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ABSTRACT
Recovering the origins of lenticular galaxies can shed light on the understanding of galaxy and
compare them with the kinematics of planetary nebulae (PNe). The PNe and GC data come
from the Planetary Nebulae Spectrograph and the SLUGGS Surveys. Through photometric
spheroid-disc decomposition and PNe kinematics. we find the probability for a given GC to
belong to either the spheroid or the disc of its host galaxy or be rejected from the model. We
find that there is no correlation between the components that the GCs are likely to belong
to and their colours. Particularly, for NGC 2768, we find that its red GCs display rotation
preferentially at inner radii (Re < 1). In the case of the GC system of NGC 3115, we find a
group of GCs with similar kinematics that are not likely to belong to either its spheroid or disc.
For NGC 7457, we find that 70 per cent of its GCs are likely to belong to the disc. Overall, our
results suggest that these galaxies assembled into S0s through different evolutionary paths.
Mergers seem to have been very important for NGC 2768 and NGC 3115 while NGC 7457 is
more likely to have experienced secular evolution.

Key words: galaxies: structure – galaxies: elliptical and lenticular, cD – galaxies: galaxies:
evolution – galaxies: formation – galaxies: kinematics and dynamics – galaxies: star clusters.

1 I N T RO D U C T I O N

The morphological evolution of galaxies is an interesting and
challenging topic in contemporary astrophysics, where lenticular
(S0) galaxies play a central role. The morphology–density relation
(Dressler 1980; Dressler et al. 1997; Goto et al. 2003; Postman et al.
2005) and the increase of the number of S0 galaxies at lower redshift,
at the expense of the decrease in the number of spiral galaxies in
clusters of galaxies (Dressler & Sandage 1983; Whitmore, Gilmore
& Jones 1993), led to the idea that S0 galaxies might be the evo-
lutionary products of the transformation of spiral galaxies (Larson,
Tinsley & Caldwell 1980). Such evolution would have been driven
by environmental effects such as ram pressure stripping, galaxy ha-
rassment, mergers, starvation, and like (Gunn & Gott 1972; Abadi,
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Moore & Bower 1999; Boselli & Gavazzi 2006). Lenticular galax-
ies, however, are present in all environments (cluster, groups, and
field) (van den Bergh 2009). This widens the evolutionary possi-
bilities for creating a lenticular galaxy and raises questions about
their uniqueness as a class: could they be the single final product
of a variety of events (Gunn & Gott 1972; Byrd & Valtonen 1990;
Quilis, Moore & Bower 2000; Bekki et al. 2005; Bournaud, Jog &
Combes 2005; Aragón-Salamanca 2008)?

One proposed scenario is that S0 galaxies may form from spi-
ral galaxies which underwent some form of environment-related
process and lost most of their gas and spiral structures. These pro-
cesses therefore would leave behind a disc structure alongside the
spheroidal structure of the bulge and halo (Gunn & Gott 1972; Byrd
& Valtonen 1990; Quilis et al. 2000 Bekki et al. 2005; Bournaud
et al. 2005; Aragón-Salamanca 2008). Such a scenario would leave
the stellar kinematics of the resulting S0 galaxy almost unperturbed,
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in comparison with the kinematics of the progenitor spiral galaxy
(Aragón-Salamanca, Bedregal & Merrifield 2006; Buta et al. 2010;
Cortesi et al. 2013). On the other hand, S0 galaxies have been sug-
gested to also be formed from mergers between galaxies of unequal
mass, which would cause an increase in random motions in the stars
(Borlaff et al. 2014; Bournaud et al. 2005; Querejeta et al. 2017).
Bekki et al. (2005) have shown through simulations that merger
events that are able to produce flattened early-type galaxies also are
likely to affect the structure and kinematics of the globular clus-
ter (GC) systems associated with such galaxies. Moreover, clumpy
disc formation is proposed as a way to form galaxy discs through
successive mergers of star-forming clumps (van den Bergh et al.
1996; Elmegreen & Elmegreen 2005; Shapiro, Genzel & Förster
Schreiber 2010; Genzel et al. 2011; Ceverino et al. 2015; Garland
et al. 2015; Fisher et al. 2017). In fact, simulations such as the ones
from Shapiro et al. (2010) and Fisher et al. (2017) show that the
formation of GCs in such a condition would happen around z ≈1-3.
Therefore such mechanism could be detected through the kine-
matics of GCs which would acquire rotation and display disc-like
kinematics, even in the halo (Inoue 2013).

About 90 per cent of the total mass and angular momentum of a
galaxy resides outside one effective radius (Re) (Romanowsky &
Fall 2012). By exploring the outer regions of galaxies, one may
find imprints of their merger histories, and is therefore able to
investigate the processes responsible for the build-up of its present
mass. However, due to the low surface brightness, galaxy outskirts
are expensive to probe. Fortunately, tracers such as globular clusters
(GCs) and planetary nebulae (PNe) stand as ideal proxies for the
study of the kinematics of such regions (Hui et al. 1995; Coccato
et al. 2009; Forbes et al. 2012; Brodie et al. 2014).

