∈ N,

and therefore (32) follows. (34) and (35) follow from (32), (33) and Theorem 1. For
the proof of (37), see [29]. �

It is easy to show that the eigenfunctions {Ykj , k = −2,−1, 1, 2, j ∈ N} are
mutually orthogonal in H [with respect to the inner product (9)]. Therefore, they form
aRiesz basis inH.This result also follows from the fact that we have a skew-symmetric
operator A with a compact resolvent (see Lemma 1).

For θ ∈ R, we define the space

Sθ :=
⎧
⎨

⎩

∑

k=1,2

∑

j∈N
ck jYk j +dkjY−k j :

∑

k=1,2

∑

j∈N
|λ̃k j |2θ

(∣
∣ck j

∣
∣2+∣

∣dkj
∣
∣2

)
< ∞

⎫
⎬

⎭

(38)
by the completion of eigenvectors {Ykj , k = −2,−1, 1, 2, j ∈ N} with respect to
the norm

‖U‖2Sθ
=

∑

k=1,2

∑

j∈N
|λ̃k j |2θ

(∣
∣ck j

∣
∣2 + ∣

∣dkj
∣
∣2

)
. (39)

Remark 1 For the simplicity of the calculations in the next sections, we use the equiv-

alent norm ‖U‖Sθ
=

( ∑
k=1,2

∑
j∈N |2 j − 1|2θ

(∣
∣ck j

∣
∣2 + ∣

∣dkj
∣
∣2

) ) 1
2
. This follows

from ζ1, ζ2 > 0.

Denote the space S−θ to be dual of Sθ pivoted with respect to S0 := H =
(H1

L(0, L))2 × (L2(0, L))2. By (23)

S1 = X1 × X1/2 = Dom(A)

S0 = X1/2 × X = H

S−1 = X × X−1/2

Let 0 < ε < 1
2 . By (38), we can also define the interpolation spaces

X1/2+ε/2 = [X1,X1/2]1−ε/2,Xε = [X1/2,X]1−ε/2

so that

[S1, S0]1−ε = Sε = X1/2+ε/2 × Xε/2,

[S2, S1]1−ε = S1+ε = X1+ε/2 × X1/2+ε/2

and their duals S−1−ε and S−ε pivoted with respect to S0 = H; see [38] for more
informationon interpolation spaces.Wehave the followingdense compact embeddings
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S1+ε ⊂ S1 ⊂ Sε ⊂ S0 ⊂ S−ε ⊂ S−1 ⊂ S−1−ε.

With the notation above S−1−ε = X−ε/2 × X−1/2−ε/2.

Now we have the following result from [42]:

Since A : X1 → X can be uniquely extended (or restricted) to ˜̃A : Xθ → Xθ−1
for any θ ∈ R, the infinitesimal generator A : S1 → S0 can be uniquely extended to
˜̃A : S−ε → S−1−ε.

Corollary 1 The semigroup {eAt }t≥0 with the generator A : S1 → S0 has a unique

extension to a contraction semigroup {e ˜̃At }t≥0 on S−1−ε with the generator ˜̃A :
S−ε → S−1−ε for any 0 < ε < 1

2 .

3 Exact observability

We start with the definition of exact observability.

Definition 3 The pair (A∗, B∗) is exactly observable in time T > 0 if there exists a
positive constant C(T ) such that for all ϕ0 ∈ H

∫ T

0
‖B∗eA∗tϕ0‖2 dt ≥ C(T )‖ϕ0‖2H.

The following theorem is proved in [29].

Theorem 4 Assume that ζ2
ζ1

∈ R − Q. The eigenvalues {λ̃∓
1 j = ∓iσ j

ζ1
, λ̃∓

2m =
∓iσm

ζ2
, j,m ∈ N} given by Theorem 3 can get arbitrarily close to each other for

some choices of j and m. Therefore, the system (29) is not exactly observable on H.

For the system (29), Ingham-type theorems (see, i.e., [23,42]) can not be used
to obtain the observability inequality since they require a uniform gap between the
eigenvalues. This type of problem is well studied for joint structures with a point
mass at the joint (see [23] and references therein), or for networks of strings/beams
with different lengths (see [16] and references therein). The main idea of proving
observability result is based on the use of divided differences [44], the generalized
Beurling’s theorem, and the Diophantine’s approximation. We try the idea in [23]
with the following technical result to prove our main observability result.

