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Abstract

The recent discovery of massive black holes (BHs) in the centers of high-mass ultra-compact dwarf galaxies
(UCDs) suggests that at least some are the stripped nuclear star clusters of dwarf galaxies. We present the first
study that investigates whether such massive BHs, and therefore stripped nuclei, also exist in low-mass
(M<107Me) UCDs. We constrain the BH masses of two UCDs located in Centaurus A (UCD 320 and UCD 330)
using Jeans modeling of the resolved stellar kinematics from adaptive optics data obtained with the SINFONI
integral field spectrograph at the Very Large Telescope (VLT/SINFONI). No massive BHs are found in either
UCD. We find a 3σ upper limit on the central BH mass in UCD 330 of M•<1.0× 105Me, which corresponds to
1.7% of the total mass. This excludes a high-mass fraction BH and would only allow low-mass BHs similar to
those claimed to be detected in Local Group globular clusters. For UCD 320, poorer data quality results in a less
constraining 3σ upper limit of M•<1× 106Me, which is equal to 37.7% of the total mass. The dynamical mass-
to-light ratios of UCD 320 and UCD 330 are not inflated compared to predictions from stellar population models.
The non-detection of BHs in these low-mass UCDs is consistent with the idea that elevated dynamical mass-to-
light ratios do indicate the presence of a substantial BH. Although no massive BHs are detected, these systems
could still be stripped nuclei. The strong rotation (v/σ of 0.3–0.4) in both UCDs and the two-component light
profile in UCD 330 support the idea that these UCDs may be stripped nuclei of low-mass galaxies whose BH
occupation fraction is not yet known.
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1. Introduction

Ultra-compact dwarf systems (UCDs) are among the densest
stellar objects in the universe, and with their almost spherical
appearances, they resemble globular clusters (GCs; Minniti
et al. 1998; Hilker et al. 1999; Drinkwater et al. 2000). A
common definition of UCDs is that they have to be more
massive than ωCen (M>2× 106Me), but there is no clear
physical property that separates UCDs from GCs. When
compared to dwarf galaxies, however, they are much smaller
and have higher stellar densities at the same luminosity
(Misgeld & Hilker 2011; Norris et al. 2014). It is still under
debate how these “intermediate” objects formed.

One proposed formation channel for UCDs is that they
formed as genuine massive GCs (Mieske et al. 2004, 2012;
Murray 2009) during intense starbursts or mergers that have
high enough star formation rates to produce such massive
clusters (Renaud et al. 2015; Schulz et al. 2015). Young
clusters in the UCD mass range have been observed in nearby
merger remnants, with virial masses of up to 8×107Me

(Maraston et al. 2004; Bastian et al. 2006). A second formation
mechanism is that UCDs might be the stripped nuclear star
cluster of a parent galaxy that was accreted onto a larger galaxy
or galaxy cluster (Bekki et al. 2003; Drinkwater et al. 2003;
Pfeffer & Baumgardt 2013).
There is evidence that supports the notion that both

formation channels contribute to the population of UCDs we
observe (Hilker 2006; Brodie et al. 2011; Da Rocha et al. 2011;
Norris & Kannappan 2011). However, it is unclear so far what
fraction of UCDs was formed as genuine GCs and how many
of them are former galaxy nuclei. Related questions are
whether the contribution of UCD formation channels changes
with UCD mass and environment, and if it depends on the
galaxy cluster they reside in.
The number of stripped nuclei in the Fornax and Virgo

cluster environment was predicted using the Millennium II
simulation and the associated semi-analytic model developed
by Pfeffer et al. (2014, 2016). It is estimated that above masses
of 107Me, stripped nuclei make up 40% of all objects in the
Fornax cluster and that the most massive globular cluster would
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have a mass of 2×107Me. The fraction of stripped nuclei
drops significantly to 2.5% between 106 and 107Me. Overall,
the combined mass function of simulated stripped nuclei and
GCs agrees well with observations, indicating that UCDs are
indeed a mix between GCs and stripped nuclei.

Quantifying the number of stripped nuclei in a galaxy cluster
would provide a new way to infer its past merger history.
Stripped nuclei UCDs could then provide a useful anchor point
for simulations that predict the number of tidally disrupted dark
matter halos in a galaxy cluster.

There are three main ways to identify UCDs as stripped
nuclei: (1) detecting the remnant tails and extended low surface
brightness envelopes caused by the tidal stripping process, (2)
determining whether the star formation history of a UCD is
extended, and (3) measuring whether they host a super-massive
black hole (SMBH) in their centers, which are common in
nuclei of galaxies.

Tidal tails and envelopes around UCDs are expected when a
galaxy is in the process of being stripped, but these typically
have short lifetimes. Such features were detected around UCDs
in the Fornax and Perseus clusters (Voggel et al. 2016; Wittmann
et al. 2016). A tidal stream of 1.5 kpc was recently found around
a newly discovered very massive (M=4.2×108Me) UCD in
NGC 7727 (Schweizer et al. 2018). In addition, a UCD of the
size of ωCen was discovered embedded in a stellar stream
around NGC 3628 (Jennings et al. 2015).

An extended star formation history that extends over several
Gyr has been found in NGC 4546-UCD1 (Norris et al. 2015).
This long star formation timescale is similar to what is
observed in galaxy nuclei (e.g., Rossa et al. 2006; Seth
et al. 2006; Walcher et al. 2006). In contrast, GCs have usually
very short (<1 Gyr) star formation histories. In the Milky Way,
two massive clusters have extended star formation histories.
The first is M54, the nucleus of the partially stripped Sgr dwarf
galaxy (Siegel et al. 2007; Carretta et al. 2010), and the other is
Omega Cen (Hilker et al. 2004), which is widely thought to be
a stripped nucleus.

If UCDs are stripped nuclei, then we expect super-massive
black holes (SMBH) in their centers, similar to those observed
in the nuclear star clusters of galaxies (Seth et al. 2008a;
Graham & Spitler 2009). The high mass of an SMBH causes a
distinctive central rise in velocity dispersion that is detectable
in bright UCDs using adaptive optics combined with integral
field spectroscopy. Such BH mass measurements have been
carried out in four high-mass UCDs (>107Me), and there is
strong observational evidence from dynamical modeling that
they all host SMBHs that make up ∼15% of their total mass
(Seth et al. 2014; Ahn et al. 2017, Afanasiev et al. 2018). The
higher-than-expected velocity dispersions of these massive
UCDs also provide indirect evidence for a high fraction of
SMBHs and thus suggests a high fraction of former galaxy
nuclei among high-mass UCDs.

At the low-mass end, there is evidence that both M54 and
ω Cen have a massive BH in their centers and are thus stripped
nuclei. In M 54, a BH mass of 1×104Me was suggested
(Ibata et al. 2009), and a 4.0–4.7×104Me black hole is
suggested in the center of ω Cen (Noyola et al. 2010;
Baumgardt 2017). The central dispersion increase of such
intermediate-mass BHs (IMBH) could also be explained with
significant radial anisotropy without an IMBH (van der Marel
& Anderson 2010; Zocchi et al. 2017).

If UCDs are the remnant nuclear star clusters (NSCs) of a
stripped galaxy, then their masses directly trace the mass of the
progenitor host galaxy via the NSC–host galaxy mass relation
(Ferrarese et al. 2006). However, this relation has a significant
scatter, meaning that galaxies of the same mass can have nuclei
masses that vary by two orders of magnitude (Georgiev
et al. 2016). In the scenario where UCDs (M>2×106Me)
are the stripped nuclei of former more massive galaxies, they
will trace the merging of progenitor galaxies with stellar masses
of 5×108Me<M<1011Me, assuming the nuclei–galaxy
mass correlation (Georgiev et al. 2016). The high metallicities
of UCDs with confirmed SMBHs are consistent with them
being nuclei that follow the mass–metallicity relation of their
larger parent galaxy (Tremonti et al. 2004).
Resolved kinematic studies of UCDs are only feasible for the

brightest UCDs, and thus our existing sample is strongly biased
toward more massive UCDs (>107Me), while in fact there are
many more UCDs at lower masses. There is no measurement of
the presence of SMBHs in lower mass UCDs yet, and the
incidence of genuine nuclei is entirely unknown for low-mass
UCDs. If stripped nuclei exist among low-mass UCDs, they
most likely originate from low-mass (∼1× 109Me) parent
galaxies. For this mass range, the BH demographics are not
well known, but even these low-mass nuclei appear to host
BHs (Miller et al. 2015; Nguyen et al. 2017). To provide a first
look inside lower mass UCDs, we target two UCDs below
107Me in this work to explore whether they also host SMBHs
in their centers. Owing to their lower brightness, the required
adaptive optics observations are only feasible for UCDs that are
closer than the Fornax or Virgo clusters.
We chose to target two Centaurus A UCDs (UCD 320 and

UCD 330, also named HGHH92-C21 and HGHH92-C23,
respectively; see Taylor et al. 2010; Rejkuba et al. 2007 for
reference) that are both more massive than ωCen. We show
below that the masses are 2.8×106Me and 6.1×106Me for
UCD 320 and UCD 330, respectively, and their other properties
are summarized in Table 1.
Both objects have dynamical mass-to-light ratios (M/Ldyn)

that are higher than what is expected from stellar population
predictions (M/Lpop). Based on the SMBHs found in massive
UCDs, this inflatedM/L may be a sign of massive BHs in these
systems (Ahn et al. 2017). The enhancement for UCD 320 was

2.28
M L

M L330
dyn

pop
Y = = and 2.5

M L

M L320
dyn

pop
Y = = for UCD 330.