GCs and PNe can be detected out to 5-10 Re in early-type galax-
ies. PNe present a strong emission in the [OIII] line (5007 Å), which
allows one to detect them in regions where the galaxy starlight is
very faint. The Planetary Nebulae Spectrograph (PN.S, Douglas
et al. (2002)) observed several early-type galaxies, creating cata-
logues with an average number of over a hundred PNe per galaxy.
As shown in Cortesi et al. (2011), this number is enough to recover
the stellar kinematics of the galaxy disc and spheroid, since PNe are
reliable tracers of the global stellar population of their host galaxy
(Coccato et al. 2009; Cortesi et al. 2011). Globular clusters are
ubiquitous in early-type galaxies and in the past two decades GC
radial velocity catalogues have been acquired for several systems
with multi-object spectroscopy in 10m class telescopes (eg. Hanes
et al. (2001), Côté et al. (2003), Hwang et al. (2008), Park et al.
(2012), Pota et al. (2013) and Forbes et al. (2017)).

The present work analyses the GC systems of three lenticular
galaxies in low-density environments (NGC 2768, NGC 3115, and
NGC 7457) following the method presented in Cortesi et al. (2016)
for the GC system of NGC 1023. Such a study used PNe kinematics
derived in Cortesi et al. (2011, 2013).

This paper is structured as follows: in Section 2, we present
an overview of the observational data used in this work and the
individual galaxies’ general properties.

In Section 3, we briefly discuss the method used for probing GC
kinematics using GALFIT (Peng et al. 2002), maximum likelihood
estimation (MLE), and the kinematics of PNe. In Section 4, we
present the results on GC kinematics, in addition to considerations
on 1D phase–space diagrams and the radial distribution of GCs and
PNe for our sample galaxies. In Section 5, we discuss the results in
comparison with the evolutionary paths proposed in the literature
for lenticular galaxies. Summary and conclusions are shown in
Section 6.

Table 1. Sizes of GC and PN samples used in this work. In the second
column, we show the number of the GCs, for each galaxy, for which only
photometry is available; in the third column we have the number of GCs for
which spectroscopy data are available and in the last column the number of
PNe.

Galaxy NGC Photom. NGC Spec. NPNe

NGC 2768 978 106 315
NGC 3115 781 150 188
NGC 7457 536 40 112

2 DATA

In this work, we use spectroscopic and photometric data from GCs
and PNe to model the kinematics of a sample of three nearby S0
galaxies. We have selected three non-cluster galaxies so that we
could probe their formation mechanisms independently of any pro-
cess commonly found in high-density environments (e.g. ram pres-
sure stripping). In Table 1, we present the size of the globular cluster
and planetary nebula samples, for each galaxy. The spatial distribu-
tion of the spectroscopic data is shown on Fig. 1. Additionally, in
this section, we describe the sources of the data and briefly discuss
the galaxies’ basic properties.

2.1 Globular clusters

The GC photometric and spectroscopic data analysed in this work
comes from The SAGES Legacy Unifying Globulars and Galax-
ieS (SLUGGS) Survey1 (Brodie et al. 2014; Forbes et al. 2017).
SLUGGS is a wide-field spectroscopic and photometric survey of
early-type galaxies undertaken using mainly the Subaru/Suprime-
Cam imager and the Keck/DEIMOS spectrograph from the Keck-
II-Telescope (Faber et al. 2003). SLUGGS goals revolve around
studying the outer regions of early-type galaxies, where stellar light
is faint. The survey has deep gri imaging and spectroscopy around
8500 Å of 25 nearby early-type galaxies.

The photometric data of all galaxies studied in this work have
been described in Pota et al. (2013). The data for NGC 2768 is
a combination of Suprime-Cam/Subaru in the RCiz filters and the
Advanced Camera for Surveys (ACS) from the Hubble Space Tele-
scope (HST ).

NGC 3115 data are described in detail in Arnold et al.
(2014).The photometric data for this galaxy was obtained with the
Subaru/Suprime-Cam in the gri FILTERS.2

The photometric GC data for NGC 7457 included in SLUGGS
comes from Hargis et al. (2011), obtained from observations in
the BVR filter with the WIYN/MiniMo imager (Saha et al. 2000).
Hargis et al. (2011) also obtained spectroscopy for a sample of
20 NGC 7457 GCs, although in this work we use an updated and
larger spectroscopic sample for this galaxy’s GCs obtained with the
Keck/DEIMOS spectrograph and published in Forbes et al. (2017).
This new sample has spectroscopy for 40 GCs, which doubles the
previously studied spectroscopic sample.

1http://sluggs.swin.edu.au/Start.html
2Additional spectra for NGC 3115 are from the LRIS instrument on the
Keck-I-Telescope (Oke et al. 1995) and the IMACS instrument from the
Magellan telescope (Dressler et al. 2011).
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Figure 1. Spectroscopic tracers plotted over K-band images, from 2MASS, of the galaxies in this sample. Magenta diamonds are GCs from Pota et al. (2013)
and green circles are PNe from the PN.S catalogue (Douglas et al. 2002).

2.2 Planetary Nebulae

The PNe data for the galaxies studied in this work were obtained
with The Planetary Nebulae Spectrograph (PN.S, Douglas et al.
(2002)). We also make use of the PNe kinematics obtained in Cortesi
et al. (2013) for the galaxies of our sample. The PN.S is a dedicated
instrument mounted at the William Herschel Telescope (WHT) in
La Palma, Spain. The instrument detects PNe using a technique
based on counter-dispersed imaging (CDI), which enables us to
obtain velocities and positions for PNe at the same time.

2.3 Galaxies

General properties of the galaxies studied in this work are presented
in Table 2. In this section, we further discuss some of their features
found in previous works.