Lemma 2 Assume that ζ2
ζ1

∈ R − Q̃ where the set Q̃ is defined in Theorem 10. Then
there exists a number τ̃ > 0 such that if

0 < |λ̃+
k j − λ̃+

lm | ≤ τ̃ , k, l = 1, 2, j,m ∈ N (40)

then k �= l and

|λ̃+
1 j − λ̃+

2m | ≥ Cα

|λ̃+
1 j |α

, |λ̃+
1 j − λ̃+

2m | ≥ Cα

|λ̃+
2m |α
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for every α > 1, with a constant Cα independent of the particular choice of λ̃1 j and
λ̃2m .

Proof of Lemma 2 Since ζ1, ζ2 ∈ R − Q̃, we have λ̃+
k j �= λ̃+

lm for any k, l =
1, 2, j,m ∈ N. If we choose τ̃ <

(
π
L

)
min( 1

ζ1
, 1

ζ2
), (40) is satisfied. This implies that

k �= l. By Theorem 10, there exists a sequence of odd integers { p̃ j }, {q̃ j } → ∞ and
α > 1 such that

∣
∣
∣
∣q̃ j

ζ2

ζ1
− p̃ j

∣
∣
∣
∣ ≥ C̃α

(q̃ j )α
.

Therefore

∣
∣
∣λ̃+

1 j − λ̃+
2m

∣
∣
∣ = π

2L

∣
∣
∣
∣
(2 j + 1)

ζ1
− (2m + 1)

ζ2

∣
∣
∣
∣ ≥ π

2L

C̃α

(2 j + 1)α
≥ C̃α

|λ̃1 j |α
,

and there is always a rational number r such that (2 j + 1) = r(2m + 1) so that Cα

can be chosen smaller to get

∣
∣
∣λ̃+

1 j − λ̃+
2m

∣
∣
∣ ≥ Cα

|λ̃+
2m |α . �

We also need the following technical lemma from [23, Chap.9] which is a slightly
different version of the result obtained in [44]:

Lemma 3 Given an increasing sequence {sn} of real numbers satisfying

sn+2 − sn ≥ 2τ for all n, (41)

fix 0 < τ ′ ≤ τ arbitrarily and introduce the divided differences of {en(t), en+1(t)} of
exponential functions {eisn t , eisn+1t } by

en(t) = eisn t , en+1(t) = eisn+1t − eisn t

sn+1 − sn
. (42)

Then there exists positive constants c̃3(T ) and c̃4(T ) such that T > 2π
τ

c̃3(T )

∞∑

n=−∞
|an|2 ≤

∫ T

0
| f (t)|2 dt ≤ c̃4(T )

∞∑

n=−∞
|an|2

holds for all functions given by the sum f (t) = ∑∞
n=−∞ anen(t) : ∑∞

n=−∞ |an|2 <

∞.

Now we can prove our main observability result:
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Theorem 5 Let ζ2
ζ1

∈ R − Q̃ and T > 2L(ζ1 + ζ2). Then there exists a constant
C = C(T ) > 0 such that solutions ϕ of the problem (29) satisfy the following
observability estimate:

∫ T

0
|B∗ϕ|2 dt ≥ C(T )‖ϕ0‖2S−1−ε

. (43)

where S−1−ε is defined by (39).

Proof Let s1 j = σ j
ζ1

= (2 j−1)π
2Lζ1

and s2 j = σ j
ζ2

= (2 j−1)π
2Lζ2

for j ∈ N. The set of
eigenvalues (32) can be rewritten as

λ̃∓
k j = ∓isk j , k = 1, 2, j ∈ N. (44)

Since A∗ = −A, the function ϕ = eA∗tϕ0, given explicitly by (34), solves (29),
and by (25) and (32)–(37)

B∗ϕ =
∑

k=1,2

∑

j∈N
bk(−1) j

(
ck je

is+k j t + dkje
−is+k j t

)
.

