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Deep sequencing has enabled the investigation of a wide range of
environmental microbial ecosystems, but the highmemory require-
ments for de novo assembly of short-read shotgun sequencing
data from these complex populations are an increasingly large
practical barrier. Here we introduce a memory-efficient graph re-
presentation with which we can analyze the k-mer connectivity
of metagenomic samples. The graph representation is based on
a probabilistic data structure, a Bloom filter, that allows us to effi-
ciently store assembly graphs in as little as 4 bits per k-mer, albeit
inexactly. We show that this data structure accurately represents
DNA assembly graphs in low memory. We apply this data structure
to the problemof partitioning assembly graphs into components as
a prelude to assembly, and show that this reduces the overall mem-
ory requirements for de novo assembly of metagenomes. On one
soil metagenome assembly, this approach achieves a nearly 40-fold
decrease in the maximummemory requirements for assembly. This
probabilistic graph representation is a significant theoretical ad-
vance in storing assembly graphs and also yields immediate lever-
age on metagenomic assembly.

metagenomics ∣ compression

De novo assembly of shotgun sequencing reads into longer con-
tiguous sequences plays an important role in virtually all

genomic research (1). However, current computational methods
for sequence assembly do not scale well to the volume of sequen-
cing data now readily available from next-generation sequencing
machines (1, 2). In particular, the deep sequencing required to
sample complex microbial environments easily results in datasets
that surpass the working memory of available computers (3, 4).

Deep sequencing and assembly of short reads is particularly
important for the sequencing and analysis of complex microbial
ecosystems, which can contain millions of different microbial spe-
cies (5, 6). These ecosystems mediate important biogeochemical
processes but are still poorly understood at a molecular level, in
large part because they consist of many microbes that cannot be
cultured or studied individually in the lab (5, 7). Ensemble se-
quencing (“metagenomics”) of these complex environments is
one of the few ways to render them accessible, and has resulted
in substantial early progress in understanding the microbial com-
position and function of the ocean, human gut, cow rumen, and
permafrost soil (3, 4, 8, 9). However, as sequencing capacity
grows, the assembly of sequences from these complex samples
has become increasingly computationally challenging. Current
methods for short-read assembly rely on inexact data reduction
in which reads from low-abundance organisms are discarded,
biasing analyses towards high-abundance organisms (3, 4, 9).

The predominant assembly formalism applied to short-read se-
quencing datasets is a de Bruijn graph (10–12). In a de Bruijn
graph approach, sequencing reads are decomposed into fixed-
length words, or k-mers, and used to build a connectivity graph.
This graph is then traversed to determine contiguous sequences
(12). Because de Bruijn graphs store only k-mers, memory usage
scales with the number of unique k-mers in the dataset rather
than the number of reads (12, 13). Thus human genomes can
be assembled in less than 512 GB of system memory (14). For

more complex samples such as soil metagenomes, which may
possess millions or more species, terabytes of memory would be
required to store the graph. Moreover, the wide variation in spe-
cies abundance limits the utility of standard memory-reduction
practices such as abundance-based error-correction (15).

In this work, we describe a simple probabilistic representation
for storing de Bruijn graphs in memory, based on Bloom filters
(16). Bloom filters are fixed-memory probabilistic data structures
for storing sparse sets; essentially hash tables without collision
detection, set membership queries on Bloom filters can yield false
positives but not false negatives. Although, Bloom filters have
been used in bioinformatics software tools in the past, they have
not been used for storing assembly graphs (17–20). We show that
this probabilistic graph representation more efficiently stores de
Bruijn graphs than any possible exact representation for a wide
range of useful parameters. We also demonstrate that it can be
used to store and traverse actual DNA de Bruijn graphs with a
20- to 40-fold decrease in memory usage over two common de
Bruijn graph-based assemblers, Velvet and ABySS (21, 22). We
relate changes in local and global graph connectivity to the false
positive rate of the underlying Bloom filters and show that the
graph’s global structure is accurate for false positive rates of
15% or lower, corresponding to a lower memory limit of approxi-
mately 4 bits per graph node.

