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Abstract

The ultra-diffuse galaxy NGC1052-DF2 has a very low velocity dispersion, indicating that it has little or no dark
matter. Here we report the discovery of a second galaxy in this class, residing in the same group. NGC1052-DF4
closely resembles NGC1052-DF2 in terms of its size, surface brightness, and morphology; has a similar distance of
D 19.9 2.8 Mpcsbf =  ; and also has a population of luminous globular clusters extending out to 7 kpc from the
center of the galaxy. Accurate radial velocities of the diffuse galaxy light and seven of the globular clusters were
obtained with the Low Resolution Imaging Spectrograph on the Keck I telescope. The velocity of the diffuse light
is identical to the median velocity of the clusters, v v 1445 km ssys gc

1= á ñ = - , and close to the central velocity of
the NGC 1052 group. The rms spread of the globular cluster velocities is very small at 5.8 km sobs

1s = - . Taking
observational uncertainties into account we determine an intrinsic velocity dispersion of 4.2 km sintr 2.2

4.4 1s = -
+ - ,

consistent with the expected value from the stars alone ( 7 km sstars
1s » - ) and lower than expected from a standard

NFW halo ( 30 km shalo
1s ~ - ). We conclude that NGC1052-DF2 is not an isolated case but that a class of such

objects exists. The origin of these large, faint galaxies with an excess of luminous globular clusters and an apparent
lack of dark matter is, at present, not understood.

Key words: galaxies: evolution – galaxies: structure

1. Introduction

Sensitive surveys using state of the art telescopes have
identified large numbers of intrinsically large galaxies with
very low surface brightness (e.g., Koda et al. 2015; van
Dokkum et al. 2015; van der Burg et al. 2016). These “ultra
diffuse galaxies” (UDGs), with sizes R 1.5 kpce > and central
surface brightness 24 mag arcsecg

2m > - , have been found in
many different environments (including the Local Group;
Martin et al. 2016; Torrealba et al. 2019) and have a wide range
of properties (see, e.g., Merritt et al. 2016).

One of the most intriguing UDGs that have been studied so
far is NGC1052-DF2 in the NGC 1052 group. Using a
combination of Hubble Space Telescope (HST) Advanced
Camera for Surveys (ACS) imaging and Keck spectroscopy,
we determined that this galaxy has an unusual population of
luminous globular cluster-like objects (van Dokkum et al.
2018a). Furthermore, from the radial velocities of 10 of these
globular clusters we determined that the galaxy appears to have
little or no dark matter ( M108 ; van Dokkum et al. 2018b;
Wasserman et al. 2018). Both aspects are surprising: the
globular cluster luminosity function was thought to be
universal (Rejkuba 2012), and a galaxy with a stellar mass of

M2 108~ ´  should have a dark matter mass of
M6 1010~ ´  (Behroozi et al. 2013b).

Although these unexpected results were initially greeted with
some skepticism (e.g., Hayashi & Inoue 2018; Martin et al.
2018; Nusser 2018; Ogiya 2018; Laporte et al. 2019; Trujillo
et al. 2019), recent studies have corroborated the unusual nature
of NGC1052-DF2: the distance to the galaxy was placed on
surer footing (D 19 20 Mpc= – ; Blakeslee & Cantiello 2018;
van Dokkum et al. 2018c) and, crucially, the low mass of
NGC1052-DF2 has been confirmed by measurements of the
stellar velocity dispersion (Danieli et al. 2019; Emsellem et al.

2019). Specifically, Danieli et al. (2019) find
8.5 km s3.1

2.2 1s = -
+ - from a high resolution spectrum taken with

the Keck Cosmic Web Imager.
At this point, the central unanswered question is whether

NGC1052-DF2is an isolated case or representative of a
population of similar galaxies. This is important for judging
the likelihood of interpretations that require unusual orbits or
viewing angles (see, e.g., Ogiya 2018) and, most importantly,
for judging the relevance of NGC1052-DF2 for our ideas about
galaxy formation and the relation between dark matter and
normal matter. With the important exception of tidal dwarfs
(Bournaud et al. 2007; Gentile et al. 2007; Lelli et al. 2015), it
is often thought that a gravitationally dominant dark matter
halo is the sine qua non for the formation of a galaxy (White &
Rees 1978). If galaxies such as NGC1052-DF2 are fairly
common we may have to revise our concept of what a galaxy
is, and come up with alternative pathways for creating such
large and relatively massive stellar systems.
Here we report the discovery of a galaxy that shares

essentially all of NGC1052-DF2’s unusual properties, to a
remarkable degree. It is in the same group, has a similar size,
luminosity, and color, the same morphology, the same
population of luminous globular clusters, and the same
extremely low velocity dispersion.