These observations are part of an adaptive optics campaign
that uses the VLT/SINFONI (PI: Mieske) and for the UCDs in
the northern hemisphere with Gemini/NIFS (PI: Seth). Both
UCDs have been first noted in Harris et al. (1992), and their
integrated velocity dispersion was measured in Rejkuba et al.

Table 1
Literature Values for UCD 330 and UCD 320

Name UCD 330 UCD 320 Reference

R.A. 13:25:54.3 13:25:52.7 Taylor+2010
Decl. −42:59:25.4 −43:05:46.6 Taylor+2010
MV [mag] −11.66 −10.39 Rejkuba+2007
[M/H] −0.36±0.14 −0.85±0.14 Beasley+2008
reff [pc] 3.25±0.13 6.83±0.10 Taylor+2010

vs [km s−1] 41.5±3.7 20.0±1.4 Taylor+2010

vs [km s−1] 30.5±0.2 19.0±0.1 Rejkuba+2007
Rgc [kpc] 5.8 7.3 Rejkuba+2007
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(2007). The data of Rejkuba et al. (2007) were reanalyzed by
Taylor et al. (2010).

In the paper we adopt a distance modulus of m–M=27.91
to Cen A (Harris et al. 2010) and an extinction value of
AV=0.31 mag.

This paper is organized in the following way: In Section 2
we present our data and how they were analyzed. In Section 3.1
we present our methods for measuring the kinematics and the
mass and surface-brightness profile of the UCD and the set-up
of the Jeans Anisotropic Models (JAM). In Section 4 we
present our results from the kinematic measurements and in
Section 5 the results from the dynamical modeling. In Section 6
we discuss our findings, and in Section 7 we present the
conclusion.

2. Data

2.1. SINFONI Observations

UCD 320 and UCD 330 were observed with SINFONI
(Eisenhauer et al. 2003) on UT4 of the Very Large Telescope
(VLT), under ESO ID Nr.095.B-0451(A) (PI: Mieske).
SINFONI is a near-infrared integral field spectrograph with
adaptive optics capabilities. All our observations were carried
out in the K band (1.95–2.45 μm) with a pixel scale of
50×100mas, a field of view of 3″×3″, and a spectral
resolution of R∼4000.

In total, 21 exposures of 600 s were combined into the final
cube for UCD 330. The observations were carried out on the
nights of 2015 June 15, 18, 21, and 24th.

For UCD 320, we observed 28 exposures of 600 s and had to
discard 6 of them because of low quality, where the adaptive
optics loop was not stable. For the final cube, we combined 22
exposures. The data were reduced using version 3.12.3 of the
esorex command-line software and version 1.8.2 of the
SINFONI instrument pipeline. We corrected each individual
observation with the dark exposure and applied the pipeline
recipes that correct linearity and distortion. We then divided

by the flat field, applied a wavelength correction, and corrected
for the telluric absorption features. The sky was subtracted
using the two offset sky exposures taken in each observing
block in an O-S-O-S-O sequence, with offsets of 4″ and 7″
from the center of the UCD. The individual cubes were
dithered in such a way that the object fell for half of the total
exposure time onto the lower right part of the detector and the
other half on the upper left part. Additionally, a dither of a few
pixels was applied between successive exposures at both
positions, to ensure that the UCDs did not fall into the same
area of the detector each time. This ensures that systematic
detector effects are minimized and that unique sky pixels are
subtracted from each dither position. The individual cubes were
combined using our own routine that centers on each UCD and
coadds them so that they are aligned.
Despite the sky subtraction, the reduced cubes still had

significant background flux left in the spectra. This residual
background was uniform in spectral distribution across the
chip, but had neither the spectrum expected for a stellar source,
nor sky emission. We suspect the background is due to
scattered light, similar to backgrounds seen in comparable
SINFONI data (Nguyen et al. 2017). We estimated the
background spectrum using the spatial pixels farthest from
the center of the UCD, averaged these pixels using sigma
clipping, and subtracted this background spectrum from each
spatial pixel in the cube. This background correction resulted in
significantly improved kinematic fits, but has the consequence
of introducing uncertainty into our point-spread function (PSF;
see below).
The intrinsic dispersion of SINFONI varies for each row of

the 64×64 pixel detector, and thus we need to obtain accurate
instrumental dispersion for each row separately. To achieve
this, we use five strong OH sky lines with small wavelength
separations between the doublets from the sky cubes. For each
line, we subtract the continuum, normalize the flux in each line,
and then sum over all lines and take their median. Thus we use
the empirically determined median line shape of each row as
the instrumental dispersion of SINFONI. The line-spread
function (LSF) of SINFONI varies significantly from row to
row, with FWHMs ranging from 5.7 up to 8.5Å. We then
dither the LSF cube of the SINFONI field of view in the same
manner in which our observations were dithered to create a
final combined LSF cube.
We derive the spatial PSF of the SINFONI adaptive optics

data by convolving the images from the Hubble Space
Telescope (HST; see Section 2.2) of the UCDs with a model
PSF and comparing it to the collapsed image from the
SINFONI cubes. For the model PSF, we use a double-Gaussian
functional form. The double-Gaussian model parameters are
varied until a best-fit convolved HST image is found that is
closest to the observed SINFONI data.
The additional background subtraction we applied to the

SINFONI cube reduced the light in the outskirts relative to the
true distribution, potentially impacting our PSF measurement.
To measure the accurate surface brightness profile, we needed
to quantify what fraction of the signal in the outskirts comes
from the UCD (and potentially galaxy) light. We extracted 14
background aperture spectra (using four-pixel apertures) at
large radii (>1, 8″) from UCD 330. We then compared the
2.3 μm CO-bandhead equivalent widths (EWs) of the back-
ground spectra to one from the center of the UCD. No clear
CO lines were visible in the background spectra, and from the

Figure 1. Cutout of the HST imaging of UCD 330 (top panel) and UCD 320
(bottom panel) with respect to their position within Cen A. UCD 330 lies at a
distance of 5.8 kpc to the center of Cen A, and UCD 320 is located at 7.3 kpc.
The image of Cen A is a publicly available composite image taken from ESO
(https://www.eso.org/public/images/eso1221a/).
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equivalent width comparison, we deduced that the contrib-
ution of a UCD-like spectrum to the background is 10.5%±
7.7% at a radius of ∼2 3. Because the background spectra
have strong structure in wavelength (i.e., it looks like an
emission line spectrum), one way to estimate the true
surface brightness of the UCD is to make an image out of
a region without strong emission in the background spectra.
To determine the PSF, we therefore created an image by
collapsing the data cube over wavelengths from 2.26 to
2.36 μm, and then removed 89.5±7.7% of the background
level at 2 3 to ensure that the scattered light from the UCD
remains. The final PSF for UCD 330 has a inner Gaussian
width of 0 07, containing 72.9% of the total luminosity, and
an outer component of 1 15 that contains 27.1% of the light.
Considering the uncertainties in the kinematic PSF light
contribution, we determined the following values for the outer
Gaussian component: r=0 97 with a 20.5% light fraction as
a lower limit, and r=1 34 with a 35% light fraction as the
upper limit. The size of the inner component remained the
same in both fits.

For UCD 320, this method results in a FWHM of 0 16 for
the inner Gaussian, containing 59.8% of the light, and the outer
component has a size of 0 85 and a light fraction of 40.2%.
Using the equivalent width method, we find a UCD light
contribution of 9%±6%. The change in UCD light contrib-
ution varied the light fraction in the outer Gaussian only by a

small amount, with 40 %2
3

-
+ . The sizes of the inner and outer

Gaussian were essentially unchanged.