We apply this graph representation to reduce the memory
needed to assemble a soil metagenome sample, through the use
of read partitioning. Partitioning separates a de Bruijn graph into
disconnected graph components; these components can be used
to subdivide sequencing reads into disconnected subsets that can
be assembled separately. This exploits a convenient biological
feature of metagenomic samples: They contain many microbes
that should not assemble together. Graph partitioning has been
used to improve the quality of metagenome and transcriptome
assemblies by adapting assembly parameters to local coverage of
the graph (23–25). However, to our knowledge, partitioning has
not been applied to scaling metagenome assembly. By applying
the probabilistic de Bruijn graph representation to the problem
of partitioning, we achieve a dramatic decrease of nearly 40-fold
in the memory required for assembly of a soil metagenome.

Results
Bloom Filters Can Store de Bruijn Graphs.Given a set of short DNA
sequences, or reads, we first break down each read into a set of
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overlapping k-mers. We then store each k-mer in a Bloom filter, a
probabilistic data structure for storing elements from sparse da-
tasets (see Methods for implementation details). Each k-mer
serves as a vertex in a graph, with an edge between two vertices
N1 and N2 if and only if N1 and N2 share a (k-1)-mer that is a
prefix of N1 and a postfix of N2, or vice versa. This edge is not
stored explicitly, which can lead to false connections when two
reads abut but do not overlap; these false connections manifest
as false positives, discussed in detail below.

Thus each k-mer has up to eight edges connecting to eight
neighboring k-mers, which can be determined by simply building
all possible 1-base extensions and testing for their presence in the
Bloom filter. In doing so, we implicitly treat the graph as a simple
graph as opposed to a multigraph, which means that there can be
no self-loops or parallel edges between vertices/k-mers. By rely-
ing on Bloom filters, the size of the data structure is fixed: No
extra memory is used as additional data are added.

This graph structure is effectively compressible because one
can choose a larger or smaller size for the underlying Bloom
filters; for a fixed number of entries, a larger Bloom filter has
lower occupancy and produces correspondingly fewer false posi-
tives, whereas a smaller Bloom filter has higher occupancy and
produces more false positives. In exchange for memory, we can
store k-mer nodes more or less accurately: for example, for a false
positive rate of 15%, at which one in six random k-mers tested
would be falsely considered present, each real k-mer can be
stored in under 4 bits of memory (see Table 1). Although there
are many false k-mers, they only matter if they connect to a
real k-mer.

The false positive rate inherent in Bloom filters thus raises one
concern for graph storage: In contrast to an exact graph storage,
there is a chance that a k-mer will be adjacent to a false positive
k-mer. That is, a k-mer may connect to another k-mer that does
not actually exist in the original dataset but nonetheless registers
as present, due to the probabilistic nature of the Bloom filter. As
the memory per real k-mer is decreased, false positive vertices
and edges are gained, so compressing the graph results in a more
tightly interconnected graph. If the false positive rate is too high,
the graph structure will be dominated by false connectivity—but
what rate is “too high”? We study this key question in detail
below.

False Positives Cause Local Elaboration of Graph Structure.Erroneous
neighbors created by false positives can alter the graph structure.
To better understand this effect, we generated a random 1,031 bp
circular sequence and visualized the effect of different false po-
sitive rates. After storing this single sequence in compressible
graphs using k ¼ 31 with four different false positive rates
(pf ¼ 0.01, 0.05, 0.10, and 0.15), we explored the graph using
breadth-first search beginning at the first 31-mer. The graphs in
Fig. 1 illustrate how the false positive k-mers connected to the
original k-mers (from the 1,031 bp sequence) elaborate with
the false positive rate while the overall circular graph structure
remains, with no erroneous shortcuts between k-mers that are
present in the original sequence. It is visually apparent that even
a high false positive rate of 15% does not systematically and
erroneously connect distant k-mers.

