Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production

Valerio D'Elia, King Abdullah University of Science and Technology
Hailin Dong, King Abdullah University of Science and Technology
Aaron J. Rossini, Université de Lyon
Cory M. Widdifield, Université de Lyon,
Sai V.C. Vummaleti, King Abdullah University of Science and Technology, et al.

Available at: https://works.bepress.com/aaron-rossini/6/
Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production

Valerio D’Elia,†§ Hailin Dong,†§ Aaron J. Rossini,‡ Cory M. Widdifield,‡ Sai V. C. Vummaleti,† Yury Minenkov,† Albert Poater,†,‡ Edy Abou-Hamad,† Jérémie D. A. Pelletier,**† Luigi Cavallo,† Lyndon Emsley,‖‡ and Jean-Marie Basset*†

†KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
‡Centre de RMN à Très Hauts Champs (CNRS/ENS-Lyon/UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
†Institut de Química Computacional, Departament de Química, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
§Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

ABSTRACT: Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl₅ as a molecular catalyst for the cycloaddition of CO₂ and epoxides under ambient conditions. This has inspired the preparation of novel silica-supported Nb species by reacting a molecular niobium precursor, [NbCl₅·OEt₂], with silica dehydroxylated at 700 °C (SiO₂·700) or at 200 °C (SiO₂·200) to generate diverse surface complexes. The product of the reaction between SiO₂·700 and [NbCl₅·OEt₂] was identified as a monopodal supported surface species, [[SiONbCl₄·OEt₂] (1a)]. The reactions of SiO₂·200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a, presenting significant, but different, populations of the monodentate surface complex along with bidental [[Si(OS)₂NbCl₄·OEt₂]. ⁹⁵Nb solid-state NMR spectra of 1a−3a and ³¹P solid-state NMR on their PMe₃ derivatives 1b−3b led to the unambiguous assignment of 1a as a single-site monopodal Nb species, while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [[SiONbCl₄·OEt₂] and 3a being mostly bidental [[Si(OS)₂NbCl₄·OEt₂]. A double-quantum/single-quantum ³¹P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a−3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO₂ and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprecedented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of NbCl₅-catalyzed cycloaddition in the homogeneous phase.

INTRODUCTION

Niobium coordination compounds are well known in Lewis acid catalysis.¹ We recently disclosed NbCl₅ as an excellent catalyst for the cycloaddition of CO₂ and epoxides under ambient conditions in the presence of organic nucleophiles as co-catalysts.² Further kinetic and theoretical studies on the reaction mechanism suggested a bimetallic step of CO₂ activation. Accordingly, the barrier for the insertion of CO₂ in the sterically crowded Nb–O bond formed after epoxide ring-opening is strongly reduced by the interaction of CO₂ with a second Nb center.³ It was therefore of high interest to explore the mechanism of the process by using supported Nb species. Through surface organometallic chemistry (SOMC) methodologies, we were able to produce, with an excellent degree of control, diverse typologies of silica-supported Nb coordination compounds such as isolated monopodal Nb species, bidental species, and neighboring Nb complexes, that constituted an ideal toolset to study the mechanism on the surface.

Niobium complexes supported on metal oxide surfaces have not yet been explored in SOMC or coordination chemistry on surfaces. This lack of reports can be explained by the relative experimental difficulty, compared to other early metal counterparts (i.e., zirconium,⁴ titanium,⁵ tantalum,⁶ tungsten⁷), in preparing and handling niobium alkyl complexes.⁸ Nevertheless, using coordination compounds without alkyl ligands is difficult because they are rarely monomeric and usually generate a diversity of surface sites upon grafting. Furthermore, the characterization of such species is also complicated by the absence of hydrocarbon fragments coordinated to the metal, thus hindering the application of typical solid-state (SS) NMR techniques (i.e., ¹H and ¹³C SNNMR).⁴,⁸ In this context, several recent studies have been directed toward gaining structural insight into the grafting sites by a more direct observation of
the surface complexes. Indeed, the oxygen atoms linked to the metal can be observed by 17O SSNMR. The NMR-active nuclei such as 27Al and 51V of grafted metal complexes or the ligand atoms (35/37Cl) can also be probed via SSNMR experiments. Niobium-93 nuclei are NMR active but have never been used as probes to observe surface species. 93Nb SSNMR experiments have been reported on niobium-containing propylene oxide (PO) to form propylene carbonate in the presence of NBu$_4$Br as a source of bromide ions. The study estimated due to thermal degradation. To our knowledge, there are no examples of well-defined silica-supported Nb derivatives, nor of their systematic characterization and application in catalysis.