2.2. HST Data

High-resolution imaging data from HST were available in the
Hubble Legacy Archive13 for both UCDs. The available imaging
data were taken with the Wide Field Camera (WFC) on the
Advanced Camera for Surveys (ACS) using the F606W filter.
The combination of ACS/WFC provides a spatial resolution of
0 05 pix−1. UCD 320 and UCD 330 were observed as part of
HST Proposal 10597 (PI: Jordan) that targeted the structural
parameters of GCs around CenA. The total observing time was
2158 s. We note that due to the single band of data, we cannot
study color variations within the UCD or variations that would
affect our assumption of a constant M/L, but as shown in Ahn
et al. (2017), these variations, even if present, have minimal
effects on the dynamical models.
The images are available in their fully reduced form from the

HST archive. We used them to analyze the surface-brightness
profile of the UCDs and determine their structural parameters.
These spatially resolved light profiles are an important
ingredient for the dynamical models of our UCDs. A cutout
of the HST images and the position of the UCDs within CenA
is illustrated in Figure 1.

Figure 2. Observed surface brightness profiles of UCD 330 (left) and UCD 320 (right), shown as black plusses. The best-fit double Sérsic model for UCD 330 is
shown as a blue line in the left panel and the single Sérsic model for UCD 320 in blue in the right panel. For UCD 330, the inner and outer Sérsic components are
shown separately in red and green, respectively. These are the models that were convolved with the PSF from the HST images. The individual Sérsic parameters can be
found in Table 2.

Table 2
GALFIT Results

Name Mag (F606W) Reff (arcsecond) Reff (pc) Sérsic Index n Axis Ratio P.A. Reduced χ2

UCD 330 Inner Sérsic 17.17 0.13 2.17 1.70 0.84 −48.84 4.01
UCD 330 Outer Sérsic 17.72 0.54 8.97 4.73 0.80 −48.69 4.01
UCD 330 Single Sérsic 16.80 0.17 3.11 1.92 0.81 −32.66 6.92
UCD 320 Sérsic 17.30 0.28 4.67 3.46 0.65 −79.82 10.36

Note. The apparent magnitude is corrected for AV=0.31 mag of extinction.

13 https://hla.stsci.edu/
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The PSF was generated empirically using isolated point sources
in HST images taken with similar dither patterns. These stars were
combined into a single image, and a spatially varying PSF was
determined using the Fortran version of DAOPHOT.

3. Analysis

3.1. Kinematics Measurements

For our dynamical analysis, we use the strong near-infrared
CO band absorption lines from 2.29 to 2.39 μm, which are
located in the K band that we observed with SINFONI. To fit
stellar templates to the absorption lines, we use the penalized
pixel-fitting (pPXF) code (Cappellari & Emsellem 2004;
Cappellari 2017). It allows one to fit a set of model templates
to the data and derives the best-fit radial velocity and velocity
dispersion of the observed spectrum. For our stellar model
spectra, we use the library of high-resolution stellar templates
of cool stars in the K band from Wallace & Hinkle (1996). The
high-resolution model spectra are convolved with the SINFONI
line-spread function to bring them to the same spectral
resolution as our UCD observations.

For UCD 330, the signal-to-noise ratio (S/N) was sufficient
to create 2D kinematic maps using Voroni binning (Cappellari
& Copin 2003). We required that each bin has a minimum
S/N>30. Outside of r>0 3, we created bins that spanned
90◦ intervals to maximize the S/N. However, for the
significantly lower S/N of UCD 320, we needed to restrict
our analysis to (1D) radial binning.

We did not fit the h3 (skewness) and h4 (kurtosis)
parameters, as the spectra did not have the necessary S/N to
draw reliable conclusions about the shape of our absorption
lines. Before carrying out the kinematic fits, we coadded
several spaxels into bins to improve the S/N. For the radial
dispersion profiles of both UCDs, we summed all pixels in
radial bins.

The uncertainties of our kinematic measurements were
determined by adding random Gaussian noise to our spectra.
The random noise level is based on the residual from the best-
fit model. We ran such Monte Carlo simulations 25 times for
each spectrum and refitted the kinematics. The standard
deviation of the kinematic values from the 25 trials was then
adopted as the 1σ kinematic error.

We performed a barycentric velocity correction for all
measured radial velocities. We used the barycentric correction

at the date of observation for each individual exposure, and
then averaged all corrections. For UCD 330, the average
correction is vbary=−19.1 km s−1, and for UCD 320, it is
vbary=−21.9 km s−1.

3.2. Surface Brightness and Mass Profiles

Every JAM model requires a model for the distribution of
the stellar mass within the UCD. We can derive the surface
brightness profile of our UCDs from the available HST images
in the F606W filter. We use the 2D surface brightness code
GALFIT (Peng et al. 2002) to fit a double Sérsic light profile.
We fit both UCDs using a 10″×10″ cutout of the HST F606W
imaging (Figure 1) with an 80×80 pixel PSF convolution
box. The best-fit model parameters of the Sérsic profiles are
listed in Table 2. We first ran a single Sérsic profile to measure
the best-fit center of the UCD. Then we refit a double Sérsic
profile, assuming the same center for both Sérsic components
and keeping it fixed. The other fit parameters, including the
magnitude, effective radius, Sérsic index, ellipticity, and
position angle, were all allowed to vary for both UCDs. We
also allowed GALFIT to account for a background gradient to
take into account the varying background light from Cen A. For
UCD 320, the single Sérsic fit was the best-fit model, whereas
for UCD 330, the double Sérsic fits had a lower reduced χ2

value than the single-component model.
For UCD 330, we find a best-fit inner component with

rinner=0 13=2.4 pc and a Sérsic index of n= 1.7, and
router=0 54=9.97 pc and n= 4.73 for the outer component.
With axis ratios of 0.84 and 0.80, respectively, the two
components are similar in ellipticity. The combined effective
radius of these two components is reff=0 2=3.69 pc, which
is larger than the literature value (Table 1). The total extinction-
corrected F606W magnitude is mF606=16.66, which trans-
lates into mV=16.88. Thus the absolute magnitude is
M 11.03V = - . Rejkuba et al. (2007) find M 11.66V = - after
applying an 0.64 mag internal extinction correction for dust in
Cen A, in addition to their external 0.34 mag foreground
extinction correction. When we only correct for the foreground
extinction, the magnitude is M 11.02V = - , which is consistent
with our value. This is the only object for which Rejkuba et al.
(2007) applied this additional correction based on the presence
of strong NaD lines. However, the lines themselves are too
noisy to measure the internal extinction directly, and thus their

Figure 3. Near-infrared spectrum of UCD 330 centered on the CO-bandhead
absorption features between 2.29 and 2.39 μm. The spectrum was integrated
out to 0 4 in radial distance. The observed spectrum is shown in black, the
best-fit model is plotted in red, and the residuals are shown in the panel below
in green.

Figure 4. Integrated Ks-band spectrum of UCD 320 with the CO-bandhead
absorption features plotted between 2.27 and 2.38 μm. The spectrum was
integrated out to 0 3 in radial distance to optimize the S/N that decreases
when coadding more distant spaxels that are noisier because of the decreasing
flux of the object. The observed spectrum is plotted in black, the best-fit model
is shown in red, and the residuals are plotted in the panel below.

5

The Astrophysical Journal, 858:20 (15pp), 2018 May 1 Voggel et al.



internal extinction value is an estimate. In addition, the
extinction-corrected V I-( ) color of UCD 330 is 0.78 in
Rejkuba et al. (2007), but for a 12.6 Gyr old stellar population
with a cluster metallicity of Fe H 0.4= -[ ] , the Padova
models predict a V I 1.15- =( ) (Girardi et al. 2000); when
correcting only for the foreground extinction, this matches
much better: it yields a V I 1.11- = for UCD 330. This
suggests that their large internal extinction correction is
overestimated, and thus we do not apply it.
For UCD 320, we find the best-fit profile to be a single Sérsic

with r 0. 28 5.17eff =  = pc, a Sérsic index of n= 3.46, and an
axis ratio of 0.65. Thus UCD 320 is significantly elliptical and
smaller than the previous effective radius of 6.83 pc (Table 1).
Its extinction-corrected F606W magnitude is m 17.30F606 = ,
which translates into m 17.52V = , and thus the absolute
magnitude is M 10.39V = - , which is exactly the same value
as was found in the literature and is also corrected for
foreground Milky Way extinction (see Table 1).
The surface brightness profiles of the two UCDs and their best-

fit Sérsic models derived with GALFIT are shown in Figure 2.
The black plusses show the measured values, and the blue line
presents the best-fit model that was convolved with the PSF.

Figure 5. Two-dimensional kinematic maps (left) and models (right) of UCD 330. The top panels show the radial velocities, and the bottom panels show the second

moment of the LOSVD v vrms
2

rad
2s= + that includes the velocity dispersion and the radial velocity. The black isophotes show the contours of the stellar light from

the K-band image. For the central area, the S/N is high enough that the dynamics were measured for single pixels, whereas in the outskirts, many pixels were binned
together. The typical uncertainties for the vrms are 2 km s−1 for the central pixels and 6 km s−1 in the outskirts. Grayed-out bins in the data panels are either bins with
an S N 5< , or the uncertainties on the dispersion and radial velocity are above 15 km s−1.