2. NGC1052-DF4

NGC1052-DF4 is a low surface brightness galaxy in the field
of the elliptical galaxy NGC 1052. It is part of a sample of 23
objects that we identified in images taken with the Dragonfly
Telephoto Array (Abraham & van Dokkum 2014) and followed
up with the ACS on HST (see Cohen et al. 2018). Unlike
NGC1052-DF2, which had been described earlier by Fosbury
et al. (1978) and Karachentsev et al. (2000), NGC1052-DF4
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was discovered with Dragonfly.6 The HST image is shown in
Figure 1.

Basic parameters, as derived from the HST imaging, are
given in Cohen et al. (2018). Its surface brightness fluctuation
distance is D 19.9 2.8 Mpcsbf =  , and as highlighted in
Figure5 of van Dokkum et al. (2018c) its color–magnitude
diagram is very similar to that of NGC1052-DF2. We infer that
the galaxy is part of the NGC 1052 group, and use
D=20Mpc for distance-dependent quantities. The galaxy is
well-fitted by a 2D Sérsic (1968) profile with a Sérsic index of

n=0.79, an axis ratio of b a 0.89= , a central surface
brightness V , 0 23.7606m =( ) , and a major axis half-light radius
R 1.6 kpce = . These properties place the galaxy just inside the
UDG selection box (see Figure10 of Cohen et al. 2018). The
total absolute magnitude is M 15.0 0.1V ,606 = -  , corresp-
onding to L L7.7 0.8 10V ,606

7=  ´ ( ) . Assuming
M L M L2.0 0.5Vstars, =   ( ) ( ) (see van Dokkum et al.
2018b) the implied total stellar mass
is M M1.5 0.4 10stars

8=  ´ ( ) .
At first glance NGC1052-DF4 seemed to lack the spectacular

population of bright globular cluster-like objects that initially
drew our attention to NGC1052-DF2 (see van Dokkum et al.
2018a, 2018b). However, careful inspection of the HST

Figure 1. HST ACS image of NGC1052-DF4, created from the V606 and I814 bands. The galaxy has a smooth, spheroidal morphology with a low Sérsic index
(n=0.79). The highlighted objects are spectroscopically confirmed globular clusters.

6 This is a somewhat academic point as the galaxy is not particularly faint; it
is clearly visible in Plate 1 of Fosbury et al. (1978) and in many other imaging
data sets.
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imaging data shows that the NGC1052-DF4 field actually does
contain objects with similar sizes, colors, and apparent
magnitudes as the globular clusters in NGC1052-DF2–but that
they are even more spread out relative to the body of the
galaxy. This unexpected finding inspired us to obtain spectra of
these candidate globular clusters, to determine whether they are
actually in a single structure and, if so, to use them to constrain
the mass of NGC1052-DF4.

3. Spectroscopy

We observed compact objects in the NGC1052-DF4 field
with the dual arm Low Resolution Imaging
Spectrograph (LRIS) on the Keck I telescope. The sample
selection is modeled upon the properties of the confirmed
clusters in NGC1052-DF2. We used SExtractor (Bertin &
Arnouts 1996) to measure total magnitudes, colors, and
FWHM sizes of objects in the HST images, following the
methodology outlined in van Dokkum et al. (2018a). Priority
was given to objects with I 23814 < ,

V I0.20 0.43606 814< - < , and 0. 12 FWHM 0. 30 < <  , as
all 11 clusters from van Dokkum et al. (2018a) satisfy these
criteria. In NGC1052-DF4, seven objects fall within these
limits. They have a mean total magnitude of I 22.10814á ñ =
with a 1σ rms spread of 0.39 mag. Objects just outside these
selection limits were given lower priority.7

All seven high priority objects could be fitted in a single
multi-slit mask, along with four lower priority targets. This
mask was observed on 2018 November 6 for a total of
19,800 s, split over eleven 1800 s exposures. Conditions were
excellent. On the blue side the low resolution 300 lines mm−1

grism blazed at 5000Å was used, and on the red side the
1200 lines mm−1 grating blazed at 9000Å. Here only the high
resolution red-side observations are discussed. The slit width of
the mask is 0. 8 , providing a resolution of 25 km sinstr

1s » -

near the calcium triplet.
The data reduction follows the same procedures as those

outlined in van Dokkum et al. (2018b). Briefly, the slit edges
and the sky lines are used to correct the spectra for distortions.
The sky line modeling and subtraction is done using the
method of Kelson (2003), which minimizes interpolation-
related residuals. The sky lines are also used for wavelength
calibration. Each individual 1800 s exposure is analyzed
independently to limit the effects of flexure on the distortion
modeling and wavelength calibration. The exposures are
combined using optimal weighting, and 1D spectra are
extracted by weighting each line in the 2D spectrum by the
signal-to-noise ratio (S/N).