By (39), showing (43) is equivalent to showing

∫ T

0
|B∗ϕ|2 dt =

∫ T

0

∣
∣
∣
∣
∣
∣

∑

k=1,2

∑

j∈N
bk(−1) j

(
ck je

is+k j t + dkje
−is+k j t

)
∣
∣
∣
∣
∣
∣

2

dt

≥ C(T )
∑

k=1,2

∑

j∈N

∣
∣ck j

∣
∣2 + ∣

∣dkj
∣
∣2

|λ̃k j |2+2ε
. (45)

Let’s rearrange {∓s+
k j : k = 1, 2, j ∈ N} into an increasing sequence of {sn, n ∈

N}. Denote the coefficients {(−1) j bkck j , (−1) j bkdk j } by gn (recall that b1, b2 ∈
R − {0}). Then showing (45) is equivalent to showing

∫ T

0
|B∗ϕ|2 dt =

∫ T

0

∣
∣
∣
∣
∣

∑

n∈N
gne

isn t

∣
∣
∣
∣
∣

2

dt ≥ C(T )
∑

n∈N

|gn|2
|sn|2+2ε . (46)

Let n+(r) denotes the largest number of terms of the sequence {sn, n ∈ N} con-
tained in an interval of length r. Then

L(ζ1 + ζ2) r

π
− 1 ≤ n+(r) ≤ L(ζ1 + ζ2) r

π
+ 1

Therefore D+ = limr→∞ n+(r)
r = L(ζ1+ζ2)

π
. Now let τ = π

2Lmin
(

1
ζ1

, 1
ζ2

)
so that

sn+2 − sn ≥ 2τ, for all n. (47)
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Note that the condition T > 2π
τ

can be replaced by T > 2πD+ = 2L(ζ1 + ζ2)

(See Prop. 9.3 in [23]). Now we fix 0 < τ ′ < τ and define sets A1 and A2 of integers
by

A1 := {m,m + 1 ∈ N : sm+1 − sm < τ ′}
A2 := {k ∈ N : |sk − sm | ≥ τ ′, m ∈ A1}.

Observe that index n of the eigenvalues {sn} belongs to either A1 or A2.Form ∈ A1,

the exponents {sm, sm+1} form a chain of close exponents for τ ′ and there is no chain
of close exponents longer than two elements. For m ∈ A1, the divided differences
em(t), em+1(t) of the exponential functions are defined by (42).

Therefore, by Lemma 3 for all T > 2L(ζ1 + ζ2) we have

∫ T

0

∣
∣
∣
∣
∣

∑

n∈N
anen(t)

∣
∣
∣
∣
∣

2

dt �
∑

n∈N
|an|2. (48)

If m ∈ A1, we rewrite the sums as

m+1∑

n=m

gne
isn t =

m+1∑

n=m

anen(t)

where am = gm + am+1
sm+1−sm

, am+1 = gm+1(sm+1 − sm). Then there exists a constant
C > 0 independent of m such that

m+1∑

n=m

|gn|2|sm+1 − sm |2 ≤ C
m+1∑

n=m

|an|2. (49)

By Lemma 2, there exists a constant Cα > 0 such that

|sm+1 − sm |2 ≥ Cα

|sm |2α , and |sm+1 − sm |2 ≥ Cα

|sm+1|2α

where α > 1. Therefore by (49) for all α = 1 + ε

m+1∑

n=m

|gn|2
|sn|2+2ε ≤ C

C1+ε

m+1∑

n=m

|an|2.

On the other hand, if n ∈ A2, with the choice of a smaller C1+ε (if necessary) we
get

|gn|2
|sn|2+2ε ≤ C

C1+ε

|gn|2, (50)
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and (48), (49), and (50) imply that for T > 2πD+ = 2L(ζ1 + ζ2)

∑

n∈N

|gn|2
|sn|2+2ε ≤ C

C1+ε

∑

n∈N
|an|2.

This together with (48) implies (46), and therefore (43) holds. �

Corollary 2 Let ζ2
ζ1

∈ ˜̃
Q and T > 2L(ζ1 + ζ2). Then there exists a constant C =

C(T ) > 0 such that solutions of the problem (29) satisfy the following observability
estimate:

∫ T

0
|B∗ϕ|2 dt ≥ C(T )‖ϕ0‖2S−1

. (51)

where S−1 is defined by (38).