Figure 6. Black points are the measured radial dispersion profile of UCD 330.
The colored lines are the best-fit isotropic models with increasing BH mass, the
dashed colored lines are the models extended to the region where we did not fit
them. The zero-mass BH model (blue) is the best overall model, and the model
with 1.7% BH mass fraction (green) is the 3σ upper limit. The BH fractions
of 1.7%, 10.3%, and 30.0% correspond to absolute BH masses of

M1.0 10 , 4.6 10 , 1.0 105 5 6´ ´ ´ . The light gray data point of the outer-
most bin was not included in the JAM modeling. The dark gray squares and
stars are the radial dispersion profile of the lower and upper half of the UCD,
respectively. The dashed gray line is the best-fit upper-half model containing a
BH of M2.14 104´ , corresponding to a BH fraction of 0.5%.
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We use the multi-Gaussian expansion (MGE) code (Cap-
pellari 2002) to parametrize the UCD surface brightness
profiles using several 2D Gaussian models. The final 2D
surface brightness model of the UCDs can then be analytically
deprojected into a 3D model. The MGE surface brightness
profiles (in units of L pc2

 ) are given in Tables 5 and 6,
respectively. Assuming a constant mass-to-light ratio for the
stellar population means that the surface brightness profile
directly translates into the stellar mass profile.

3.3. Jeans Anisotropic Models

We model our UCDs using the JAM code (Cappellari 2008),
which predicts the kinematics of an axisymmetric stellar system
based on a supplied luminosity profile. This is compared to
kinematic data to constrain the free parameters such as the
M/L, BH mass, and orbital anisotropy. This code provides both
the radial velocity and velocity dispersion parameters as model
outputs. In a cylindrical coordinate system where the z-axis is
aligned with the object’s symmetry axis, the anisotropy is
defined as 1z

z

r
b = - s

s
( ).

In addition to the stellar mass profile, the JAM code adds a
Gaussian mass profile to model the presence of a central black
hole. The JAM models predict the vrms rad

2 2s= + profile,
and thus cannot be compared to the full line-of-sight (LOS)

velocity distribution, as more sophisticated orbit-based models,
such as Schwarzschild models, can. Similar to the gravitational
effect of a black hole, radial anisotropy increases the dispersion
near the center. Thus the black hole mass and anisotropy are
intrinsically degenerate with each other. We can explore the
effects of the degeneracy using grids with a range of
anisotropies and BH masses.

Table 3
Radial Velocities and Velocity Dispersion of UCD 330 and 320 and the S/N of

Each Radial Bin

Radius Radius Velocity vr Dispersion vs S/N
(arcsec) (pc) (km s−1) (km s−1)

UCD 330

0.025 0.42 735.8±0.90 33.98±0.84 83.8
0.075 1.25 737.8±0.74 34.02±0.73 104.3
0.125 2.08 739.8±0.75 34.03±0.75 102.0
0.175 2.91 741.8±0.92 32.45±1.01 79.9
0.225 3.74 741.7±1.46 34.10±1.41 56.8
0.275 4.57 738.8±1.93 33.30±2.08 42.0
0.350 5.81 736.9±2.32 24.38±2.92 29.2
0.450 7.48 742.7±4.96 31.86±5.78 17.9

UCD 320

0.025 0.42 500.8±5.3 29.52±11.57 28.50
0.075 1.25 498.2±3.3 21.05±5.22 36.03
0.125 2.08 497.9±3.7 20.64±4.46 33.29
0.175 2.91 500.5±3.4 21.69±4.37 34.46
0.250 4.15 505.5±5.0 22.82±7.52 23.76

Table 4
Summary of the Measured Values and Limits for UCD 330 and UCD 320

UCD 330 UCD 320

MV −11.03 −10.39
Mtot [Me] 6.10 0.23 106 ´ 2.81 101.3

2.5 6´-
+

M Mdyn popY = 0.90 0.6
0.3

-
+ 0.94 0.5

0.8
-
+

M LF606 2.65 0.55
0.15

-
+ 2.20 1.0

1.9
-
+

M LV 2.97 0.50
0.17

-
+ 2.47 1.0

2.1
-
+

zb 0.0 0.4
0.2

-
+ 0.2 0.6- +

3σ upper limit: M• [Me] 1.0 105´ 1.0 106´
3σ upper limit M M• tot [%] 1.7 37.7

Table 5
Multi-Gaussian Expansion of UCD 330 that Provides the Luminosity Model
for the JAM Code. The Horizontal Line Separates the Two Components of the

Sérsic Model

Luminosity σ q Position Angle
L

pc2


″ °

50415.66 0.0012 0.841 −48.84
71147.24 0.0040 0.841 −48.84
81974.73 0.01078 0.841 −48.84
74298.20 0.0251 0.841 −48.84
50359.54 0.0516 0.841 −48.84
24333.01 0.0962 0.841 −48.84
7999.0797 0.1651 0.841 −48.84
1718.68 0.2651 0.841 −48.84
229.46 0.4079 0.841 −48.84
12.88 0.6372 0.841 −48.84

244219.16 0.0004 0.8000 −48.69
174900.37 0.0010 0.8000 −48.69
117329.34 0.0025 0.8000 −48.69
72208.21 0.0061 0.8000 −48.69
39796.08 0.0140 0.8000 −48.69
19754.61 0.0309 0.8000 −48.69
8705.59 0.0657 0.8000 −48.69
3384.10 0.1350 0.8000 −48.69
1151.80 0.2690 0.8000 −48.69
337.71 0.5191 0.8000 −48.69
87.01 0.9691 0.8000 −48.69
19.30 1.7639 0.8000 −48.69
3.63 3.1265 0.8000 −48.69
0.59 5.4029 0.8000 −48.69
0.08 9.1426 0.8000 −48.69
0.01 15.4174 0.8000 −48.69
0.001 28.2834 0.8000 −48.69

Table 6
Multi-Gaussian Expansion of UCD 320 that Provides the Luminosity Model

for the JAM Code

Luminosity σ q Position Angle
L

pc2


″ °

297084.18 0.0005 0.646 −79.79
256401.63 0.0012 0.646 −79.79
200800.78 0.0031 0.646 −79.79
140971.31 0.0073 0.646 −79.79
88486.19 0.0162 0.646 −79.79
48435.90 0.0346 0.646 −79.79
22142.39 0.0705 0.646 −79.79
8633.37 0.1367 0.646 −79.79
2894.15 0.2541 0.646 −79.79
795.18 0.4570 0.646 −79.79
179.44 0.7942 0.646 −79.79
32.91 1.3367 0.646 −79.79
4.95 2.1895 0.646 −79.79
0.58 3.5684 0.646 −79.79
0.04 6.2344 0.646 −79.79
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For UCD 330 and UCD 320, we run a grid of JAM models
with four free parameters: black-hole mass M•, anisotropy zb ,
mass-to-light ratio M LF606W, and the inclination. We use the
following grid:

1. Ten values for the BH mass, including a zero-mass BH
and 9 BH masses ranging from M Mlog 4 6.66• =( ) – in
increments of M Mlog 0.33• =( ) .

2. Thirty values for M LF606W ranging from 0.55 to 4.9 in
steps of 0.15

3. Ten anisotropies zb ranging from −1.0 to 0.8 in
increments of 0.2

4. Six inclinations ranging from 40◦ to 90◦ in increments
of 10°

In the remaining paper, we do not report the M LF606W values
directly, but rather the quantity M L

M L
F606W

pop
Y = , which is the

dynamical mass-to-light ratio normalized with the predictedM/
L ratio from stellar population models.

The predicted M Lpop ratios are calculated similar to Mieske
et al. (2013), using the average of the Maraston (2005) and the
Bruzual & Charlot (2003) stellar population models for an
object of 13 Gyr using the mean of a Kroupa and Chabrier
initial mass function (IMF). We assume [Fe/H]=
−0.36± 0.14 for UCD 330 and [Fe/H]=−0.85± 0.14 for
UCD 320, taken from Beasley et al. (2008). Using these
metallicities, the predicted M Lpop values are M L 3.30pop V =
and M L 2.64pop V = for UCD 330 and UCD 320, respec-
tively. We translate this into the F606W band predictions by
adopting a V-F606W= 0.219 mag color difference between
the V band and the HST F606W filter and a 0.1 mag
color difference of the Sun. The F606W predictions
are then M L 2.95 0.22pop F606W =  for UCD 330 and
M L 2.37 0.13pop F606W =  for UCD 320. The uncertainties
on the M Lpop predictions are derived from propagating the
0.14 dex error of the metallicity measurement (Beasley
et al. 2008) into the stellar population prediction.