2.3.1 NGC 2768

NGC 2768 is a group galaxy classified as an E6 by de Vaucouleurs
et al. (1991) and as an S0 1/2 by Sandage & Bedke (1994), located at
a distance of about 22 Mpc from us (Tully et al. 2013) in the direction
of the constellation of Ursa Major. It is part of the small Lyon group
of galaxies 167 (Garcia 1993), and has traces of ionized gas and a
dust lane along the minor axis (Kim 1989). It is interesting to add
that the ionized gas havs been found to have different kinematics
than the stars in the inner regions of the galaxy (Fried & Illingworth
1994). Pota et al. (2013) found a bimodal distribution in colour for
the sample of 978 GCs used in this work with a separation at (Rc −
z) = 0.57 mag, obtained with KMM (Ashman, Bird & Zepf 1994).

The GC system of this galaxy has been previously studied by
Pota et al. (2013), who found rotation for the red GCs and negligible
rotation for the blue sub-population. Forbes et al. (2012) focused on
the red GCs and found that this sub-population follows the radial
surface density profile of the galaxy light and is compatible with
the kinematics of the bulge component.

2.3.2 NGC 3115

NGC 3115 is the closest S0 galaxy to the MW, with a distance of
9.4 Mpc (Cantiello et al. 2014) and shows the clearer GC colour
bimodality of our sample (Brodie et al. 2012; Pota et al. 2013;
Arnold et al. 2014; Cantiello et al. 2014). Pota et al. (2013) found a
colour separation of photometric GCs at (g − i) = 0.91 mag.

This galaxy is located in the field (Brodie et al. 2014) and displays
many interesting morphological structures, such as faint remnant
spiral structures proposed by Norris et al. (2006) and re-detected
recently using VLT/MUSE spectroscopy by Guérou et al. (2016). It
has two faint companion galaxies (Doyle et al. 2005).

2.3.3 NGC 7457

NGC 7457 is a field S0 galaxy (Brodie et al. 2014) with a distance
of 12.9 Mpc (Alabi et al. 2017). In contrast with the other galaxies
in this sample, it shows no signs of bimodality in its GC popula-
tion (Hargis et al. 2011; Pota et al. 2013). Previous studies of this
galaxy also proposed a counter-rotating galaxy core (Sil’chenko
et al. 2002) and a possible major merger origin (Hargis et al. 2011).
Furthermore, it presents the smallest amount of GCs of all galaxies
in the sample, with a total number of ∼210 ± 30 GCs (Hargis et al.
2011).

3 M E T H O D S A N D A NA LY S I S

In most galaxies, GCs can be separated into two sub-populations
based on optical colour and metallicity, namely a red metal-rich
population and a blue and metal-poor one. Different scenarios were
proposed to explain the evolution of such sub-populations within
an evolving galaxy, such as blue GCs being commonly found in the
halo (Forbes, Brodie & Grillmair 1997), while red GCs are likely
associated with the bulge, since they formed in a later phase along
with the spheroidal component or migrated towards the centre of
the galaxy after the gas-rich phase of galaxy evolution (Shapiro
et al. 2010). By studying the GC kinematics we can find signatures
of their origins, if they show a disc or spheroid-like behaviour. To
reach this goal, we need to recover the probability for every GC to
belong to the galaxy as modelled with PNe, and to a given galaxy
component. In this section, we will describe all the steps needed to
retrieve these probabilities.

3.1 Spheroid-disc decomposition and photometricprobabilities

Cortesi et al. (2013) performed a photometric decomposition of the
light of the galaxies in our sample, using a model comprising a
disc and a spheroidal component (i.e. bulge and halo) and K-band
images from the 2MASS catalogue (Skrutskie et al. 2006). Using
these results, we compare the light profiles of these galaxies with the
radial number density of their associated GCs, as shown in Fig. 2.

MNRAS 479, 5124–5135 (2018)
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Table 2. General properties of the galaxies published in Alabi et al. (2017). From left to right, the columns are: Galaxy designation, distance, systemic
velocity, central stellar velocity dispersion within 1 kpc, ellipticity, environment (F=Field, G=Group), galaxy morphology from Brodie et al. (2014), average
luminosity-weighted age of the stellar population within 1 Re from McDermid et al. (2015), effective radius, stellar mass, and bulge-to-total light ratio from
Cortesi et al. (2013).

Galaxy
Dist.

(Mpc)
Vsys

(km/s)
σ 1kpc

(km/s) ε env. morph.
Age

(Gyr) Re (kpc)
log(M∗)
(M�) B/T

NGC 1023 † 11.1 602 183 0.63 F S0 12.3 2.58 10.99 0.53
NGC 2768 21.8 1353 206 0.57 G E/S0 12.3 6.37 11.21 0.71
NGC 3115 9.4 663 248 0.66 F S0 9.0 1.66 10.93 0.74
NGC 7457 12.9 844 74 0.47 F S0 3.8 2.13 10.13 0.30

Note: † GCs and PNe kinematic analysis for this galaxy was done in Cortesi et al. (2016) with the same method used in this work.

