Potential of spent mushroom substrate in vermicomposting

Adi Ainurzaman Jamaludin
Potential of spent mushroom substrate in vermicomposting

By

Adi Ainurzaman Jamaludin
Institute of Biological Sciences,
Faculty of Science,
University of Malaya, Kuala Lumpur.
e-mail: conquer_vx@hotmail.com

MMCF 2008
29 NOVEMBER 2008, INSTITUTE OF BIOLOGICAL SCIENCES, FACULTY OF SCIENCE, UNIVERSITY OF MALAYA.
Part 1

Introduction

1.1. Vermicomposting
1.2. Composting
1.3. Nutrient elements
1.4. Spent mushroom substrate
1.1. Vermicomposting

- pH 5.5 – 8.7
- Temperature 25°C-30°C
- 60% - 80% moisture content
- Shorter Duration
- Cost effective & natural method
- Produced Better End Product; ‘Vermicompost’

Vermicomposting

MMCF 2008
29 NOVEMBER 2008, INSTITUTE OF BIOLOGICAL SCIENCES, FACULTY OF SCIENCE, UNIVERSITY OF MALAYA.
1.2. Composting

Composting

- Utilize microorganisms
- Aerobic / Anaerobic
- Produced - CO₂ and H₂O
- Methane Gas (under anaerobic condition)
- Temperature 60°C and reduce to 25-30°C
- 30 to 40 days

Humus known as 'compost'

MMCF 2008
29 NOVEMBER 2008, INSTITUTE OF BIOLOGICAL SCIENCES, FACULTY OF SCIENCE, UNIVERSITY OF MALAYA.
1.3. Nutrient elements

<table>
<thead>
<tr>
<th>Nutrient element</th>
<th>Vermicompost</th>
<th>Compost</th>
<th>HiWave™Compo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixture Organic Waste</td>
<td>Mixture Organic Waste</td>
<td>Vegetable Waste (80%) + Food Waste (20%)</td>
</tr>
<tr>
<td></td>
<td>Garden Waste (%)</td>
<td>Garden Waste (%)</td>
<td>Garden Waste (%)</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>n.d.</td>
<td>9.8 – 13.4 %</td>
<td>12.2 %</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>1.16 %</td>
<td>0.51 – 1.61 %</td>
<td>0.8 %</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>0.604 %</td>
<td>0.19 – 1.02 %</td>
<td>0.35 %</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>1.574 %</td>
<td>0.15 – 0.73 %</td>
<td>0.48 %</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>0.98 %</td>
<td>1.18 – 7.61 %</td>
<td>2.27 %</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>0.372 %</td>
<td>0.093 – 0.568 %</td>
<td>0.57 %</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>0.166 %</td>
<td>0.058 – 0.158 %</td>
<td>< 0.01 %</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>0.0093 %</td>
<td>0.0042 – 0.110 %</td>
<td>0.0012 %</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.0049 %</td>
<td>0.0026 – 0.0048 %</td>
<td>0.0017 %</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>0.246 %</td>
<td>0.2050 – 1.331 %</td>
<td>1.1690 %</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>0.0429 %</td>
<td>0.0105 – 0.2038 %</td>
<td>0.0414 %</td>
</tr>
<tr>
<td>Moisture</td>
<td>n.d.</td>
<td>32-66 %</td>
<td>n.d.</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.0017 %</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>7.89</td>
<td>n.d.</td>
<td>15.25</td>
</tr>
</tbody>
</table>

Note:
1. Composting process using high rate composting machine equipped with microwave & infrared technology that can perform all 5 processes (fermentation, drying, granulation, sanitizing, blending & processes) to convert organic waste into dry granular organic fertilizers within 7 days.
2. Analyzed by Malaysian Agricultural Research and Development Institute (MARDI).
3. Data from MIF Sdn. Bhd.
4. Data from Pollution Engineerings (M) Sdn. Bhd.
5. Data from Nagavallemma et al. (2004).