Proof If we replace the inequality of (66) by (67), then the proofs of Lemma 2 and
Theorem 5 can be adapted for ε = 0. This implies that the observability inequality
(43) holds as S−1+ε is replaced by S−1. �

Remark 2 Note that the lower bound of the control time T = 2L(ζ1 + ζ2) obtained
in Theorem 5 and Corollary 2 is optimal. The optimality of the control time can
be obtained by using the theory (i.e., see [7,8]). However, since the main scope of
the paper is proving the polynomial stability and investigating the decay rates, we
plan to use their idea in the upcoming research of exact controllability of the elastic
beam/patch system.

4 Stabilization

The signal ṗ(L , t) is the observation dual to the control operator B in (24), and so we
choose the feedback V (t) = − 1

2 B
∗z = 1

2h ṗ(L , t) in (24). Also, since ṗ(L , t) is the
total current at the electrodes, this variable can be measured easier than the velocity
of the beam at one end. The system (5) can be put in the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ż(t) = Adz(t) =

⎛
⎝ 0 I2×2

−A − 1
2B0B

∗
0

⎞
⎠ z,

z(x, 0) = z0,

y(t) = −B∗z(t)

(52a)

(52b)

(52c)
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where Ad : Dom(Ad) ⊂ H → H and Dom(Ad) is defined by

Dom(Ad) = {
z ∈ (H2(0, L))2 × (H1

L(0, L))2 : z1(0) = z2(0) = 0,

αz1x (L) − γβz2x (L) = 0, βz2x (L) − γβz1x (L) = − z4(L)

2h2

}
. (53)

Note that the system above is equivalent to the system studied in [6].

Definition 4 The semigroup {eAd t }t≥0 with the generator Ad is exponentially stable
on H if there exists constants M, μ > 0 such that ‖eAd t‖H ≤ Me−μt for all t ≥ 0.

Theorem 6 [28,29]

(i) Ad : Dom(Ad) → H is the infinitesimal generator of a C0-semigroup of contrac-
tions. Therefore for every T ≥ 0,and z0 ∈ H, z solves (52)with z ∈ C ([0, T ];H).

(ii) The spectrum σ(Ad) ofAd has all isolated eigenvalues. The semigroup {eAd t }t≥0

is strongly stable on H if and only if ζ1
ζ2

�= 2n+1
2m+1 , for some n,m ∈ N. where ζ1

and ζ2 are defined by (13) and (14), respectively.
(iii) Assume that ζ2

ζ1
∈ R − Q. The semigroup {eAd t }t≥0 is not exponentially stable

on H.

Decay estimates

We need the following results to prove our main stabilization results given by Theo-
rem 7.

Lemma 4 [6, Lemma 4.4] Let {Ek}k∈N be a sequence of real numbers satisfying

Ek+1 ≤ Ek − CE2+α
k+1

where C > 0 and α > −1 are constants. Then there exists a positive constant M = M
(α,C) such that

Ek ≤ M

(k + 1)
1

1+α

, k ∈ N.

Lemma 5 [12, Theorem 2.2] Let m ∈ R
+, ω1 : (m,∞) → (0, ω1(m)) and ω2 :

(m,∞) → (0,∞) be convex and increasing, and convex and decreasing functions,
respectively, with ω1(∞) = 0 and ω2(∞) = ∞. Let � : (0, ω1(m)) → (0,∞)

and � : (0, ω2(m)) → (0,∞) be concave and increasing functions with �(0) = 0,
�(∞) = ∞, and for all t > m

1 ≤ �(ω1(t))�(ω2(t)).
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Then for j ∈ N, j ≥ m, and any 0 �= f = { f j } j∈N ∈ l1(N;R), we have

1 ≤ �

⎛

⎜
⎝

∑

j∈N
| f j |ω1( j)

∑

j∈N
| f j |

⎞

⎟
⎠ �

⎛

⎜
⎝

∑

j∈N
| f j |ω2( j)

∑

j∈N
| f j |

⎞

⎟
⎠

where { f jω1 j} j∈N, { f jω2( j)} j∈N ∈ l1(N;R), and therefore

∑

j∈N
| f j |ω1( j) ≥ G−1

�,�

⎛

⎜
⎝

∑

j∈N
| f j |ω2( j)

∑

j∈N
| f j |

⎞

⎟
⎠ , G�,�( j) = 1

�−1
(

1
�( j)

) . (54)

Lemma 5 is the discrete version of the Hölder’s inequality originally proved in
[12]. That is, we use the discrete measure μ with the measurable weights ω1 and ω2.