An inspection of the spectra shows that all seven bright
globular cluster candidates indeed have strong absorption
features at the approximate redshift of the NGC 1052 group.
Two of the four lower priority objects turn out to be compact
background galaxies and the remaining two are too faint for a
redshift measurement. We show the spectra of the seven high
priority targets in Figure 2, focusing on the regions near the
redshifted λλ8542.09, 8662.14Å lines of the Ca triplet.8 The
weaker λ8498.02Å line is mostly masked, as it coincides with
a strong sky line at the redshift of NGC1052-DF4. Despite a

shorter total integration time the spectra are of higher quality
than those of most of the clusters in NGC1052-DF2 (van
Dokkum et al. 2018b), due to better seeing and photometric
conditions during the observations. The median S/N near the
Ca triplet is 17Å−1.
We also extract the spectrum of the diffuse galaxy light, in

the following way. The central two clusters (GC-1968 and GC-
2239) were observed through a relatively long slit that covers
most of the extent of NGC1052-DF4. We create an average sky
spectrum from the other nine slits and subtract this from the
background spectrum of the central slit, after scaling. The
resulting spectrum is shown in the top panel of Figure 2. The
Ca triplet lines are clearly detected.

4. Kinematics

4.1. Radial Velocities

Radial velocities of the diffuse light and the seven clusters
are determined by fitting the data with a synthetic 11 Gyr, [Fe/
H]=−1 stellar population synthesis model (Conroy et al.
2009; Choi et al. 2016), convolved to the instrumental
resolution. The fit is performed in the redshifted calcium triplet
region 8520Å<λ<8740Å, using the emcee MCMC
algorithm (Foreman-Mackey et al. 2013). The fit is regularized
by dividing the data and template by a polynomial of order
100 1 lD- [Å]. Two free parameters are fitted: the velocity and
an additive continuum offset, to account for any template
mismatch. With the exception of the blended spectrum of GC-
2726 this parameter is typically close to zero. Errors are
determined from simulations. In each simulation the residuals
of the fits are randomly shuffled and the velocity fit is repeated.
Residuals from sky lines are shuffled separately from the rest of
the spectrum. The width of the distribution of the resulting
velocities is taken as the uncertainty in the fit (see van Dokkum
et al. 2018b). The results are not sensitive to the details of these
procedures; owing to the high S/N ratio of the spectra the
velocities and the associated uncertainties are very stable.9

The velocity of the diffuse light is v 1444.6 km ssys 7.7
7.8 1= -

+ - .
This is very close to the average velocity of other galaxies in
the NGC 1052 group. Including NGC1052-DF2there are 22
galaxies in the NASA Extragalactic Database within a radius of
two degrees centered on NGC 1052 in the velocity range

v0 2500 km s 1< < - . All are in the range
v1241 km s 1805 km s1 1< <- - , with a biweight mean of

vgroup=1438±25 km s 1- and width groups
=128±19 km s 1- . The velocities of the globular clusters
are listed in Table 1 and displayed in the left panel of Figure 3.
The random uncertainties are small; the mean 1s error is
±4 km s−1. The median (mean) velocity is v 1445 km s 1á ñ = -

(1446 km s−1), identical to the systemic velocity of the galaxy.
This confirms that the clusters are associated with the galaxy,
and suggests that the globular cluster system is at rest with
respect to the stars.

4.2. Velocity Dispersion

The velocity range of the seven clusters is extremely small,
echoing our earlier result for NGC1052-DF2. The observed
rms, before correcting for observational uncertainties, is only

7 There are three objects with I23.0 23.5814< < that satisfy the color and
size criteria.
8 Note that the spectrum of GC-2726 is blended with a star-forming
background galaxy.

