Skip to main content
Article
Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming
Cell Proliferation
  • I K Rony, Khulna University
  • Abdul KMA Baten, Southern Cross University
  • Justin A Bloomfield, Southern Cross University
  • M E Islam, Khulna University
  • M M Billah, Khulna University
  • K D Islam, Khulna University
Document Type
Article
Publication Date
1-1-2015
Peer Reviewed
Peer-Reviewed
Abstract
Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.
Disciplines
Citation Information

Rony, IK, Baten, AKMA, Bloomfield, JA, Islam, ME, Billah, MM & Islam, KD in, 'Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming', Cell Proliferation, vol. 48, no. 2, pp. 140-156.

Published version available from:

http://doi.org/10.1111/cpr.12162