C:N ratio:
- below 20 is indicative of acceptable maturity
- 15 or lower being preferable

Morais and Queda (2003).
Nutrient elements

<table>
<thead>
<tr>
<th>Nutrient elements</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic carbon</td>
<td>16.88 %</td>
<td>23.51 %</td>
<td>23.96 %</td>
<td>19.66 %</td>
<td>32.14 %</td>
</tr>
<tr>
<td>Nitrogen (as N)</td>
<td>1.90 %</td>
<td>1.46 %</td>
<td>1.75 %</td>
<td>0.94 %</td>
<td>0.87 %</td>
</tr>
<tr>
<td>Phosphorus (as P)</td>
<td>0.57 %</td>
<td>0.38 %</td>
<td>0.46 %</td>
<td>0.24 %</td>
<td>0.23 %</td>
</tr>
<tr>
<td>Potassium (as K)</td>
<td>2.74 %</td>
<td>1.43 %</td>
<td>1.39 %</td>
<td>0.67 %</td>
<td>0.40 %</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>8.9</td>
<td>16.1</td>
<td>13.7</td>
<td>20.9</td>
<td>36.9</td>
</tr>
</tbody>
</table>

Note:
- T_1 - Cow dung : Spent mushroom substrate (80:20)
- T_2 - Cow dung : Spent mushroom substrate (60:40)
- T_3 - Cow dung : Spent mushroom substrate (50:50)
- T_4 - Cow dung : Spent mushroom substrate (40:60)
- T_5 - Cow dung : Spent mushroom substrate (20:80)
1.4. Spent mushroom substrate

Chemical Composition

- Protein
- Fiber
- Cellulose
- Lignin
- Dry matter

Nutrient rich organic by product of mushroom industry

Utilize microorganisms

Primary source

- Wood saw dust (usually use for King oyster mushroom)
- Straw or corn cobs
- Cotton waste

Directly dispose (open burning / landfill)
Part 2 Materials & Methods

2.1. Vermicomposting methods
2.2. Harvesting the vermicompost
2.1. Vermicomposting methods

Step 1: Worm bin should be shallow (8 to 12 inches deep) & should have a lid to keep condition moist & dark.

Step 2: Drill holes in the top and sides for air circulation and drainage.

Step 3: Add about 8 inches of moistened bedding materials/ feed materials.

Step 4: Leave the feed materials for pre composting (1 week – 3 weeks) for stabilize the temperature.

Step 5: Start the vermicomposting by lay the earthworms on top of the bedding/ feed materials.

Step 6: Maintain the moisture content by sprinkle the water onto materials.
2.2. Harvesting methods

Step 1: When the bedding starts to resemble dark, crumbly soil (depending on species & feed materials), it is time to harvest the vermicompost.

Step 2: Move all contents over to one side of the worm bed.

Step 3: Add new dampened bedding to the empty side and start placing food scraps on that side.
Part 3 Troubleshooting
3.0. Troubleshooting

Troubleshooting

Dead Worms
- The bin is too dry
- Over population of mites
- Exposed to extreme temp.
- Not getting enough food

Odor Problems
- Food in the bin is naturally odorous
- The bin doesn’t get enough air
- The bin is too wet

Fruit Flies
- Be sure to bury food scraps
- Avoid overfeeding
- Wash all fruits in warm water
- Over population of mites
- The bin is too wet

MMCF 2008
29 NOVEMBER 2008, INSTITUTE OF BIOLOGICAL SCIENCES, FACULTY OF SCIENCE, UNIVERSITY OF MALAYA.
Part 4 On going research
4.0. On going research

- Comparison of nutrient elements heavy metals in vermicompost from different ratio of spent mushroom substrates and goat manure.

- Potential of spent mushroom substrate and sewage sludge in vermicomposting for reducing the heavy metals contaminations.

- Comparison of nutrient elements in vermicompost from different types of spent mushroom substrates.

- The effects on usage of vermicompost from spent mushroom substrate in vegetables plantations
Sekian, terima kasih