We used the same grid of JAM models on both UCDs. For
each UCD, we derived likelihood maps that show the
degeneracy between two of the fit parameters each. For this,
we marginalized the grid over the two parameters that are not
plotted. We used the reduced χ2 value of each model to
calculate the likelihood for each point in the grid where we
evaluated a model. We then used these likelihood values and
plotted the contours of the 1, 2, and 3σ levels. The modeling
results and likelihood maps are shown in Section 5.

4. Kinematic Results

4.1. Integrated Velocity Dispersions

First, we coadd the spectra within a circular aperture of 0 4
for UCD 330 and 0 3 for UCD 320 to obtain an integrated
spectrum. Using the pPXF code, we fit stellar templates to the
observed spectra (see Section 3.1) to derive their velocity
dispersion.

For UCD 330, the mean S/N of 87 enables an accurate
determination of the integrated velocity dispersion. We find a
dispersion of 32.18 0.77 km sv

1s =  - (see Figure 3). In
comparison, the integrated dispersion value of 30.9vs = 
1.5 km s 1- in Rejkuba et al. (2007) was determined from high-
resolution UVES data in a 1″ aperture. To correct for the larger
aperture, we use the JAM models with a pixel size set to 1″ to
predict the integrated dispersion of UCD 330 for a similar aperture.

We predict a dispersion of 30.79 km sv
1s = - in the larger

aperture, which is fully consistent within the error bars with the
values of Rejkuba et al. (2007).
For UCD 320, we performed a similar analysis, but included

the bluer parts of the spectra down to λ=2.20 μm in our fits to
improve the S/N. With this, we were able to reach a median
S/N of 40 per pixel when integrating out to 0 3, which is
plotted in Figure 4. Coadding spectra from spaxels at larger
distances does not add to the S/N but rather decreases it. We
find an integrated dispersion of 22.22 4.26 km sv

1s =  - .
Owing to the lower S/N for this UCD, the measurement has a
higher uncertainty. We also predict the integrated dispersion
using a 1″ aperture for UCD 320. We predict a dispersion of

19.70 km sv
1s = - , which is fully consistent with the vs =

20.9 1.6 km s 1 - value derived by Rejkuba et al. (2007)
and the 20.0 1.4 km sv

1s =  - measured in Taylor et al.
(2010). The fact that our integrated dispersion is consistent
with their value indicates that we can reliably measure velocity
dispersions of ∼20 km s−1 close to the SINFONI resolution
limit.
Taylor et al. (2010) reanalyzed the high-resolution UVES

data for UCD 330 from Rejkuba et al. (2007) and found a
dispersion of 41.5 3.7 km sv

1s =  - , which is a ∼2.5σ outlier
from the integrated dispersions found in Rejkuba et al. (2007)
and in this work. A new measurement of 29.2vs = 
3.0 km s 1- of the UCD 330 dispersion from Hernandez et al.
(2018) is also consistent with our measurement.
As our dispersion, the original measurement from Rejkuba

et al. (2007), and the independent one of Hernandez et al.
(2018) agree with each other, it is likely that the Taylor et al.
(2010) value is the outlier. We note that this high dispersion
resulted in Taylor et al. (2010) measuring a dynamical M/L
more than twice as high as what was expected. We revisit this
after deriving our best-fit M/Ls below.

4.2. Two-dimensional Resolved Kinematic Map of UCD 330

The high quality of the UCD 330 data permits us to measure
a resolved 2D kinematic map. The results of the kinematic
measurements are shown in the two left panels of Figure 5. The
map of the radial velocity is shown in the top left panel, and the
map of the second order momenta v vrms rad

2 2s= + is shown
in the bottom left panel. The best-fit JAM model is shown in
the two panels on the right, and we discuss its results in
Section 5. The typical uncertainties on the vrms are 2 km s−1 for
the central individual pixel bins and ∼6 km s−1 in the outer
larger bins.
The observed velocity map is normalized to the systemic

velocity of UCD 330 of v 743 km ssys
1= - . The amplitude of

the observed rotation is ∼12 km s−1, with the rotation axis
aligned with the semiminor axis of the UCD. The fraction of
rotational versus dispersion support in this UCD is
v 0.37rot s = when compared to the global velocity disper-
sion. This indicaties a significant contribution from rotation.
With an average axis ratio of 0.82 for UCD 330, we would
expect v 0.4rot s = (Binney 1978) from a self-gravitating
system that is flattened by its rotational support, which is
consistent with what we observe.
The observed vrms map in the bottom left panel of Figure 5 is

more complex. In the top half of the map, the dispersion in the
outskirts is ∼20 km s−1 and increases toward values of
σ= 34 km s−1 in the center, with observational noise adding some
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scatter. However, the top half of the dispersion map is overall
consistent with a radially decreasing velocity dispersion profile.

The velocity dispersion at the bottom of the vrms map appears
unusual, with several high-dispersion outer bins. An asymmetric
dispersion profile is highly unusual as the dispersion is expected to
decrease outward at all angles. It is unclear what could cause such
a high-dispersion region. We tested whether it might be a detector
issue by analyzing the individual cubes separately and checking if
the results are consistent. We did not find a significant difference
between the kinematic results for individual cubes. As our
individual cubes are dithered by significant amounts so that in
each individual cube the UCD is at a different detector location, it
is unlikely to be a detector effect. A physical explanation could be
that the UCD is semi-resolved into stars and internal bright-star
variations causing the elevated dispersion, or that an object in
projection contaminates the measurements. Another alternative is
that the UCD is tidally disturbed and this increased its dispersion.
However, in this case, it would be strange that the disturbances are
confined to only one side of the UCD and are not symmetric.

4.3. Radial Dispersion Profiles

In addition to the 2D kinematical map of UCD 330, we also
measure the radial dispersion profile. The radial dispersion
values can be found in Table 3 and are plotted as black points
in Figure 6. For UCD 330, we have data with a high S/N and
thus were able to use seven radial bins of 0 05 width to
measure the kinematics. The S/N for our central bins is
between 80 and 100 and decreases to 20–40 in the outskirts.
Our measured velocity dispersion errors are small, with
1 km s−1 in the center and 2 km s−1 in the outskirts.

For UCD 330, the resulting radial dispersion profile in
Figure 6 is very flat. The 2D map in the previous section
indicates that the increased dispersion values in the UCD come
from the increased region at the bottom of the UCD.

To investigate the differences between the “upper” and
“lower” part of the UCDs, we split its velocity dispersion
profile with a horizontal line crossing the center and
remeasured the radial dispersions separately. They are plotted
in Figure 6 as gray squares and stars, respectively. Comparing
the radial dispersion profiles of both halves has the advantage
that we obtain a higher S/N per bin than in the 2D map to test
if the high-dispersion areas in the 2D map are significant.

It is apparent from Figure 5 that the flat and even increasing
dispersion is mainly caused by the lower half of UCD 330

(gray squares), which is much higher in the outskirts than the
dispersion measurements for the upper half (gray stars). These
measurements gradually decrease toward the outskirts, with
one outlier from this gradual decrease at the 0 275 bin.
Considering the statistical significance of the differences

between “upper” and “lower” velocity dispersion values, we
find that the lower half measurements at r= 0 075, 0 125,
0 175, and 0 225 are discrepant with respect to the
measurements of the upper UCD half (gray stars) at 2.5, 3.2,
1.9, and 3.8σ significance. Taken together, it is clear that this
enhancement is significant. The flatness of the radial dispersion
profile in the outskirts (see Figure 6) is caused mostly by the
contribution of the high-dispersion region in the lower half.
The radial dispersion profile of UCD 320 is much less well

constrained because of the poorer data quality. We have five radial
bins for which we are able to measure the radial velocity and
velocity dispersion (see Table 3); this is plotted in Figure 7 as
black points. These bins reach an S/N of between 24 and 36. The
dispersion profile is flat for the outer four bins, with values around

20 22 km sv
1s = -– , which is consistent with what we derived for

the integrated dispersion. Only the central bin shows an increase
in dispersion to almost 30 km s−1, but with the large uncertainty
of 11 km s−1, this increase is not statistically significant.
We measure the rotation of UCD 320 by dividing the data at

varying position angles and measure the radial velocity for both
sides. This is done in intervals of 10° in PA. The resulting
amplitude A of the rotation curve is A 5.25 km s 1= - . Taking
into account that the rotational velocity varies with the
azimuthal angle, we calculate the true rotation velocity using
v A 6.68 km srot 4

1= =p - . Therefore we derive the rotational
versus dispersion support in this UCD as v 0.3rot s = . For its
axis ratio of 0.65, we expect a v 0.6rot s = (Binney 1978)
from a self-gravitating system that is flattened by its rotational
support, which is significantly higher than the measured value,
therefore some anisotropy is implied.