Figure 2. Photometric GC number density profiles (open diamonds) and galaxies’ surface brightness profiles (following the GALFIT fit from Cortesi et al.
(2013)). Top panels compare photometric GC number density profiles with the total light profiles, while centre and lower panels compare the GC number
density with spheroid and disc light profiles, respectively. For NGC 2768 and NGC 3115, both blue and red GC populations are shown, represented by red
circles and blue diamonds, respectively, while for NGC 7457 only the total population of GCs is shown, represented by magenta open diamonds. The light
profile curves have been arbitrarily shifted along the y-axis to better match the GC number density in each panel. There is a slightly better comparison between
GCs and spheroid profiles for all galaxies, although disc profiles also show a good agreement with GC density except at large radii. There is no clear difference
between red and blue GCs.

For NGC 2768 and NGC 7457, GC radial number densities follow
reasonably well, within errors, the light profiles of the galaxies and
of their components. In the case of NGC 3115, there is, however,
a less obvious compatibility between GC density and the spheroid
radial light profile. While the inner discrepancy might be due to
incompleteness, i.e. the GCs get lost against the galaxy light in
the central regions, at large radii, such difference might arise from
treating the halo and the bulge as a single component in the model.

In general, a disc and a spheroidal component are a good ap-
proximation to model the light of S0 galaxies. It is to be noted,
nevertheless, that some galaxies have slightly more complex struc-
tures, and that the images used for the decomposition might be
too faint to account for the halo component of the galaxy. There-
fore, such a decomposition is prone to several systematic uncer-
tainties and multiple approaches, such as the ones in Savorgnan
& Graham (2016) for NGC 1023 and NGC 3115. For the pur-
pose of studying the kinematics of GC systems and PNe, the
decomposition performed in Cortesi et al. (2013) is reasonable
enough.

With the spheroid-disc light decomposition recovered in Cortesi
et al. (2013), we also obtain preliminary photometric probabilities,
fi, for each tracer to belong to the spheroid model. We create an
image dividing the spheroid by the total model of the galaxy light
and we calculate the flux at the location of every GC in such image,
within a circular aperture of radius equal to 3 pixels. To obtain the
final probabilities of a GC to belong to the spheroid or the disc we
combine fi with the the GCs’ kinematics, which will account for
possible degeneracy or lack of precision of the photometric model
(Cortesi et al. 2011) (see Section 3.3).

3.2 Kinematics

In Fig. 3, we show the smoothed velocity maps for the GC sys-
tems, obtained using Adaptive Kernel Smoothing (see Coccato et al.
(2009) for details on using the technique). We detect clear rotation
as measured from the GC systems for all galaxies. For NGC 3115,
this is true for both red and blue sub-populations, while we can
notice that for the case of NGC 2768 the rotation is supported by
the inner red GCs.

To recover the kinematics of the GC and PNe systems of the
galaxies in this work, we use Maximum Likelihood Estimation to
find the best-fitting kinematic parameters, θ , assuming a Gaussian
velocity distribution for its GCs or PNe populations:

F (vi ; θ ) ∝ exp

[
− (vi − Vlos(V)2

2σ 2

]
(1)

where vi are the velocities of the discrete tracers, Vlos is the galaxy
line-of-sight velocity, V is the fitted rotation velocity, and σ is the
fitted dispersion velocity. We bin the data in elliptical annuli with the
same ellipticity of the disc component for each galaxy (see Table 2),
and with approximately the same number of objects in every bin. In
this way, we recover the kinematic profile with radius. Moreover, we
iterate the MLE fit until all objects are within the 2.3 σ confidence
interval, discarding outliers in each run. This ensures the robustness
of the fit even when dealing with a possible significant number of
outliers (for example, accreted GCs).

In Fig. 4, we present the results of the likelihood analysis for GCs
and PNe. As far as the rotational velocity is concerned, the galaxies
have very distinct profiles: NGC 2768 has strong kinematic dis-
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Figure 3. Smoothed velocity maps of sample galaxies PNe and GC populations, using Adaptive Kernel Smoothing (Coccato et al. 2009). For all galaxies,
rotation can be detected. However, most of the apparent rotation of the GC system of NGC 2768 seems to be concentrated towards the centre and to be due to
its red sub-population. NGC 7457 has no signs of clear GC colour bimodality so the whole GC sample is shown.

crepancies between its GC colour sub-populations, with red GCs
showing rotation around 100 km s−1 and blue GCs showing neg-
ligible rotation. The rotational velocity of the GCs in NGC 3115
decreases with radius consistently and independently of colour, as
found for NGC 1023 in Cortesi et al. (2016). For this galaxy, we
also note that the rotational velocities of the PNe and GCs are con-
sistent, despite the aforementioned model limitations. Lastly, the
GCs of NGC 7457 show a flatter rotational profile for both GCs and
PNe. For the velocity dispersion, all galaxies show good agreement
between PNe and GCs. This is expected since they share the same
gravitational potential.

3.3 Final probabilities using photometry and PNe kinematics

In this section, we summarize the method introduced by Cortesi
et al. (2016), and refer the reader to such work for further details.

In Cortesi et al. (2013), the kinematics of the bulge and the disc of
the galaxies in this work were modelled using a MLE fitting of the
PNe velocity field. Using such kinematic models, we can derive the
probabilities that every GC belongs to the galaxy disc or spheroid,
solving the following equation:

L(vi ; V , σr , σφ, σsph) ∝ fi

σsph
exp

[
− v2

i

2σ 2
sph

]

+ 1 − fi

σlos(σr, σφ)
exp

[
− (vi − Vlos(V))2

2σlos(σr, σφ)2

]
. (2)

where vi are the individual GC velocities, V is the galaxy ro-
tational velocity as derived from PNe, Vlos and σ los are the line-
of-sight velocity and dispersion velocity, respectively. The radial
and azimuthal components of the velocity dispersion of the disc
component are given by σ r and σφ , while σ sph is the dispersion
velocity for the spheroid component (also derived from PNe). The
fi values are the probabilities obtained in Section 3.1 for every GC
to belong to the galaxy spheroid component based on photometry
only.