False Long-Range Connectivity is a Nonlinear Function of the False
Positive Rate. To explore the point at which our data structure sys-
tematically engenders false long-range connections, we inserted
random k-mers into Bloom filters with increasing false positive
rates. These k-mers connect to other k-mers to form graph com-
ponents that increase in size with the false positive rate. We then
calculated the average component size in the graph for each false
positive rate (n ¼ 10;000) and used percentile bootstrap to ob-
tain estimates within a 95% confidence interval. Fig. 2 demon-
strates that the average component size rapidly increases as a
specific threshold is approached, which appears to be at a false
positive rate near 0.18 for k ¼ 31. Beyond 0.18, the components
begin to join together into larger components.

As the false positive rate increases, we observe a sudden tran-
sition from many small components to fewer, larger components
created by erroneous connections between the “true” compo-
nents (Fig. 2). In contrast to the linear increase in the local neigh-
borhood structure as the false positive rate increases linearly, the
change in global graph structure is abrupt as previously discon-
nected components join together. This rapid change resembles a
geometric phase transition, which for graphs can be discussed in
terms of percolation theory (26). We can map our problem to site
percolation by considering a probability p that a particular k-mer
is present, or “on”. (This is in contrast to bond percolation where
p represents the probability of a particular edge being present.)
As long as the false positive rate is below the percolation thresh-
old pθ (i.e., in the subcritical phase), we would predict that the
graph is not highly connected by false positives.

Percolation thresholds for finite graphs can be estimated by
finding where the component size distribution transitions from
linear to quadratic in form (27). Using the calculation method
described in Methods, we found the site percolation threshold
for DNA de Bruijn graphs to be pθ ¼ 0.183� 0.001 for k be-
tween 5 and 12. Although we only tested within this limited range
of k, the percolation threshold appears to be independent of dif-
ferent k (see Fig. S1). Thus, as long as the false positive rate is
below 0.183, we predict that truly disconnected components in

Fig. 1. Graph visualizations demonstrating the decreasing fidelity of graph
structure with increasing false positive rate. Erroneous k-mers are colored red
and k-mers corresponding to the original generated sequence (1,000 31-mers
generated by a 1,031 bp circular chromosome) are black. From top left to
bottom right, the false positive rates are 0.01, 0.05, 0.10, and 0.15. Shortcuts
“across” the graph are not created.

Table 1. Bits per k-mer for various
false positive rates

False positive rate Bits/k-mer

0.1% 14.35
1% 9.54
5% 6.22
10% 4.78
15% 3.94
20% 3.34

Pell et al. PNAS ∣ August 14, 2012 ∣ vol. 109 ∣ no. 33 ∣ 13273

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121464109/-/DCSupplemental/pnas.1121464109_SI.pdf?targetid=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121464109/-/DCSupplemental/pnas.1121464109_SI.pdf?targetid=SF1


the graph are unlikely to connect to one another erroneously, that
is, due to errors introduced by the probabilistic representation.

Large-Scale Graph Structure is Retained up to the Percolation Thresh-
old.The results from component size analysis and the percolation
threshold estimation suggest that global connectivity of the graph
is unlikely to change below a false positive rate of 18%. Do we see
this invariance in global connectivity in other graph measures?

To assess global connectivity, we employed the diameter metric
in graph theory, the length of the “longest shortest” path between
any two vertices (28). If shorter paths between real k-mers were
being systematically generated due to false positives, we would
expect the diameter of components to decrease as the false po-
sitive rate increased. We randomly generated 58 bp long circular
chromosomes (50 bp read with the first 8-mer appended to the
end of the string) to construct components containing 50 8-mers
and calculated the diameter at different false positive rates. We
kept k low because we needed to be able to exhaustively explore
the graph even beyond the percolation threshold, which is com-
putationally prohibitive to do at higher k values. Furthermore,
larger circular chromosomes would be more likely to erroneously
connect at a fixed k, but due to the relatively low number of pos-
sible 8-mers, we had to keep the chromosomes small. We only
considered paths between two real k-mers in the dataset.

At each false positive rate, we ran the simulation 500 times and
estimated the mean within a 95% confidence interval using per-
centile bootstrap. As Fig. 3 shows, erroneous connections be-
tween pairs of real k-mers are rare below a false positive rate
of 20%. For false positive rates above this threshold, spurious
connections between real k-mers are created, which lowers the

diameter. Thus, the larger scale graph structure is retained up
through p ¼ 0.183, as suggested by the component size analysis
and percolation results. This demonstrates that as long as the
k-mer space is only sparsely occupied by false positives, long
“bridges” between distant k-mers do not appear spontaneously.