For instance
∫ ∞
m | f (x)|dμ(x) = ∑

(m≤) j∈N | f (x j )|ω1( j) where f = { f j }(m≤) j∈N ∈
l1(N;R).

Now we are ready to prove our main stabilization result:

Theorem 7 (I) Suppose that ζ2
ζ1

∈ Q̃ where Q̃ is defined in Theorem 10. Then for all
t ≥ 0, there exists a positive constant M1 such that

‖z(t)‖2H ≤ M1

(t + 1)
1

1+ε

‖z0‖2S1+ε
. (55)

(II) Suppose that ζ2
ζ1

∈ ˜̃
Q where ˜̃

Q is defined in (67). Then for all t ≥ 0, there exists
a positive constant M2 such that

‖z(t)‖2H ≤ M2

t + 1
‖z0‖2S1

. (56)

Proof Assume thatψ and ϕ solve (24) and (29) with the initial dataψ0 = 0, ϕ0 = z0,
and with V (t) = B∗z so that z = ϕ + ψ solves (52). By (43) we have

∫ T

0
|B∗ϕ|2 dt ≥ C(T )‖z0‖2S−1−ε

. (57)

On the other hand since B∗z = B∗ϕ + B∗ψ, we can write

|B∗ϕ| ≤ |B∗z| + |B∗ψ |.

By (30) with V (t) = B∗z, ψ0 = 0, and y(t) = B∗ψ

|B∗ψ | ≤ |B∗z|,
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and by (57) we obtain

∫ T

0
|B∗z|2 dt ≥ C(T )‖z0‖2S−1−ε

. (58)

This proves the observability result for (52).
To apply Lemma 5, we choose

m = 1/2, ω1( j) = 1

(2 j − 1)2+2ε , ω2( j) = (2 j − 1)2,

and two functions �(t) and �(t):

�(t) = 1

ω−1
1 (t)

= 2
( 1
t

) 1
2+2ε + 1

, �(t) = ω−1
2 =

√
t + 1

2
.

Then G�,�(t) = 1

t
1

1+ε

and G−1
�,�(t) = 1

t1+ε . Denoting {| f j |} and {λ̃k j } by {|ck j |2 +
|dkj |2} and {λ̃ j }, respectively,

∑

j∈N
| f j | ω1( j) = ‖ f ‖2S−1−ε

,
∑

j∈N
| f j | = ‖ f ‖2H,

∑

j∈N
| f j | ω2( j) = ‖ f ‖2S1

(59)

where we used (38) and Remark 1. By using (54) together with (59) we obtain

‖z0‖2S−1−ε
≥ ‖z0‖2H G−1

�,�

(‖z0‖2S1

‖z0‖2H

)

= ‖z0‖2H
(

‖z0‖2H
‖z0‖2S1

)1+ε

= ‖z0‖4+2ε
H

‖z0‖2+2ε
S1

. (60)

By Theorem 7, (58), (60), and the fact that the function t �→ ‖z(t)‖H is nonincreas-
ing, we obtain

‖z(T )‖2H = ‖z0‖2H −
∫ T

0
|B∗z|2 dt

≤ ‖z0‖2H − C(T )‖z0‖2S−1−ε

≤ ‖z0‖2H − C(T )
‖z0‖4+2ε

H

‖z0‖2+2ε
S1

≤ ‖z0‖2H − C(T )
‖z(T )‖4+2ε

H

‖z0‖2+2ε
S1

. (61)

The estimate (61) remains valid in successive intervals [mT, (m + 1)T ]. So, for all
m ≥ 0, we have
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‖z((m + 1)T )‖2H ≤ ‖z(mT )‖2H − C(T )
‖z((m + 1)T )‖4+2ε

H

‖z0‖2+2ε
S1

. (62)

By letting Em = ‖z(mT )‖2H
‖z0‖2S1

, (62) gives

Em+1 ≤ Em − C(T )(Em+1)
2+ε, m ∈ N.

Hence, by Lemma 4, there exists a constant M1 = M1(C(T )) > 0 such that (56)
follows.