In Fig. 5, we show the recovered probabilities of the GCs to be-
long to the spheroid,Lsph(vi, fi), obtained normalizing the first term
on the right-side of equation (2), in comparison with the probabili-
ties to belong to the spheroid retrieved from the photometry only, fi.
We notice a decrease in probability values around 0.5 present in the
histogram that show probabilities obtained from photometry only,
in comparison with the probabilities obtained with photometry and
kinematics. This shows the core improvement of the MLE method
over the photometric probability approach justifying our choice of
a simple bulge-disc decomposition.

We calculate the total number of GCs that belong to the galaxy
disc or spheroid by summing-up the probabilities Lsph(vi, fi) and
the total number of disc GCs is obtained summing (1-Lsph(vi, fi)).
These values are outlined in Table 3, for the total, red and blue
sub-populations.

Moreover, the likelihood fit also offers us the advantage of de-
tecting objects that are outliers, i.e. not likely to be compatible with
the host galaxy kinematics, as traced by PNe in Cortesi et al. (2013).

MNRAS 479, 5124–5135 (2018)
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Figure 4. Rotation profiles and velocity dispersion for GCs and PNe ob-
tained through the likelihood analysis, considering a one-component kine-
matic model. Vertical error bars are uncertainties and horizontal error bars
represent bin-sizes. The data were divided in elliptical bins along circular-
ized radius with approximately the same number of objects in each bin.
The number of bins for each GC sub-population was designed aiming to
ensure enough objects in each bin for the likelihood estimation. Note the
distinct behaviour between the blue and red GC colour sub-populations of
NGC 2768 and the diverse trends for the kinematics of the different GC
systems.

We set the likelihood threshold at 2.3σ (see Cortesi et al. (2016)).
Within the entire GC spectroscopic sample, such objects account
for 10 GCs in NGC 2768, 32 GCs in NGC 3115 and 4 GCs in
NGC 7457. This means that 21.5 per cent of NGC 3115 GCs are not
likely to be compatible with the galaxy model (previously obtained
with PNe and the K-band image). Therefore we can explain such
objects in two ways. One possibility is that they might have been
recently accreted. Another option is that they might just belong to
the galaxy halo, which is not separately included in this study, but
is treated together with the bulge as a single spheroidal compo-
nent. Nevertheless, this number of rejected objects in NGC 3115 is
a higher amount than the 9.4 per cent rejected objects in NGC 2768
and 10 per cent in NGC 7457.

4 RESULTS

4.1 Colour and kinematics

In Fig. 6, we show the radial distribution of GCs versus their colours,
colour-coded according to their probability of belonging to the
spheroid, LSph(vi, fi).

Fig. 6 clearly shows that we are looking at three galaxies with
very distinct GC systems. As mentioned in Section 2, NGC 3115 is
clearly bimodal in colour, similarly to NGC 2768, while NGC 7457
shows no bimodality in colour for its GCs. Moreover, for NGC 2768
17 per cent of GCs are associated with the disc component while
NGC 3115 has a similar number of disc-like and spheroid-like GCs,
and NGC 7457 has 15 per cent GCs associated with the spheroid
component. We find no correlation between the colours of the GCs
and their kinematics, since in NGC 2768 both the populations of red
and blue GCs have spheroid-like kinematics3. In NGC 3115 there
are blue and red GCs associated with both the spheroid and the disc.
For NGC 7457, the GC system does not appear bimodal neither in
colour nor kinematics. For comparison, NGC 1023 have 19 red and
18.6 blue GCs belonging to the disc, along 13 red and 25.4 blue
GCs belonging to the spheroid (Cortesi et al. 2016). On the other
hand, we notice that most of the GCs that are more likely to have
disc-like kinematics are located in the inner regions of the galaxies,
within 10 kpc. It is possible, however, to find some disc-like GCs at
larger radii (r > 5Re). For all galaxies, rejected GCs are scattered
in the plot, suggesting no correlation among colour, kinematics,
and radius. Those objects will be discussed in more detail in the
following section.

4.2 1D phase–space diagrams

It is interesting to combine 1D phase–space diagrams of the GCs
with the information obtained from their recovered probabilities of
being associated with the disc or the spheroid. In Fig. 7, we use the
quantity �V = Vlos − Vsys, where Vsys is the systemic velocity of a
given galaxy, as listed in Table 2, versus galactocentric radius and
in Fig. 8 �x, the projected distance along the galaxy’s major axis.
We overplot the PNe for comparison.