Erroneous k-mers From Sequencing Eclipse Graph False Positives. It is
important to compare the errors from false positives in the de
Bruijn graph representation with errors from real data. In parti-
cular, real data from massively parallel sequencers will contain
base calling errors. In de Bruijn graph-based assemblers, these
sequencing errors add to the graph complexity and make it more
difficult to find high-quality paths for generating long, accurate
contigs. Because our approach also generates false positives,
we wanted to compare the error rate from the Bloom filter graph
with experimental errors generated by sequencing (Table 2).
We used the Escherchia coli K-12 MG1665 genome to compare
various graph invariants between an Illumina dataset generated
from the same strain (see Methods), an exact representation
of the genome, and inexact representations with different false
positive rates.

For these comparisons, we used a k value of 17, for which we
can store graphs exactly, i.e., we have no false positives because
we can store 417 entries precisely in 2 GB of system memory. This
is equivalent to a Bloom filter with one hash table and a 0% false
positive rate. We found a total of 50,605 17-mers in the exact re-
presentation that were not part of a simple line, i.e., had more
than two neighbors (degree > 2). As the false positive rate in-
creased, the number of these 17-mers increased in the expected

Fig. 2. Average component size versus false positive rate. The average
component size sharply increases as the false positive rate approaches the
percolation threshold.

Fig. 3. The diameter of randomly generated 58 bp long circular chromo-
somes in 8-mer (i.e., a cycle of 50 8-mers) space remains constant for false
positive rates up through 18.3%. Only real (nonerror) k-mers are considered
for starting and ending points.

Table 2. Effects of loading E. coli data at different false positive rates

Graph Total k-mers False connected k-mers % Real Deg > 2 Mem (bytes)

E. coli at 0% 4,530,123 0 100 50,605 2.1 × 109

E. coli at 1% 4,814,050 283,927 94.1 313,844 5.4 × 106

E. coli at 5% 6,349,301 1,819,178 71.3 1,339,102 3.5 × 106

E. coli at 15% 31,109,523 26,579,400 14.6 10,522,482 2.2 × 106

Reads at 0% 45,566,033 41,036,029 9.9 7,699,309 2.1 × 109

Reads at 1% 48,182,271 43,652,265 9.4 31,600,208 5.4 × 107

Reads at 5% 62,019,545 57,489,537 7.3 42,642,203 3.6 × 107

Reads at 15% 231,687,063 227,157,037 1.9 113,489,902 2.3 × 107

13274 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1121464109 Pell et al.



linear fashion. Furthermore, the number of real 17-mers, those
that are not false positives, comprise the majority of the graph.
(As above, we only counted false positive k-mers that are transi-
tively connected to at least one real k-mer.)

In contrast, when we examined an exact representation of an
Illumina dataset, only 9.9% of the k-mers in the graph truly exist
in the reference genome. The number of 17-mers with more than
two neighbors in the sequencing reads is higher than for the exact
representation of the genome, which demonstrates that sequen-
cing errors add to the complexity of the graph. Overall, the errors
demonstrated by sequencers dwarf the errors caused by the inex-
act graph representation at a reasonable false positive rate.

When we assemble this dataset with the Velvet and ABySS
assemblers at k ¼ 31, Velvet requires 3.7 GB to assemble the da-
taset, whereas ABySS requires 1.6 GB; this memory usage is
dominated by the graph storage (29). Thus the Bloom filter ap-
proach stores graphs 30 or more times more efficiently than either
program, even with a low false positive rate of 1%. Although this
direct comparison cannot be made fairly—assemblers store the
graph as well as k-mer abundances and other information—it
does suggest that there are opportunities for decreasing memory
usage with the probabilistic graph representation.

