
Duncan A. Forbes, Swinburne University of Technology
Adebusola Alabi, University of California Observatories
Jean P. Brodie, University of California Observatories
Aaron J. Romanowsky, San Jose State University
Jay Strader, Michigan State University, et al.

Available at: https://works.bepress.com/aaron_romanowsky/156/

Duncan A. Forbes1, Adebusola Alabi2, Jean P. Brodie23, Aaron J. Romanowsky2,3 4, Jay Strader4 5, Caroline Foster5,6 7, Christopher Usher7, Lee Spitler5,6 8, Sabine Bellstedt1 9, Nicola Pastorello10, Sreeja Kartha1, Zach Jennings2, Alexa Villaume2 11, Asher Wasserman2 12, and Vincenzo Pota8

1 Centre for Astrophysics \& Supercomputing, Swinburne University, Hawthorn, VIC 3122, Australia; dforbes@swin.edu.au
2 University of California Observatories, 1156 High Street, Santa Cruz, CA 95064, USA
3 Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192, USA
4 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
5 Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006, Australia
6 ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
7 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
8 INAF—Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16, I-80131 Napoli, Italy

Received 2019 January 24; published 2019 March 5

We would like to point out to the reader that the catalog of globular cluster (GC) radial velocities (listed in Table 5) still contains some multiple entries. In such cases GCs were observed more than once and are recorded in Table 5 with a unique GC ID, along with their coordinates and radial velocity measurement. If the reader wishes to exclude, or average, multiple measurements then GCs within one spatial pixel (i.e., 0.119 arcsec) in R.A. and decl. can be identified. This would include two dozen GCs in the galaxies NGC 720, 1407, 2768, 3608, 4365, 4459, 4474, and 4697. In general, the multiple GCs have individual radial velocities within their quoted errors and have an rms scatter of ±15 km s-1. The conclusions of the paper are unchanged.

ORCID iDs

Jean P. Brodie 12 https://orcid.org/0000-0002-9658-8763
Aaron J. Romanowsky 2 https://orcid.org/0000-0003-2473-0369
Jay Strader 4 https://orcid.org/0000-0002-1468-9668
Caroline Foster 5 https://orcid.org/0000-0003-0247-1204
Lee Spitler 5 https://orcid.org/0000-0001-5185-9876
Sabine Bellstedt 7 https://orcid.org/0000-0003-4169-9738
Alexa Villaume 2 https://orcid.org/0000-0003-1887-0621
Asher Wasserman 2 https://orcid.org/0000-0003-4235-3595
Vincenzo Pota 8 https://orcid.org/0000-0002-6143-0587