In the 1D phase–space diagrams, GCs that are bound to the system
create a ’bell shaped’ pattern (see Rocha, Peter & Bullock (2012)).
Spheroid-like objects would lie approximately along the line where
�V = 0, since they have no net rotation, just a natural scatter
due to their hot kinematics. On the other hand, disc objects, due

3See discussion in Section3.3 and Fig. 4 about differences between the red
and blue GCs kinematics regarding the rotation profiles
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(a) NGC 2768 Photometry (b) NGC 2768 Photometry + Kinematics

(c) NGC 3115 Photometry Only (d) NGC 3115 Photometry + Kinematics

(e) NGC 7457 Photometry Only (f) NGC 7457 Photometry + Kinematics

Figure 5. The probability of GCs belonging to the host galaxy spheroid. Left-hand panels : probabilities from photometry, fi; right panels : probabilities
from photometry and kinematics, Lsph(vi, fi). Notice the decrease of objects with probability values around 0.5 in the right panels compared to the left ones,
showcasing the improvement of adding kinematic information to the photometric analysis. Also, notice the diverse cases presented in the right-side panels.
Most of NGC 2768 GCs are likely to belong to the spheroid, while NGC 3115 has a significant number of GCs likely to be in the disc, as well as in the spheroid,
and finally NGC 7457 shows a dominant disc-like population of GCs.

Table 3. Number of GCs associated with each of the host galaxy components, following the kinematic analysis described in Section 3.2. GCs are also divided
by colour sub-populations in the case of NGC 2768 and NGC 3115.

Galaxies Disc Spheroid
Red GCs Blue GCs Total Red GCs Blue GCs Total

NGC 2768 14.8 10.0 24.8 40.2 27.9 68.1
NGC 3115 26.8 21.4 48.2 37.2 31.5 68.7
NGC 7457 - - 27.3 - - 8.8
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(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

Figure 6. Radial distribution of GCs, colour coded by LSph(vi, fi), the proba-
bility of belonging to the spheroid. Red X-shaped markers represent rejected
objects with kinematics not compatible with their host galaxy kinematics
following the likelihood analysis. For NGC 7457 we lack colour information
for some GCs. Therefore the rejected objects are not shown.

(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

Figure 7. 1D phase–space diagrams for GCs and PNe. Blue and red GCs
are represented by blue circles and red squares, respectively. GCs likely
to belong to the spheroid are represented by filled markers, and GCs with
high probability of being part of the disc are represented by open markers.
Green filled triangles are PNe. For NGC 7457, due to its lack of bimodality
in colour, we show only disc and spheroid populations. Objects marked as
black hexagons are rejections from the kinematic fit.

to their larger rotational velocities, would show up symmetrically
around the galaxy’s systemic velocity. Moreover, the broader the
distribution around the systemic velocity of the galaxy, the higher
the random motions. For instance, objects recently accreted onto
the system would generally lie at the outer part of the distribution
given that they may not have reached equilibrium yet, with respect
to its new host galaxy kinematics (see also Rhee et al. (2017)).

Fig. 7 shows the 1D phase–space diagrams for NGC 2768,
NGC 3115 and NGC 7457. We divide the GCs between disc and
spheroid using a value of LSph(vi, fi) = 0.5. Note that there is a
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(a) NGC 2768

(b) NGC 3115

(c) NGC 7457

Figure 8. Velocity versus distance along the major axis for GCs and PNe.
Markers are the same as in Fig. 7 for all panels. Notice the grouping of
rejected GCs in NGC 3115 around δ V ≈ 300 km s−1.

concentration of red GCs towards the centre of NGC 2768, within
1Re (6.37 Kpc) Fig. 7 (a). However, as seen in Fig. 6 (a), both red
and blue sub-populations show high probabilities of belonging to
the spheroid. Forbes et al. (2012) when studying this galaxy kine-
matics, specifically looking into its red GC population, found that
it is related to the kinematics of the galaxy’s spheroid. Therefore,
it is reasonable to say that, as blue GCs in this galaxy have a high
probability of being in the spheroid and are generally not present at
the same radii as the red GCs, they are likely located predominantly
in the halo.

In the 1D phase–space diagram for GCs and PNe of NGC 3115,
Fig. 7 (b), one can see a transition from disc-like GCs to spheroid-
like GCs with radius. Rejected objects (black markers) from the
likelihood analysis also display an interesting distribution in the di-
agram. Most of them have similar values of �V, around 200 km s−1.

These GCs might form a group that could have an ex-situ origin.
For NGC 7457, by analysing Fig. 7 (c), we see a more compact

distribution of GCs and PNe in the phase–space diagram if com-
pared to panels (a) and (b), with objects showing values of �V ≤
200 km s−1. NGC 2768 and NGC 3115 have GCs with values of �V
in the range of 600 km s−1, therefore, NGC 7457 shows lower ve-
locity dispersion, as expected given the recovered kinematics (see
Fig. 4). GCs and PNe have a high probability of belonging to the disc
of the galaxy and share the same loci in this plot. They show a U’
shaped distribution. This shape might be due to the very low num-
ber of GCs and PNe with hot kinematics, consistent with the galaxy
being disc dominated (Cortesi et al. 2013). This galaxy seems to
generally lack a hot kinematic component in its outer regions, be-
yond around 2 Re, quite differently from NGC 2768 and NGC 3115
which have, in fact, more prominent bulges and are more massive
than NGC 7457.

In addition to Fig. 7, it is interesting to analyse the distribution
of the velocities of the tracers versus the projected distance along
the major axis of the host galaxies, see Fig. 8. The rejected GCs of
NGC 3115 show interesting properties. In fact, they seem to form a
coherent structure, reinforcing what was found in Fig. 7.

Finally, NGC 7457 shows a strong disc-like shaped distribution
in Fig. 8, both for PNe and GCs. This was already expected given
the rotation profiles in Fig. 4, where PNe and GCs show similar
kinematics.