9 We note that we do not apply any corrections for possible slit alignment
errors; inspection of alignment check images showed no evidence for offsets,
but we cannot exclude systematic errors at the level of a few km s−1.
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5.8 km s−1 (compared to 10 km s−1 for NGC1052-DF2). We
use two methods to determine the intrinsic dispersion intrs and
its associated uncertainties. Both methods use a generative
model whose parameters are constrained by assessing the
probability of measuring the observed velocity distribution.
The model is a simple Gaussian with the center and width as
free parameters. The classical method, used extensively for
determining the kinematics of dwarf galaxies in the Local
Group from the velocities of individual stars (e.g., Martin et al.
2007), is to construct the likelihood function:

v1

2
exp 0.5 , 1

i

i
i

1

7

eff eff

2





ps
m

s
= -

-

=

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

where vi is the velocities of the individual tracers, μ is the mean
of the model, and eieff

2
intr
2 2s s= + with intrs being the model

dispersion and ei the uncertainty in velocity vi (calculated by

averaging the positive and negative error bars). The likelihood,
marginalized over μ, is shown by the solid line in the right
panel of Figure 3. The likelihood analysis gives

3.8 km sintr 2.6
3.4 1s = -

+ - , where the uncertainties contain 68% of
the probability. The 90% (95%) confidence level upper limit is
8.6 km s−1 (10.4 km s−1).
The second method is approximate Bayesian computation

(ABC; Tavare et al. 1997), which approximates the posterior
distribution with simulations. For each set of model parameters
(μ, intrs ) a large number of simulated data sets
D v v v, , ,1 2 7= ¼ˆ ( ˆ ˆ ˆ ) are created by randomly drawing velo-
cities from the model and linearly perturbing these values with
errors that are themselves randomly drawn from Gaussians of
width (e e e, , ,1 2 7¼ ). These N data sets are compared to the
actual data D through a summary statistic S. Simulations that
satisfy the criterion

S D S D e, 2d <( ( ˆ ) ( )) ( )

are retained, where δ is the absolute distance between the
summary statistics and e is a small positive number. For a given
choice of (μ, intrs ) the posterior is proportional to the number of
simulations that are retained. ABC does not assume a
functional form of the likelihood, and summary statistics can
be chosen that are best suited to particular situations (see, e.g.,
van Dokkum et al. 2018b). Another advantage is that it does
not suffer from the “small sample bias” discussed in Laporte
et al. (2019). We calculate the ABC posterior using N 104= ,
e=0.1, and the rms as the summary statistic (Figure 3). ABC
gives a similar result as the likelihood: 4.2 km sintr 2.2

4.4 1s = -
+ - .

The small difference may reflect the likelihood’s sensitivity to
small sample bias (see Laporte et al. 2019).

4.3. Implied Mass

Quantitative constraints on the halo mass are highly
uncertain with seven tracers and require extensive modeling
(see, e.g., Laporte et al. 2019; Wasserman et al. 2018). Here we
simply test the hypothesis that there is no dark matter halo and
all the mass is in the form of stars. Following Beasley et al.
(2016) and van Dokkum et al. (2018b) we estimate the mass
within the outermost globular cluster using the tracer mass
estimator (TME) method of Watkins et al. (2010):

M
C

G
v r r . 3TME

2
out
1= á D ¢ ña a-( ) ( )

Here v f v 1445.71D ¢ = -- ( ) are the velocities of the indivi-
dual tracers, with f 1.4obs intr 0.7

1.5s s= = -
+ . The parameter α is

the slope of the potential and C is a constant given by

C
4

1

2

3 2
, 42

5

2

2
p

a g b
a b a

=
G +

G +

+ -
+ - +

a

a

( )
( ) ( )

( )

where γ is the power-law slope of the 3D density profile of the
tracers and 1 t

2
r
2b s s= - is the Binney anisotropy para-

meter. For simplicity we assume that 0b = and that the
globular clusters trace the potential, so that 2g a= + . If all
the mass is in stars the potential is similar to that of a point
mass for most of the globular clusters; hence we use 1a =
and 3g = .