Sequences Can Be Accurately Partitioned by Graph Connectivity. Can
we use this low-memory graph representation to find and sepa-
rate components in de Bruijn graphs? The primary concern is that
false positive nodes or edges would connect components, but the
diameter results suggest that components are unlikely to connect
below a 20% false positive rate. To verify this, we analyzed a si-
mulated dataset of 1,000 randomly generated sequences of length
10,000 bp. Using k ¼ 31, we partitioned the data across many dif-
ferent false positive rates, using the procedure described inMeth-
ods. As predicted, the resulting number of partitions did not vary
across the false positive rates while f p ≤ 0.15 (Fig. S2).

We then applied partitioning to a considerably larger bulk soil
metagenome (“MSB2”) containing 35 million 75 bp long reads
generated from an Illumina GAII sequencer. We calculated the
number of unique 31-mers present in the dataset to be 1.35 billion.
Then, for each of several false positive rates (see Table 3) we
loaded the reads into a graph, eliminated components containing
fewer than 200 unique k-mers, and partitioned the reads into se-
parate files based on graph connectivity.

Once we obtained the partition sets, we individually assembled
each set of partitions using ABySS, as well as the entire (unparti-
tioned) dataset, retaining contigs longer than 500 bp. The result-
ing assemblies were all identical, containing 1,444 contigs with a
total assembled sequence of 1.07 megabases. The unpartitioned
dataset required 33 GB to assemble with ABySS, whereas the da-
taset could be partitioned in under 1 GB with a 30-fold decrease
in maximum memory usage (Table 3). Moreover, despite this dra-
matic decrease in the memory required to assemble the dataset,
the assembly results are identical.

Discussion
Bloom Filters Can Be Used to Efficiently Store de Bruijn Graphs. The
use of Bloom filters to store a de Bruijn graph is straightforward
and memory efficient. The expected false positive rate can be
tuned based on desired memory usage, yielding a wide range
of possible storage efficiencies (Table 1). Because memory usage

is k independent in Bloom filters, it is more efficient than the
theoretical lower-bound for a lossless exact representation when
the number of k-mers inserted in the graph is sparsely populated,
which is dependent on k (Fig. 4; see (13) for details on lower-
bound memory usage for an exact representation).

Even for low false positive rates such as 1%, this is still an effi-
cient graph representation, with significant improvements in both
theoretical memory usage (Fig. 4) and actual memory usage com-
pared to two existing assemblers, Velvet and ABySS (Table 2). We
can store k-mers in this data structure with a much smaller set of
“erroneous” k-mers than those generated by sequencing errors,
and the Bloom filter false positive rates have less of an effect on
branching graph structure than do sequencing errors. In addition,
the false positives engendered by the Bloom filters are uncorre-
lated with the original sequence, unlike single-base sequencing
errors that resemble the real sequence.

Using a probabilistic graph representation with false positive
nodes and edges raises the specter of systematic graph artifacts
resulting from the false positives. For partitioning, our primary
concern was that false positives would incorrectly connect
components, rendering partitioning ineffective. The results from
percolation analysis, diameter calculations, and partitioning of
simulated and real data demonstrate that below the calculated
percolation threshold there is no significant false connectivity.
As long as the false positive rate is below 18.3%, long false paths
are not spontaneously created and the large scale graph proper-
ties do not change. Above this rate, the global graph structure
quickly degrades.

Partitioning Works on Real Datasets. Our partitioning results on a
real soil metagenome, the MSB2 dataset, demonstrate the utility
of partitioning for reducing memory usage. For this specific
dataset, we obtained identical results with a 20–40× decrease
in memory (Table 3). This is consonant with our results from stor-
ing the E. coli genome, in which we achieved a 30-fold decrease in
memory usage over the exact representation at a false positive
rate of 1%. Although increased coverage and variation in dataset
complexity will affect actual memory usage for other datasets,
these results demonstrate that significant scaling in the memory
required for assembly can be achieved in one real case.

The memory requirements for the partitioning process on the
MSB2 dataset are dominated by the memory required to store
and explore the graph; the higher memory usage observed for

Table 3. Partitioning results on a soil metagenome at k ¼ 31

False positive
rate (%)

Total memory use
(improvement)

Largest partition size
in reads

1 1.75 GB (18.8×) 344,426
5 1.20 GB (27.5×) 344,426
10 0.96 GB (34.37×) 344,426
15 0.83 GB (39.75×) 344,426

Fig. 4. Comparison between Bloom filters at different false positive rates
with the information-theoretic lossless lower bound at different k values.
Bloom filters are k independent and are more efficient than any lossless data
structure for higher k due to greater sparseness in k-mers inserted compared
to all possible k-mers.