5 DISCUSSION

In this section, we analyse the GC rotation profiles and the V/σ ratio
of the GCs and we compare our results with simulations. The V/σ
quantity can be used as an indicator of how much the kinematics of a
galaxy’s GC system is dominated by rotational velocity, in the case
of values higher than 1, or is more influenced by random motions,
in the case of a ratio smaller than 1.

Bekki et al. (2005) studied with dissipationless numerical simula-
tions the outcome of various merger scenarios on the GC kinematics
of early-type galaxies. They showed that mergers with a proportion
of 10:1 are able to produce flattened early-type galaxies, such as
lenticulars, and they would impact the kinematics of GCs in such a
way that their rotation at large radii would be weaker than at small
radii. Bournaud et al. (2005) showed that minor mergers with a
proportion of 4.5:1 would produce a stellar disc with V/σ ≈ 1 for
the remnant galaxy and a merger with a proportion of 10:1, such as
the ones Bekki et al. (2005) studied, would produce a stellar disc
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Figure 9. V/σ ratio obtained from GCs, with the addition of NGC 1023
from Cortesi et al. (2016). Left , full sample of GCs for each galaxy, centre
: red subpopulation of GCs, right : blue subpopulation of GCs. NGC 7457
has no signs of significant bimodality so only one population is shown. The
error bars for NGC 7457 GCs are in the order of δV/σ ≈ ±3.0, due to the
uncertainties in recovering σ . Note that these values are obtained assuming
only one component and not separating disc-like from spheroid-like objects.

with V/σ ≈ 2. Besides a major merger event4, another likely path
on the evolution of galaxies is a sequence of minor mergers. On
the other hand, Moody et al. (2014) showed that multiple minor
mergers would not produce fast rotating galaxies (Emsellem et al.
2011), but instead would be more likely to produce hot, elliptical
and slow rotating galaxies.

In Fig. 9, we show the V/σ ratios obtained from the GC sub-
populations using the method described in Section 3 and the results
from Fig. 4. One can see that the values of V/σ for NGC 3115 are
close to or smaller than 1 for both GC sub-populations and for all
radii, which would support the scenario in which this galaxy is a
remnant of a merger event where the masses involved follow at least
a 4.5:1 proportion. This merger would not have been strong enough
to rip the disc structure of the galaxy apart, but would be significant
enough to accelerate the gas removal or consumption within the
galaxy.

The signs of remnant spiral star forming structures hypothesized
by (Norris, Sharples & Kuntschner 2006; Guérou et al. 2016) sup-
port this formation scenario, where the progenitor of NGC 3115
was a spiral galaxy that later merged with a smaller companion.
In Cortesi et al. (2016), it was argued that for NGC 1023 the ratio
between the rotation velocity and the velocity dispersion in the az-
imuthal direction is not compatible with a faded spiral galaxy. It was,
instead, suggested that NGC 1023 formed at redshift 	 2, through
the merger of clumps (Inoue 2013). If one compares Fig. 6 of Cortesi
et al. (2016) with Fig. 4 of this work, it is notable for the similarity
between the red GCs of NGC 3115 and NGC 1023. Hence, clumpy
disc formation can also be a scenario to explain the kinematics of
the red GC population and the higher fraction of GCs with disc-
like kinematics in NGC 3115. Nevertheless, NGC 3115 has a higher
B/T ratio when compared to NGC 1023 (Cortesi et al. 2016). Thus,
this galaxy is more consistent with having gone through a series of
minor mergers (see also Arnold et al. (2014)).

4Bekki et al. (2005) considers mergers with galaxies of masses in the pro-
portion of 4.5:1 as major mergers.

The results for NGC 2768 point to a very different scenario com-
pared to the other three galaxies.

Forbes et al. (2012) argued that the radial distribution of the V/σ
ratio of red GCs in this galaxy is similar to the one of spheroid
PNe and stars, as found in spiral galaxies. Furthermore, we find that
for the GCs the V/σ ratio is ≤1 at all radii, independently of the
sub-population considered. According to Bekki et al. (2005), such
values of V/σ are the result of a 4.5:1 merger, which is consistent
with the galaxy having a more prominent spheroidal structure and
a high amount of GCs associated with its spheroid.

Although we are not able to set a single hypothesis for the origin
and evolution of NGC 2768, it is clear from our results that its origin
differs from that of NGC 3115 and NGC 1023.

NGC 7457 is a peculiar galaxy, since, unlike the others in the
sample, ∼70 per cent of the GCs are located in the disc. This galaxy
has the fewest number of GCs overall (around 210, see Hargis
et al. (2011)). Moreover, we only have spectroscopy for 40 of those,
and therefore a slightly less reliable likelihood fit. Nevertheless,
the results from the rotation profiles based on GCs are in good
agreement with the results for PNe published in Cortesi et al. (2013),
who analysed a sample of 113 such objects. In addition, Hargis
et al. (2011) studied the GC system of NGC 7457 and concluded
that although the spatial distribution of the system is very elliptical,
an inclined disc GC population could explain the observations.
In the same work, it was suggested that the most likely formation
scenario for this galaxy is through a merger event involving galaxies
with unequal masses. NGC 7457 is a field galaxy, so gas stripping
mechanisms, which are usually related to dense environments, are
very unlikely to be major contributors here. Even so, it could be the
result of starvation, where the isolated galaxy, after consuming all
its gas reservoir, slowly stops creating young stars (Bekki, Couch
& Shioya 2002). Presently, in the literature, scenarios for early-
type galaxy formation involving a two-phase evolution are gaining
popularity (Oser et al. 2010). In these scenarios, the bimodality of
GCs in colour, metallicity and age would be a more natural outcome.
Hargis et al. (2011) and Pota et al. (2013) were not able to detect
bimodality in colour for the GCs in this galaxy (but see Peacock
et al. 2017).