5. Dynamical Models

5.1. Two-dimensional JAM Models for UCD 330

We run a large grid of 2D JAM models (Section 3.3) that
allow for varying black hole masses, anisotropy, mass-to-light
ratios, and inclination angles. The JAM model predictions are
used to fit the vrms data shown in Figure 5.
No black hole is detected in UCD 330. The best-fit model

has a black hole mass of 0, with a 3σ upper limit of
M1.0 105´  that equals 1.7% of the best-fit total mass. We

quote 3σ errors on all model quantities. The best-fit M/L is
2.65 in the F606W band, which translates into an M LV of
2.97. Our best-fit model is isotropic with 0.0z 0.4

0.2b = -
+ . The

best-fit model is shown in Figure 5 along with the data. The
central rise in the 2D model up to 35 km s−1 is similar to what
is observed in the UCD in the upper half. The increased
dispersion in the lower of half of UCD 330 is not reproduced
by our model, whose velocity dispersion decreases with lager
radius. In the upper half of the UCD, we reproduce the
observed velocity dispersion levels in the outskirts of
∼24 km s−1 In addition to the vrms data to which the JAM
models were fit, the top panels of Figure 5 also show the
velocity field data and predictions from this best-fit model
assuming the rotation parameter of κ= 1 (Cappellari 2008).
The observed rotational amplitude of ∼12 km s−1, which is

Figure 7. Black points are the measured radial dispersion profile of UCD 320.
The colored lines are models with increasing BH mass. The 0.8% BH model
(green) is the best overall model, and the 37.7% model (red) is the 3σ upper
limit. The BH fractions of 0.8%, 11.6%, and 37.7% correspond to absolute BH
masses of 2.15 10 , 2.15 104 5´ ´ , and M1 106´ .
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aligned with the semiminor axis of the UCD, is well
reproduced in the best-fit JAM model.

We compare the predicted M L 2.95 0.22F606Wpop =  to
the measured dynamical M/L (Section 3.3) and find a

0.90
M L

M L 0.55
0.27dyn

pop
Y = = -

+ , meaning that the dynamical mass is

similar to the prediction from stellar population models within
the error bars. This is significantly lower than the

2.28
M L

M L330
dyn

pop
Y = = that was determined previously in

Taylor et al. (2010).
We derive a total UCD mass of M M6.1 0.23 10tot

6=  ´ .
This is significantly lower than the dynamical mass M1.4 107´ 
estimated with a single integrated dispersion value by Taylor et al.
(2010). This difference is caused by our 10 km s−1 lower
dispersion value, which agrees with Rejkuba et al. (2007).
The 3σ BH limit of M M1 105= ´ , making up 1.7% of the
UCD mass, excludes an SMBH of a high mass fraction at high
significance.

The 2D likelihood distributions comparing two parameters
each are shown as the blue contours in the top panel of
Figure 8. Each plot is marginalized over the other parameters
that are not plotted. The parameters show minimal covariance,
but at the highest allowed BH masses, the best-fit models have
∼10% lower M Ls ( 0.8Y ~ ) and prefer zb values of roughly
−0.2. Shown as red contours in Figure 8 are the constraints
when fitting only the upper part of the 2D dispersion map. We
find a 3σ BH limit of M M2.15 10•

5= ´  equal to a 4.3%
mass fraction BH. The upper limit on the BH mass is somewhat
larger, mostly due to a lower M/L in the 2D upper half models,
but generally, the contours are consistent. Our overall
conclusions that there is no massive BH in UCD 330. This
does not change, regardless of whether we use the upper half or
the entire 2D dispersion map, and it indicates that our models
are robust.

In the next section, we consider models fit just to the radial
profile; they are shown as green contours in Figure 5. These
models have wider uncertainties because fewer data points are
fit. We therefore adopt the best-fit models to the 2D data and
the errors from these fits as our final values. To assess our
level of systematic error that is due to the poorly constrained
PSF, we also reran the dynamical models with the upper
or lower limit on the size and light fraction of the kinematic
PSF. The likelihood contours were essentially unchanged,
showing that our results are robust to small variations in the
kinematic PSF.

5.2. UCD 330 Radial JAM Models

In this section, we discuss JAM models fit to the radial
profile of UCD 330 only (black points in Figure 6), as a
comparison to the two 2D models from the previous section.
We run them over the same grid as detailed in Section 3.3.
The best contours for the grid of radial models are shown in
green in the top row of Figure 8. The top left panel shows that
the best-fit radial model for UCD 330 is tangentially
anisotropic with 0.2zb = - and the best-fit BH mass is no
longer 0, but M M4.64 10•

5= ´ . The shift toward more
tangential anisotropy is the main difference between the radial
and the 2D models, but their likelihood contours still overlap.
Were we to use only the radial fits, the 3σ upper limit on the
BH mass would increase to M M4.64 10•

5= ´ , equal to
10.3% of the total mass (yellow model, Figure 6). However,
the radial model constraints are weaker than those from the

2D model because the 2D models have more data points.
Therefore we use the results from the 2D models as our final
BH constraints for UCD 330. The increased tangential
anisotropy is likely due to the high-dispersion area in the
lower sections of the UCD, which are integrated into the
radial profile and cause it to be flatter than it would be without
that area.
To help visualize our BH mass limits, we compare a set of

radial isotropic models with different black hole masses to the
radial profile of UCD 330 in Figure 6. This plot shows that the
best-fit 2D case without a BH (blue line) fits the 1D data very
well. The only significant outliers to that model are the two data
points in the outskirts, and they are likely due to the high-
dispersion region in the lower parts of the UCD. Excluding the
higher dispersion portions of the UCD (the “upper half” data
plotted as gray stars in Figure 6), we find particularly good
agreement with the shape of a 0.5% BH model (dashed gray
line) with a lower M/L value, but the BH mass is consistent
with zero within 2σ. The maximum mass BH plotted here is
1×106Me with a 30% mass fraction, its steep rise in the
center is clearly excluded by the data.

5.3. Radial Dynamical Models for UCD 320

For UCD 320, our lower S/N data mean that we cannot
construct a 2D map, and instead we only consider the radial
dispersion profile. As with UCD 330, we also find no evidence
for a BH, but our constraints on the allowed BH mass are much
weaker than for UCD 330. We model the UCD 320 radial
dispersion data with two sets of models; first we examine the
results from a grid that includes the full range of anisotropy,
then we look at a comparison of isotropic models to the radial
dispersion.
Results from the full grid of JAM models for UCD 320 that

include anisotropy are shown in the lower panel of Figure 8.
We derive a best-fit black hole mass of M M2.15 10•

4= ´ ,
which corresponds to 0.8% of the total UCD mass. The 3σ
upper limit of 1×106Me corresponds to a 37.7% mass
fraction. This BH mass limit is independent of the assumed
anisotropy in the models. Our best-fit M LF606dyn is 2.20 1.0

1.9
-
+ .

From this, we derive a total UCD mass of Mtot =
M2.81 101.3

.2.4 6´-
+

, and find 0.94
M L

M L 0.5
0.8dyn

pop
Y = = -

+ (these
are 1σ error bars, including the systematic uncertainty in
M Lpop of 0.13), indicating that the dynamical mass of this
model is similar to what is predicted from stellar population
models. The best-fit anisotropy is βz=−0.2 with a 3σ upper
limit of βz= 0.8, but as visible in Figure 8, the anisotropy is not
tightly constrained, and thus no lower limit for zb can be
determined.
For the zero BH mass model, we derive a stellar mass of

M2.98 106´  of the UCD, which is ∼50% lower than the
M6.3 106´  derived from the virial mass estimate based on

the integrated dispersion from Taylor et al. (2010). Given that
our integrated dispersion is consistent with theirs, this
discrepancy appears to be due primarily to our mass modeling.
Specifically, we find an effective radius of reff= 5.17 pc, which
is smaller than their reff= 6.8 pc. Additional differences
include their assumption of a virial factor compared to our
more accurate MGE mass modeling. As noted above, with our
best-fit Ψ= 0.94, our mass measurement places UCD 320
among the UCDs without elevated dynamical masses.

10

The Astrophysical Journal, 858:20 (15pp), 2018 May 1 Voggel et al.



We plot the results of the isotropic radial JAM models for
UCD 320 in Figure 7 for several BH mass contributions. The
best-fit BH mass model of 0.8% (M M2.15 10•

4= ´ ) is
shown in green and the 3σ upper limit on the BH mass of
37.7% (1× 106Me) is shown in red. Although we observe an
increase in the dispersion in the very central bin, it is not
significant because of its large error bar. The remaining
dispersion profile is very flat at just above 20 km s−1.