Pell et al. PNAS ∣ August 14, 2012 ∣ vol. 109 ∣ no. 33 ∣ 13275
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partitioning at a false positive rate of 15% is due to the increase in
component size from local false positives. Regardless, the mem-
ory requirements for downstream assembly of partitions is driven
by the size of the largest partition, which here is very small
(345,000 reads; Table 3) due to the high diversity of soil and
the concordant low coverage. The dominant partition size is re-
markably refractory to the graph’s false positive rate, increasing
by far less than 1% for a 15-fold increase in false positives; this
shows that our theoretical and simulated results for component
size and diameter apply to the MSB2 dataset as well.

Once partitioned, components can be assembled with para-
meters chosen for the coverage and sequence heterogeneity pre-
sent in each partition. Moreover, datasets partitioned at a low k0
can be exactly assembled with any k ≥ k0, because overlaps of
k0 − 1 bases include all overlaps of greater length. Because the
partitions will generally be much smaller than the total dataset
(see Table 3), they can be quickly assembled with many different
parameters. This ability to quickly explore many parameters
could result in significant improvement in exploratory metagen-
ome assembly, where the “best” assembly parameters are not
known and must be determined empirically based on many dif-
ferent assemblies.

Combined with the scaling properties of the graph representa-
tion, partitioning with this probabilistic de Bruijn graph represen-
tation offers a way to efficiently apply a partitioning strategy to
certain assembly problems. Although this work focuses on theo-
retical properties of the graph representation and analyzes only
one real dataset, the results are promising; the next step is to eval-
uate the approach on many more real datasets.

Concluding Remarks
Developing efficient and accurate approaches to de novo assem-
bly continues to be one of the “grand challenges” of bioinfor-
matics (2). Improved metagenome assembly approaches are
particularly important for the investigation of microbial life on
Earth, much of which has not been sampled (7, 30). Although
our appreciation for the role that microbes play in biogeochem-
ical processes is only growing, we are increasingly limited by our
ability to analyze the data. For example, the Earth Microbiome
Project is generating petabytes of sequencing data from complex
microbial communities, many of which contain entirely novel en-
sembles of microbes; scaling de novo assembly is a critical re-
quirement of this investigation (31).

The probabilistic de Bruijn graph representation presented
here has a number of convenient features for storing and analyz-
ing large assembly graphs. First, it is efficient and compressible:
For a given dataset, a wide range of false positive rates can be
chosen without impacting the global structure of the graph, allow-
ing graph storage in as little as 4 bits per k-mer. Because a higher
false positive rate yields a more elaborate local structure, memory
can be traded for traversal time in, e.g., partitioning. Second, it is
a fixed-memory data structure, with predictable degradation
of both local and global structure as more data are inserted.
For datasets where the number of unique k-mers is not known
in advance, the occupancy of the Bloom filter can be monitored
as data are inserted and directly converted to an expected false
positive rate. Third, the memory usage is independent of the k-
mer size chosen, making this representation convenient for ex-
ploring properties at many different parameters. It also allows
the storage and traversal of de Bruijn graphs at multiple k-mer
sizes within a single structure, although we have not yet explored
these properties. And fourth, it supports memory-efficient parti-
tioning, an approach that exploits underlying biological features
of the data to divide the dataset into disconnected subsets.

Our initial motivation for developing this use of Bloom filters
was to explore partitioning as an approach to scaling metagen-
ome assembly, but there are many additional uses beyond
metagenomics. Here we describe exact partitioning of the graph

into components, but inexact partitioning has been successfully
applied to mRNAseq assembly (25). Inexact partitioning, as
done by the Chrysalis component of the Trinity pipeline, uses
heuristics to subdivide the graph for later assembly; the data
structure described in this work can be used for this purpose
as well. More broadly, a more memory efficient de Bruijn
graph representation opens up many additional opportunities.
Although de Bruijn graph approaches are currently being used
primarily for the purposes of assembly, they are a generally useful
formalism for sequence analysis. In particular, they have been
extended to efficient multiple-sequence alignment, repeat dis-
covery, and detection of local and structural sequence variation
(29, 32–34).