The V/σ ratio for this galaxy is more than 2, which would mean,
following Bournaud et al. (2005), that, at most, it has undergone
a merger event with a proportion of around 10:1. Moreover, the
simulations of Bekki et al. (2005) indicate that the GC systems of
galaxies that suffered minor mergers, as the one that would form
flattened disc galaxies, such as NGC 7457, should retain a more
spherical structure with little rotation at larger radii, which does not
seem to be the case here. Another piece of information that can be
added to this puzzle comes from Alabi et al. (2017). In this work,
the dark matter fraction at large radii for NGC 7457 was found to be
around 0.9, within 5 Re. This is greater than the dark matter fraction
values found for NGC 2768, NGC 3115, and NGC 1023 which are
all around 0.6. With this information, Alabi et al. (2017) calculated
an assembly epoch for the halo of NGC 7457 at z ≈ 4.4 ± 1.1, or
12.3 Gyr ago. However, the mean luminosity-weighted ages for the
stellar content of the central regions of this galaxy and of some of its
GCs are around 3-7 Gyr (Sil’chenko et al. 2002; Chomiuk, Strader
& Brodie 2008; McDermid et al. 2015). Therefore, the assembly
of the halo of the galaxy would have taken place long before some
of the GCs and stars at the centre of the galaxy were created. This
formation scenario is compatible with a secular evolution scenario,
with no mergers at least after z 	 4. However, clumpy disc formation
can also explain the fact that NGC 7457 has a disc-dominated GC
population (Inoue 2013).
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(a)

(b)

Figure 10. Upper panel: Comparison between the number of GCs in the
spheroid (filled markers) and the disc (open markers) of our sample galaxies,
divided by total stellar mass (M∗) and the bulge-to-total ratio of the galaxy
light profile, as obtained in Cortesi et al. (2013). Lower panel: Same as the
upper panel, but only accounting for the spheroidal GC population of all
galaxies, with the exception of NGC 7457, and separated in red and blue
colour subpopulations.

In Fig. 10 (a), we compare the number of GCs associated with the
spheroid or disc components of its host galaxy, normalized by total
stellar mass, with the bulge-to-total (B/T) ratio of the host galaxy
light profile from Cortesi et al. (2013). We do not find that the num-
ber of GCs increases with the host galaxy B/T ratio. Nevertheless,
if we consider only the number of GCs that belong to the spheroid
(in panel b5), we can see a trend with B/T. This suggests that the
number of spheroidal GCs in a given galaxy can be estimated by
its photometric properties, such as the fraction of bulge light, but
disc GCs, on the other hand, do not follow a similar relation. This
discrepancy with disc GCs then impacts the total number of GCs
of a given galaxy when compared to its B/T ratio and should not
be ignored. On a final note, Fig. 10 (a) also showcases the unusual
proportion of GCs in NGC 7457 in proportion to its mass when
compared to the other galaxies.

5NGC 7457 is left out due to is negligible amount of spheroidal GCs, when
compared to the other three galaxies.

6 SU M M A RY A N D C O N C L U S I O N S

In this work, we recovered the kinematics of the GC systems of
three lenticular galaxies in low density environments: NGC 2768,
NGC 3115, and NGC 7457. We employed the method presented
in Cortesi et al. (2016) for NGC 1023 to obtain the probability
of every GC to belong to the disc or the spheroid of the galaxy,
using PNe kinematics and K-band photometry. The results point
to a different formation scenario for each galaxy. NGC 2768 hosts
a very prominent spheroidal GC population. NGC 3115 has the
same number of GCs associated with the disc and the spheroid
components. NGC 7457, interestingly, at least for the sample used
in this work, has the majority of its GCs compatible with disc-like
kinematics.

Following the simulations of Bekki et al. (2005) and Bournaud
et al. (2005), and the fact that all galaxies in this sample are iso-
lated or in small groups, we investigated the possibilities of merger
origins for the galaxies studied. Although such hypothesis remains
reasonable, the kinematics of red GCs associated with the disc
component are compatible with clumpy disc formation. In the case
of NGC 7457, our results seem to point towards a secular evolu-
tion from a regular spiral galaxy, or clumpy disc formation. Also
of interest, the GC colour sub-populations of NGC 2768 display
distinct kinematic behaviours, a feature not present in NGC 3115,
NGC 7457, or even NGC 1023 from Cortesi et al. (2016). For all
GC systems, there is no clear correlation between the component of
the galaxy they are likely to belong to and their colour. We find also
a population of GCs in NGC 3115 which are not likely to belong
to any of the modelled components, within a confidence interval of
2.3σ . Those GCs could be related to a recent accretion event or to
components not explicitly included in our model, such as the halo.
This is to be further investigated.

In summary, this work shows that the structure and kinematics of
lenticular galaxies in low-density environments is very diverse and
more complex than expected by most formation scenarios proposed
in the literature.
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