6. Discussion

In this work we have tested whether two lower mass UCDs
in CenA host an SMBH in their centers (Taylor et al. 2010;
Mieske et al. 2013), which would imply that they are the
stripped nuclear star clusters of dwarf galaxies. From our
dynamical modeling of adaptive optics kinematic data, we find
that (1) no BHs are detected, and (2) no elevation in the mass-
to-light ratios was found even for models with no BH, contrary
to previous measurements (Taylor et al. 2010). In this section,

we discuss these results in the context of previous results and
the implications for the formation of UCDs.

6.1. Upper Limits on BH Masses

We find that a BH larger than M M1.0 10•
5= ´  is

excluded at a 3σ confidence in UCD 330. This corresponds to
1.7% mass fraction. The dynamical models for UCD 320 place
a 3σ upper limit on a BH in UCD 320 at M M1.0 10•

6= ´ ,
which corresponds to a BH mass fraction of 37.7%.
We have measurements of BH mass fractions of 13%, 15%,

and 18% and in three massive UCDs (Seth et al. 2014; Ahn
et al. 2017). The 1.7% 3σ limit on the BH mass fraction in
UCD 330 is significantly below these typical BH mass
fractions. Thus it is clearly different from these massive UCDs
with high mass fraction BHs. In UCD 320, our limit on the BH
mass fraction is much higher, and the 37.7% indicates that a
high mass fraction BH similar to those that have been
previously discovered is still allowed by our models. All
values for both UCDs are summarized in Table 4.

Figure 8. Two-dimensional likelihood contours show the dependence of anisotropy zb , black hole mass M•, and the normalized M/L ratio Ψ. The top row shows the
panels for UCD 330 and the bottom row for UCD 320. In blue we show the likelihood contours for the 2D model, where the 1, 2, and 3σ confidence levels have
decreasing line thickness. For UCD 320, the blue contours show the results for model fits to the radial profile. The set of green contours shows the likelihood map for
the radial dispersion profile for UCD 330, and the orange contours depict the situation when we just fit the upper half of the 2D dispersion map. The gray points mark
each JAM model of the grid, and the blue and green diamonds are the best-fit model. The error bar in the middle panel of both UCDs indicates the systematic error in
Mpop and thus Ψ due to the uncertainty of the metallicity.
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There is evidence that UCD 320 hosts an X-ray source with an
ultra-luminous peak flare luminosity of 9 10 erg s3

4 39 1´-
+ -

(Irwin et al. 2016). While the sustained X-ray luminosity is
consistent with a normal X-ray binary, the flaring luminosity
could suggest a massive BH as it is brighter than the typical
X-ray binary luminosities (She et al. 2017). Assuming that this
flare is caused by an accreting BH, the X-ray flare timing places
and upper limit of 2×106Me on the BH mass. While the exact
reason for the flare is unknown, their BH upper limit is consistent
with ours, and thus a massive BH in UCD 320 is still possible.

In Figure 9 we compare existing BH mass measurements in
GCs and UCDs to the upper limits in our two objects. We also
added the predicted BH masses from Mieske et al. (2013) based
on assuming that any M/L enhancement observed in a given
UCD from integrated dispersion measurements is due to a BH.
The black lines are a constant BH mass fraction of 1%, 10%, and
20%, respectively. Three of the massive UCDs (red) with
measured BH masses are within the 10%–20% range. However,
the possible intermediate-mass BHs detected in Local Group
GCs show mass fractions of <2%. Although these BH masses
have been measured in several Local Group GCs (Ibata et al.
2009; Noyola et al. 2010; Lützgendorf et al. 2013; Baumgardt
2017), the BH signal is intrinsically degenerate, with significant
radial anisotropy, and thus some of the detections remain
controversial (van der Marel & Anderson 2010; Zocchi et al.
2017). The upper limit of UCD 320 is consistent with a such a
10%–20% BH mass fraction, and thus is not constraining, but in
UCD 330, only a source similar to the Local Group GCs
intermediate-mass BHs could be present. We note that when we
include all the data fromMieske et al. (2013), there seems to be a
trend of lower mass fraction BHs in lower mass UCDs; our
upper limits are fully consistent with this trend.

6.2. Mass-to-light Ratios

In this work we have shown that contrary to previous
findings, UCD 320 and UCD 330 have M/L ratios that are not
inflated. In both cases, our best-fit models are completely

consistent with their stellar populations within the errors,
at 0.9

M

M
dyn

pop
Y = = (blue and orange diamond symbols in

Figure 10). In this context, the lack of detectable BHs in these
systems is not surprising, as in a majority of the more massive
UCDs with detected BHs, the best-fit models without a BH
mass have 1Y > (Mieske et al. 2013; Seth et al. 2014; Ahn
et al. 2017). This suggests that finding an inflated M/L does
appear to be a strong indicator of the presence of a BH.
At the same time, our results point to the challenges of

accurately measuring the dynamical M/Ls from integrated
dispersions. In UCD 330, the higher velocity dispersion of
41.5 km s−1 found by Taylor et al. (2010) yielded an M/LV of
6.3 1.7

1.6
-
+ , giving a 2.3Y = . Remodeling of this cluster using the

Taylor et al. (2010) dispersion by Mieske et al. (2013) yielded a
somewhat lower, but still significantly inflated Ψ= 1.7. Our
much lower 0.9 0.6

0.3Y = -
+ (and M L 2.97V 0.5

0.2= -
+ ) value results

primarily from our lower dispersion, but may also be due in
part to our two-component mass model. As discussed above,
our lower dispersion is consistent with the previously published
dispersion of Rejkuba et al. (2007) based on analysis of the
same data as presented in Taylor et al. (2010).
In UCD 320, we also find a much lower value than previous

measurements, but for different reasons. Taylor measured an
M L 5.3 ;V 1.0

0.8= -
+ because of the lower metallicity of this

system relative to UCD 330, this resulted in an even higher
estimate of Ψ= 2.5; while the Mieske et al. (2013) analysis
found Ψ= 1.6. In this case, our lower Ψ value appears to come
in part from from our smaller derived effective radius of 5.2 pc,
while Taylor et al. (2010) use a significantly higher 6.8 pc
derived from estimates of Harris et al. (2002) from STIS data.
We also note that our and the Mieske et al. (2013) lower Ψ
values relative to Taylor et al. (2010) results are in part due to
higher population M/L estimates; Taylor et al. (2010) uses the
Bruzual & Charlot (2003) models, while Mieske et al. (2013)
defines a somewhat higher M/L versus [Fe/H] relation that we
also use in this paper.

Figure 9. Comparison between UCD and GC masses and their central BHs.
Gray points are the predictions and upper limits for UCDs based solely on their
integrated dispersions from Mieske et al. (2013), Green squares are the
measured BHs in GCs ω Cen, G1, and M54 taken from Lützgendorf et al.
(2013). The four known BH masses in UCDs are plotted as red triangles and
are taken from Seth et al. (2014), Ahn et al. (2017), and Afanasiev et al. (2018).
The three black lines mark constant fractions of 1%, 10%, and 20% BH mass
fraction, respectively.

Figure 10. Ratio of M Ldyn over the stellar population prediction M Lpop

plotted vs. the stellar mass of GCs and UCDs. The black data points are mainly
from Mieske et al. (2013) with updated values for M60-UCD1 (Seth
et al. 2014), M59cO and VUCD3 (Ahn et al. 2017), and M59-UCD3 (Liu
et al. 2015). The colored circles denote the measured values from Taylor et al.
(2010) for the two UCDs, and the stars mark the new measured Ψ values from
this work, with an arrow marking the change toward the new measurements.
The black line is where M Ldyn is exactly equal to the expected stellar
population M Lpop.
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From our findings here, in combination with the much lower
M/L found in M59cO by Ahn et al. (2017) relative to previous
integrated-light studies, it is clear that at least some fraction of
the integrated-light M Ls are not well determined. In general,
there appears to be a bias toward overestimating the M/L. This
could be due to overestimation of the dispersion, perhaps due
to galaxy light contaminating the integrated-light spectra of the
UCD, errors in the light/mass profile determination of the
UCDs, or modeling errors. Modeling of adaptive optics data
with HST-based mass models is therefore key to assessing the
reliability of previous integrated measurements.