Figure 2. Keck/LRIS spectra of the diffuse light of NGC1052-DF4 and seven
bright globular cluster-like objects (offset for clarity), in the region of the
strongest Ca triplet lines. The uncertainties are shown in gray, and the model
spectra that were fitted to the data to determine radial velocities are in red. The
vertical dashed line indicates the median velocity of v 1445 km s 1á ñ = - .
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With these assumptions we find an enclosed mass within
7 kpc of M M0.4 10TME 0.3

1.2 8= ´-
+

. The total stellar mass is
M M1.5 0.4 10stars

8=  ´ ( ) (see Section 2), and we con-
clude that we cannot reject the hypothesis that there is no dark
matter in this system. Another way to phrase this is that the
intrinsic dispersion of 4.2 km sintr 2.2

4.4 1s = -
+ - is consistent with

that expected from the stars alone ( 7.3 km sstars 1.1
0.9 1s » -

+ - ; Wolf
et al. 2010). We note that this result is independent of the
precise distance to NGC1052-DF4: as M Rstars stars e

0.5s µ ( ) it
scales with distance as D D Dstars

2 0.5 0.5s µ µ( ) . For refer-
ence, the expected dispersion from an NFW halo of the
expected mass is 30 km shalo

1s » - (Łokas & Mamon 2001;
Behroozi et al. 2013a).

5. Discussion

In this Letter we have presented a doppelgänger of the dark-
matter-deficient galaxy NGC1052-DF2. NGC1052-DF4 is in
the same group as NGC1052-DF2and has a similar size,
luminosity, morphology, globular cluster population, and
velocity dispersion. The immediate implication is that
NGC1052-DF2 is not an isolated case but that a class of such
galaxies exists, and given how little we know about galaxies in
the UDG parameter space it may well be that they are fairly
common.
The discovery of NGC1052-DF4 does not bring us much

closer to understanding how such galaxies are formed, although
it does effectively rule out “tail of the distribution” explana-
tions for NGC1052-DF2. Suggestions that the true velocity

Table 1
NGC1052-DF4 Globular Clusters

Id R.A. Decl. Ra MV ,606 V−I v rh ò
(J2000) (J2000) (kpc)b (mag)b (mag)c (km s−1) (pc)

NGC1052-DF4 2h39m15 11 −8°6′58 6 L −15.0 0.32 1444.6 7.7
7.8

-
+ 1600 0.11

GC-2726 2h39m16 75 −8°6′16 7 4.69 −9.2 0.38 1441.2 4.8
4.9

-
+ 4.9±0.6 0.14±0.04

GC-2537 2h39m12 53 −8°6′41 4 4.08 −9.2 0.36 1451.0 3.3
3.6

-
+ 4.1±0.5 0.08±0.06

GC-2239 2h39m15 23 −8°6′53 0 0.57 −8.6 0.34 1457.1 5.5
4.6

-
+ 5.4±0.5 0.16±0.04

GC-1968 2h39m15 25 −8°6′58 8 0.20 −9.8 0.27 1445.4 2.3
2.6

-
+ 3.4±0.3 0.36±0.05

GC-1790 2h39m17 24 −8°7′06 7 3.17 −9.0 0.31 1438.4 4.6
4.8

-
+ 3.2±0.4 0.19±0.08

GC-1452 2h39m18 23 −8°7′24 1 5.13 −9.1 0.32 1445.5 4.1
4.0

-
+ 5.1±0.6 0.04±0.03

GC-943 2h39m16 98 −8°8′5 3 7.01 −8.6 0.34 1445.1 5.2
5.0

-
+ 3.3±1.1 0.41±0.17

BG-2844 2h39m20 37 −8°6′18 6 L L L z=0.2298 L L
BG-254 2h39m11 55 −8°9′03 0 L L L z=0.2557 L L

Notes.
a Distance from the center of the galaxy.
b For an assumed distance of D=20 Mpc.
c V I606 814- from HST/ACS, in the AB system.

Figure 3. Left panel: graphical representation of the globular cluster velocities in NGC1052-DF4 (top) and NGC1052-DF2 (bottom), relative to the median (which is
very close to the systemic velocity for both galaxies). Right panel: constraints on the intrinsic velocity dispersion of NGC1052-DF4 from the seven clusters, using the
likelihood estimator (solid) and approximate Bayesian computation (dashed). The expected velocity dispersion for a normal dark matter halo is ∼30 km s−1. The
expected dispersion from the stellar mass alone, with no dark matter, is ≈7 km s−1.
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dispersion is in the upper 10% of the posterior distribution
(Martin et al. 2018), that the galaxy could be an asymmetric
thin disk seen exactly face-on (see van Dokkum et al. 2018b),
is on a precisely tuned orbit (Ogiya 2018), or that it was formed
in a carefully orchestrated sequence of events (e.g., Fensch
et al. 2019), are far less likely now that there is a second
system.