Materials
Genome and Sequence Data. We used the E. coli K-12 MG1655 genome
(GenBank: U00096.2) and two MG1655 Illumina datasets [Short Read Archive
(SRA) accessions SRX000429 and SRX000430] for E. coli analyses. The MSB2
soil dataset is available as SRA accession SRA050710.1.

Data Structure Implementation. We implemented a variation on the Bloom
filter data structure to store k-mers in memory. In a classic Bloom filter, multi-
ple hash functions map bits into a single hash table to add an object or test
for the presence of an object in the set. In our variant, we use multiple prime-
number-sized hash tables, each with a different hash function corresponding
to the modulus of the DNA bitstring representation with the hash table size;
this is a computationally convenient way to construct hash functions for DNA
strings. The properties of this implementation are identical to a classical
Bloom filter (35).

Estimating False Positive Rate for Erroneous Connectivity. We ran a simulation
to find when components in the graph begin to erroneously connect to one
another. To calculate the false positive rate p at which this aberrant connec-
tivity occurs, we added random k-mers, sampled from a uniform GC distribu-
tion to the data structure and then calculated the occupancy and size of the
largest component. From this we sampled the relative size of the largest com-
ponent and the overall component size distribution for each given occupancy
rate. At the occupancy where a “giant component” appears, this component
size distribution should be scale-free (27). We then found at what value of p
the resulting component size distribution in logarithmic scale can be better
fitted in a linear or quadratic fashion using the F-statistic

F ¼ RSS1 −RSS2

p2 − p1
×
n − p2
RSS2

;

where RSSi is the residual sum of squares for model i, pi is the number of
parameters for model i, and n is the number of data points. To handle
the finite size sampling error, the data were binned using the threshold bin-
ning method (36). The critical value for when aberrant connectivity occurred
was found by determining the local maxima of the F-values (37).

Graph Partitioning Using a Bloom Filter. We used the Bloom filter data struc-
ture containing the k-mers from a dataset to discover components of the
graph, i.e., to partition the graph. Here a component is a set of k-mers whose
originating reads overlap transitively by at least k − 1 base pairs. Reads be-
longing only to small components can be discovered and eliminated in fixed
memory using a simple traversal algorithm that truncates after discovering
more than a given number of novel k-mers. For discovering large compo-
nents we tag the graph at a minimum density by using the underlying reads
as a guide. We then exhaustively explore the graph around these tags in or-
der to connect tagged k-mers based on graph connectivity. The underlying
reads in each component can then be separated based on their partition.

Assembler Software. We used ABySS v1.3.1 and Velvet v1.1.07 to perform as-
semblies. The ABySS command was: mpirun -np 8 ABYSS-P -k31 -o con-
tigs.fa reads.fa. The Velvet commands were: velveth assem 31 -fasta
-short reads.fa && velvetg assem. We did not use Velvet for the parti-
tioning analysis because Velvet’s error correction algorithm is stochastic and
results in dissimilar assemblies for different read order.

Software and Software Availability. We have implemented this compressible
graph representation and the associated partitioning algorithm in a software
package named khmer. It is written in C++ and Python 2.6 and is available
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under the Berkeley Software Distribution open source license at https://
github.com/ged-lab/khmer. The graphviz software package was used for
graph visualizations. The scripts to generate the figures of this paper are
available in the khmer repository.
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Fig. S1. Demonstration of k independence by determining the percolation threshold with multiple values of k (5–12). p on the x axis is the fraction of nodes
present, and θ on the y axis is the fraction of nodes in the largest component. Lower values of k have greater finite size sampling errors.

Fig. S2. The graph shows the number of partitions for a simulated dataset with 1,000 contigs of 10,000 bp each (circles). For n ¼ 5 different combinations of
hash table sizes, there was no variation in results for the simulated dataset.
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