6.3. Are UCD 330 and 320 Stripped Nuclei?

In this work, we have presented the first adaptive optics
measurements of UCDs below 107Me. Adaptive optics
measurements of massive UCDs ( M107> ) have found high-
mass fraction BHs in all systems studied thus far (Seth
et al. 2014; Ahn et al. 2017, Afanasiev et al. 2018). These
observations, combined with the higher-than-expected inte-
grated dispersion mass-to-light ratios in most of these systems
(Mieske et al. 2013), suggest that a large portion of these UCDs
have massive BHs. This strongly supports the assumption that
many of these UCDs are stripped nuclei. Simulations of tidal
stripping in cluster environments have shown that the predicted
number of massive UCDs M2 107 ´  is consistent with the
observed numbers in Virgo and Fornax (Pfeffer et al.
2014, 2016). At lower masses, a larger fraction of UCDs are
likely to be “ordinary” GCs, not stripped nuclei, but this
fraction is likely dependent on environment.

Any lower mass stripped nuclei probably originate from
lower mass galaxies because of the scaling relation between
NSCs and BHs (e.g., Ferrarese et al. 2006; Scott &
Graham 2013). Assuming a UCD mass equal to the NSC
mass, the compilation of Georgiev et al. (2016) suggests that
NSCs in the mass range of our objects ( M2.5 6 106´ – ) have
host galaxy stellar masses between ∼108 and 5×1010Me.
The occupation fraction of BHs in this mass range of galaxies
is not yet well known. Above ∼109Me, the BH occupation
fraction appears quite high in early-type galaxies (Miller
et al. 2015; Nguyen et al. 2017), but the Local Group galaxies
M 33 and NGC 205 host no BHs above ∼104Me (Gebhardt
et al. 2001; Valluri et al. 2005), while BHs of about this mass
have been claimed in the likely stripped nuclei M 54 and ωCen
and G1 (Ibata et al. 2009; Noyola et al. 2010; Lützgendorf
et al. 2013). Our upper limits in UCD 320 and UCD 330 do not
exclude these intermediate-mass BHs, and thus our observa-
tions do not rule out that these objects could be the stripped
nuclei of relatively low-mass galaxies 109 M.

Another signature that may provide clues about whether these
objects are stripped nuclei is their metallicity. With [Fe/H]=
−0.36 and −0.85 for UCD 330 and UCD 320, both objects have
a significantly lower metallicity than any of the four high-mass
UCDs with BHs, which all have at least solar metallicity. The
high metallicities for all UCDs above ∼3×107Me were also
suggested to be evidence for stripping in these systems by Janz
et al. (2016). Assuming that our systems are stripped nuclei, we
can try to constrain their host masses based on their metallicites.

The mass–metallicity relation of Lee et al. (2006) suggests
galaxy masses of ∼109Me for UCD 330 and 2 107´ M for
UCD 320. However, these are quite rough estimates, as the
scatter in these relations is roughly an order of magnitude
(Tremonti et al. 2004). Paudel et al. (2011) find nuclei with

metallicities consistent with UCD 320 in ∼109Me galaxies.
For the case of UCD 330, its mass and metallicity are fully
consistent with being a stripped nucleus, while for UCD 320,
its NSC would have to have been on the metal-poor end of the
distribution given the mass of the NSC. However, their
metallicities are also consistent with these objects being
ordinary GCs.
We reanalyzed UVES data for UCD 320 and UCD330 from

Rejkuba et al. (2007) using the NBURSTS stellar population fitting
code as described in Chilingarian et al. (2007). We find that the α-
abundance of UCD 330 is [α/Fe]=+0.16±0.03 dex, while that
of UCD 320 is not well determined. The nuclei of dwarf galaxies
are not significantly α-enhanced (Chilingarian 2009; Paudel
et al. 2011), and thus our measurement of a moderate enhancement
in UCD 330 implies that it would be consistent with being the
nucleus of a dwarf galaxy progenitor. The four UCDs with
confirmed BHs all have higher enhancement in their α-abundance
between [α/Fe]= 0.2–0.5 dex (Francis et al. 2012), indicating that
they might originate from more massive progenitors, which have
higher α-abundance enhancements (Thomas et al. 2005).
Rotation may also be a signature of stripped galaxy nuclei.

Strong rotation is seen in nearby nuclear star clusters (Seth
et al. 2008b; Seth 2010; Feldmeier et al. 2014; Nguyen
et al. 2017), with V s values ranging between ∼0.3 and 1.3,
with both early and late-type galaxies showing strong rotation.
This rotation can be created through cluster merging, but the
strongest rotation is likely to be due to in situ star formation
(e.g., Hartmann et al. 2011; Tsatsi et al. 2017). Larger scale
(∼100 pc) nuclear disks are also common (Launhardt
et al. 2002; Balcells et al. 2007; Chilingarian 2009; Morelli
et al. 2010; Toloba et al. 2014), and stripping of these could
also yield rotating UCDs. On the other hand, GCs typically do
not rotate this strongly, with typical V 0.2s (Lane
et al. 2010; Bellazzini et al. 2012; Fabricius et al. 2014;
Kimmig et al. 2015; Kamann et al. 2018). Given the measured
V s of UCD 330 and UCD 320 of 0.3 and 0.4, respectively,
this relatively strong rotation may argue in favor of these
objects being stripped nuclei. However, we caution that
increasing rotation is also seen at longer relaxation times
(Kamann et al. 2018), and our systems have longer relaxation
times than most MW GCs (half-light radius trel of 2.8 Gyr for
UCD 330 and 6.0 Gyr for UCD 320).
Finally, many UCDs, including UCD 330, have two-comp-

onent profiles, extra-tidal light, or tidal tails (Martini & Ho 2004;
Evstigneeva et al. 2007; Voggel et al. 2016; Wittmann et al.
2016). These are expected for stripped galaxy nuclei, as the inner
component tracks the original NSC, while the outer section is the
remnants of the remaining galaxy (Pfeffer & Baumgardt 2013).
Low surface brightness halos found around galactic GCs have
also been suggested to track tidally stripped nuclei (e.g.,
Olszewski et al. 2009; Kuzma et al. 2018). Thus the two-
component profile provides perhaps the strongest evidence for
UCD 330 being a stripped nucleus.
In summary, the lack of massive BHs in UCD 330 and UCD

320 does not imply that these systems are not stripped nuclei.
The relatively strong rotation and the two-component structure
in UCD 330 do support the idea that these UCDs may be
stripped nuclei. If they are stripped nuclei, they would probably
come from low-mass galaxies, for which the BH demographics
are not yet well understood.
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7. Conclusions

This study is the first to target lower mass UCDs ( 107< M) in
the search of central massive BHs, which would be strong evidence
that they are the former nuclear star clusters of stripped dwarf
galaxies. We constrained the BHs in these systems using dynamical
modeling of stellar kinematic measurements from adaptive optics
assisted VLT/SINFONI data. We detected no BHs, but we can
place a 3σ upper limit on the BH masses. We find an upper limit of
M M1.0 10•

5= ´  for UCD 330 and M•= 1.0× 106Me for
UCD 320. This corresponds to relative mass fractions of 1.7% and
37.7%, respectively, with the poorer constraint in UCD 320
resulting from significantly lower data quality. The 1.7% mass
fraction upper limit in UCD 330 excludes the presence of a high
mass fraction (10%–20%) BH, similar to those found in more
massive UCDs (Seth et al. 2014; Ahn et al. 2017, Afanasiev et al.
2018), but an intermediate-mass BH similar to those claimed in
Local Group GCs (Ibata et al. 2009; Noyola et al. 2010;
Lützgendorf et al. 2013) cannot be excluded.

We have shown that the dynamical M/L of UCD320 and
UCD330 are not inflated, and for both UCDS, our models are fully
consistent with predictions from stellar population models with

0.9
M

M
dyn

pop
Y = = within the error bars. In most of the UCDs with

measured massive BHs, the best-fit models without a BH suggest
that they are overmassive, with 1Y > (Mieske et al. 2013; Seth
et al. 2014; Ahn et al. 2017). Therefore, our BH non-detections in
these low-mass UCDs support the hypothesis that the inflated
integrated-light dynamicalM/L found in many UCDs does indicate
the presence of a high mass fraction BH.

Our study finds that the two UCDs rotate significantly, which is
often observed for nuclear star clusters, but rarely for GCs.
Furthermore, the surface brightness profile of UCD 330 is best fit
by a two-component model, as expected for stripped nuclei. In
UCD 320, the high BH mass upper limit, combined with the
X-ray source detected there, still leaves room for this system to
host a significant BH. Therefore, there is some support that these
two UCDs may in fact be stripped dwarf galaxy nuclei.

With our upcoming program on SINFONI, we will be able to
test for the presence of a BH in three more low-mass UCDs,
which will more than double the sample of low-mass UCDs
with resolved kinematics. We will be able to detect any
potential BHs in them down to M2.0 105´ . This will help to
further establish whether stripped galaxy nuclei exist among
low-mass UCDs and to determine how the SMBH occupation
fraction varies with UCD mass.
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