The proof of (II) is similar to the proof of (I) modulo a few simple changes. We
take ε = 0, and use the observability inequality (51) instead of (43). �

5 Conclusion and future research

The main result of this paper is to show that magnetic effects in piezoelectric beams,
even though small, have a dramatic effect on exact observability and stabilizability.
The piezoelectric beam model, without magnetic effects, is exactly observable and
exponentially stabilizable, by a B∗-type feedback However, when magnetic effects
are included, the beam is not exactly observable or exponentially stabilizable. By the
B∗-type feedback, the beam can be exactly observable and polynomially stabilizable

for the initial data z0 inS1 andS1+ε when the ratio
ζ2
ζ1
is in the sets Q̃ or ˜̃Q, respectively.

These sets are of Lebesgue measure zero even though they are uncountable.
A single piezoelectric beam model using the Euler–Bernoulli or Mindlin–

Timoshenko small displacement assumptions is assumed to contract/extend only (by
the linear theory). The voltage control does not even affect the bendingmotions [32]. A
related andmore interesting problem is to find the decay rates of the elastic beam/patch
system (see Fig. 2a). Once the magnetic effects are included [32], the behavior of the
system differs substantially from the classical counterparts [10,20,39,40] which use
electrostatic or quasi-static assumptions. In this model, the stretching equations (2)
are coupled to the bending (and rotation) equations, and it is similar in nature to the
transmission problem proposed by Lions [24]. The beam domain is divided into three
sub-domains; first and the third for the pure elastic and the second for piezo-elastic
coupling. Previous research on controllability of elastic beam/plate with piezoelec-
tric patches without magnetic effects showed that the location of the patch(es) on
the beam/plate strongly determines the controllability and stabilizability. This paper,
[28,29,32] suggest that the controllability and stabilizability depends on not only
the location of the patches but also the system parameters. This is currently under
investigation.

Our results in this paper also have strong implications on the controllability of smart
sandwich structures such as Active Constrained Layer (ACL) damped structures (see
Fig. 2b). The classical sandwich beamor plate is an engineeringmodel for amulti-layer
beam consisting of “face” plates and “core” layers that are orders of magnitude are
more compliant than the face plates. ACL damped beams are sandwich structures of
elastic, viscoelastic, and piezoelectric layers. These structures are being successfully
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Fig. 2 a An elastic beam with
piezoelectric patches where the
voltages VT (t) and VB (t) are
applied to the top and bottom
piezoelectric patches,
respectively. b Active
constrained layer (ACL) damped
beam/plate where the voltage
VT is applied to the
piezoelectric patch

used for a variety of applications such as spacecraft, aircraft, train and car structures,
wind turbine blades, boat/ship superstructures; i.e., see [11]. Themodeling and control
strategies developed in [18,19,27,29–31] play a key role in accurate analysis of these
structures. The controllability/stabilization problems in the case of voltage actuation
is still an open problem. This is currently under investigation.

Acknowledgments I would like to thank to Prof. Kirsten Morris and Prof. Sergei Avdonin for the fruitful
discussions and suggestions to finalize this paper.

Appendix: Some results in number theory

In this section, we briefly mention some fundamental results of Diophantine’s approx-
imation. The theorem of Khintchine (Theorem 8) plays an important role to determine
the Lebesgue measure of sets investigated in this paper.

Let f : N → R
+ be called an approximation function if

lim
q̃→∞

f (q̃) = 0.

A real number ζ is f -approximable if ζ satisfies

∣
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣
∣ < f (q̃) (63)

for infinitely many rational numbers p̃
q̃ . Let P( f ) be the set of all f -approximable

numbers. We recall the following theorem to find the measure of sets of type P( f ).
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Theorem 8 (Khintchine’s theorem) [13, Page4] Let μ be the Lebesgue measure.
Then

μ(P( f )) =

⎧
⎪⎨

⎪⎩

0, if
∑

q̃∈N
q̃ f (q̃) < ∞,

full, if q̃ f (q̃) is nonincreasing and
∑

q̃∈N
q̃ f (q̃) = ∞.

(64)

Dirichlet’s theorem [14] states that every irrational number can be approximated to
the order 2. The following theorem from [35] is a special case of Dirichlet’s theorem:

Theorem 9 Let ζ ∈ R − Q. Then there exists a constant C ≥ 1, and increasing
sequences of coprime odd integers { p̃ j }, {q̃ j } satisfying the asymptotic relation

∣
∣
∣
∣ ζ − p̃ j

q̃ j

∣
∣
∣
∣ ≤ C

q̃2j
, j → ∞. (65)

It obvious by Theorem 8 that the setR−Q is uncountable and it has a full Lebesgue
measure.