One pathway for creating dark-matter-deficient galaxies is by
forming them out of gas that was expelled from a disk with a
high baryon fraction, through a tidal interaction (e.g., Duc &
Mirabel 1998; Gentile et al. 2007). Although some form of
tidal origin is perhaps the most plausible explanation for these
objects, NGC1052-DF2 and NGC1052-DF4 lack two of the
key identifying features of “classical” tidal dwarf galaxies.
First, as the gas originated in a dense disk it should be pre-
enriched. Therefore, tidal dwarfs should have a high metallicity
for their mass (Duc & Mirabel 1998), and this is not the case
for NGC1052-DF2 (van Dokkum et al. 2018a; Fensch et al.

2019). Second, although we identify several tidal features
associated with NGC 1052 in the Dragonfly imaging, there is
no evidence for debris in the vicinity of NGC1052-DF2 or
NGC1052-DF4, although this has been reported around other
old tidal dwarfs (see Duc et al. 2014).
More broadly, the environment of NGC1052-DF4 does not

shed much light on its origins. The galaxy is highlighted in a
wide field of view in Figure 4. As noted in Section 4.1 the
systemic velocity of NGC1052-DF4 is almost identical to the
average of the NGC 1052 group galaxies. It is at a projected
distance of 28 5 (165 kpc) from NGC 1052 itself, a factor of
two further than NGC1052-DF2, and 26′ (150 kpc) from the
spiral galaxy NGC 1042 (which is almost certainly also a group
member; see van Dokkum et al. 2019). It is close (23 kpc) in
projection to NGC 1035, which has a radial velocity of
cz 1241 km s 1= - . Given their velocity difference of
204 km s 1- it is unlikely that NGC1052-DF4 is a satellite of
this low-mass disk galaxy (Truong et al. 2017), which means

Figure 4. Central area of the summed g+r Dragonfly image of the NGC 1052 field. The displayed area covers 1°. 33×1°. 33, corresponding to 466 kpc × 466 kpc
for a distance of 20 Mpc. NGC1052-DF2 and NGC1052-DF4 are highlighted. The HST images span 93″×80″ (9.0 kpc × 7.6 kpc). We find several distinct tidal
features associated with NGC 1052, including clear evidence for an interaction with NGC 1047. No tidal debris is detected near NGC1052-DF2 or NGC1052-DF4.
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that their 3D distance in the group is probably much larger than
their projected distance. Apart from the relatively large
systemic velocity of NGC1052-DF2 (1805 km s 1- ; Danieli
et al. 2019) there is nothing obviously “special” about the two
galaxies in relation to other group members, or about the
NGC 1052 group when compared to other structures.

Although it is hazardous to draw conclusions from such
correlations, it seems likely that the low dark matter mass in
these galaxies is somehow related to their unprecedented
globular cluster systems (see van Dokkum et al. 2018a). The
combined number of confirmed clusters with M 8.5V < - in
NGC1052-DF2 and NGC1052-DF4 is nearly the same as the
number of globular clusters in the Milky Way to that limit (18
versus 23), despite the factor of 100 difference in stellar mass
between them (see Figure 5). The seven confirmed clusters in
NGC1052-DF4 make up 3% of its total luminosity, and the two
most distant clusters by themselves make up ≈70% of
NGC1052-DF4’s luminosity at R 5 kpc> . As shown in the
bottom panel of Figure 5 the half-light radii of the clusters
(measured in the same way as described in van Dokkum et al.

2018a) are somewhat smaller than those in NGC1052-DF2, and
similar to those of luminous Milky Way clusters. The median
size of the seven clusters is r 4.1 pchá ñ = .
Looking ahead, we can determine the stellar velocity

dispersion of NGC1052-DF4(see Danieli et al. 2019; Emsel-
lem et al. 2019), constrain its dark matter mass (e.g., Laporte
et al. 2019; Wasserman et al. 2018), and assess the implications
for alternative gravity (Famaey et al. 2018; van Dokkum et al.
2018b): taken together, NGC1052-DF2 and NGC1052-DF4
seem in tension with recent predictions from Modified
Newtonian Dynamics (Müller et al. 2019). Following the
adage “one is an exception but two is a population” this new
object provides impetus for characterizing the properties of
diffuse, dark-matter-deficient galaxies as a class. We are
performing wide field surveys with the Dragonfly Telephoto
Array to identify other candidates.
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sky background. Support from STScI grants HST-GO-13682
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