Definition 5 A real number ζ is a Liouville’s number if for every m ∈ N there exists
p̃m
q̃m

with pm, qm ∈ Z such that

∣
∣
∣
∣ ζ − p̃m

q̃m

∣
∣
∣
∣ <

1

q̃mm
.

It is proved that any Liouville’s number is transcendental. Theorem 8 implies that
the set of Liouville’s numbers is of Lebesgue measure zero.

Definition 6 A real number ζ is an algebraic number if it is a root of a polynomial
equation

anx
n + an−1x

n−1 + · · · + a1x + a0 = 0

with each ai ∈ Z, and at least one of ai is non-zero. A number which is not algebraic
is called transcendental.

Now we give the following results of Diophantine’s approximations:

Theorem 10 There exists a set Q̃ such that if ζ ∈ R − Q̃, then for every ε > 0 there
are infinitely many p̃

q̃ ∈ Q and a constant Cζ > 0 such that

∣
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣
∣ ≥ Cζ

q̃2+ε
. (66)

Moroever, μ(Q̃) = 0.
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Proof We know that the irrational algebraic numbers belong to Q̃ by Roth’s theorem
(Page 103, [14]). Therefore Q̃ is not empty. We proceed to the second part of the
lemma. The first part of the theorem implies that if ζ ∈ Q̃ then for all Cζ > 0, the

inequality
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣ <

Cζ

q̃2+ε holds for some p̃
q̃ ∈ Q. Now define the set

Q̃ε =
{

ζ ∈ R :
∣
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣
∣ <

Cζ

q̃2+ε
for infinitely many

p̃

q̃
∈ Q

}

.

By the notation of Theorem 8, choose f (q̃) = Cζ

q̃2+ε so that q̃ f (q̃) is nonincreasing

and
∑

q̃∈N
Cζ

q̃1+ε < ∞. By Theorem 8, μ(Q̃ε) = 0. Now we prove Q̃ ⊂ Q̃ε by

contradiction. Assume that ζ /∈ Q̃ε, i.e., there are finitely many rationals
{
pi
qi

}

i=1,...,N
such that

∣
∣
∣
∣ ζ − pi

qi

∣
∣
∣
∣ <

Cζ

q2+ε
i

for i = 1, . . . , N , and

∣
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣
∣ ≥ Cζ

q2+ε
for

p̃

q̃
/∈

N⋃

i=1

{
p̃i
q̃i

}

.

The last inequality implies that ζ ∈ R − Q. This implies that the set R − Q̃ has a
full Lebesgue measure. �

Now define the set ˜̃
Q by

˜̃
Q =

{

ζ ∈ R : ∃C > 0,

∣
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣
∣ ≥ C

q̃2
for infinitely many

p̃

q̃
∈ Q

}

. (67)

If we consider numbers ζ ∈ R whose the partial quotients satisfy |ak | < C(ζ ) for
all k ∈ N in its continued fraction expansion

ζ = [a0; a1, a2, . . .] = a0 + 1

a1 + 1

a2+
. . .

,

then ζ ∈ ˜̃
Q. By Liouville’s theorem (Page 128, [26]), ˜̃

Q also contains all quadratic
irrational numbers (the roots of an algebraic polynomial of degree 2). Therefore the
set is uncountable.

Lemma 6 The set ˜̃
Q has a Lebesgue measure zero.

Proof Define the set Fm by

Fm =
{

ζ ∈ R :
∣
∣
∣
∣ ζ − p̃

q̃

∣
∣
∣
∣ <

C

mq̃2
for infinitely many

p̃

q̃
∈ Q

}

.
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Then Fm has a full Lebesgue measure by Theorem 8, i.e., f (q̃) = C
mq̃2

, and
∑

q̃∈N q̃ f (q̃) = ∞. Now consider the set
⋂

m∈N Fm . This set is the countable inter-
section of sets Fm, and each Fm has full Lebesgue measure. Therefore μ

(⋂
m∈N Fm

)

has full Lebesgue measure. Since ˜̃
Q = R − ⋂

m∈N Fm, then μ(
˜̃
Q) = 0. �
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