We report a new and simple strategy to graft niobium pentachloride on a silica surface, in which varying the dehydroxylation temperature of the support and the amount of Nb precursor employed resulted in different types of surface compounds that have been extensively characterized by FT-IR and by 1H, 13C, and 93Nb solid-state multinuclear magnetic resonance experiments. These surface species were used as heterogeneous catalysts for the cycloaddition of CO$_2$ to propylene oxide (PO) to form propylene carbonate in the presence of NBu$_4$Br as a source of bromide ions. The study confirms the importance of the cooperative interaction between two Nb atoms in the mechanism of the reaction and shows an unprecedented degree of interaction between surface-supported species.

RESULTS AND DISCUSSION

Surface niobium compounds 1a, 2a, and 3a were prepared by treatment of silica dehydroxylated at 700 °C (SiO$_2$-700) or at 200 °C (SiO$_2$-200) with niobium pentachloride dissolved in diethyl ether in defined stoichiometric proportions with the expected number of surface silanols (Scheme 1 and Table 1).

Scheme 1. Proposed Main Surface Component Structures and Preparative Conditions for the Niobium Surface Compounds 1a–3a Grafted on SiO$_2$-700 (1a) and on SiO$_2$-200 (2a, 3a) Using NbCl$_5$-Et$_2$O as a Molecular Precursor

$$\begin{align*}
\text{(NbCl}_5\text{)}_2 + \text{Et}_2\text{O} &\rightarrow \text{Et}_2\text{O} \cdot \text{Cl}_2\text{NbCl}_4 \rightarrow \\
\text{Et}_2\text{O} \cdot \text{Cl}_2	ext{NbCl}_4 &\rightarrow \text{Cl}_2\text{NbCl}_4 \cdot \text{Cl}_2	ext{NbCl}_4
\end{align*}$$

"Conditions: (i) SiO$_2$-700 (1 g), NbCl$_5$-Et$_2$O (0.91 equiv of SiOH/mmol Nb), Et$_2$O, rt, 3 h; (ii) SiO$_2$-200 (1 g), NbCl$_5$-Et$_2$O (0.75 equiv of SiOH/mmol Nb), Et$_2$O, rt, 20 h; (iii) SiO$_2$-200 (1 g), NbCl$_5$-Et$_2$O (1.50 equiv of SiOH/mmol Nb), Et$_2$O, rt, 20 h. See also Table 1.

Table 1. Elemental Analysis of 1a–3a

<table>
<thead>
<tr>
<th>Table 1. Elemental Analysis of 1a–3a</th>
<th>SiOHa (equiv)</th>
<th>NbCl$_5$-Et$_2$Oa</th>
<th>Nb/Cl</th>
<th>Et$_2$O (equiv)</th>
<th>Cl$_2$NbCl$_4$ (equiv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1.04</td>
<td>0.78 (0.75)</td>
<td>0.65</td>
<td>0.83</td>
<td>2.00 (3.1)</td>
</tr>
<tr>
<td>2a</td>
<td>0.52</td>
<td>0.78 (1.50)</td>
<td>0.47</td>
<td>0.60</td>
<td>1.26 (2.7)</td>
</tr>
<tr>
<td>3a</td>
<td>0.52</td>
<td>0.78 (1.50)</td>
<td>0.47</td>
<td>0.60</td>
<td>1.26 (2.7)</td>
</tr>
</tbody>
</table>

"mmol of NbCl$_5$-Et$_2$O employed per gram of silica. ammol of silanol per gram of silica (SiOH/Nb). bmmol of Nb grafted per gram of silica. cmmol of chlorine per gram of silica (Cl/Nb). dmmol of carbon per gram of silica (C/Nb). eChlorine quantification might be underestimated due to thermal degradation."

Figure 1. FT-IR spectra of 1a (blue), NbCl$_5$-Et$_2$O (red), and SiO$_2$-700 (purple).
Further understanding of the coordination sphere of the niobium atom was gained by examining the signal of the bound diethyl ether molecule in the IR and SSNMR spectra. Comparison of the $\nu(C-H)$ region between 3000 and 2800 cm$^{-1}$ of 1a and NbCl$_5$·OEt$_2$ (Figure 1) with that of diethyl ether (see SI, Figure S2) reveals a significant difference regarding the pattern of bands between uncoordinated and coordinated ether. Specifically, the spectra of molecular ether, in both the gas and liquid phases, contain two strong signals at 2989 and 2870 cm$^{-1}$. The latter band, which has been formally assigned to the asymmetric $\nu_\text{as}(C-H)$ stretching of methylene, was not observed in the IR spectrum of either 1a or NbCl$_5$·OEt$_2$ in which it was replaced by a signal at 2941 or 2933 cm$^{-1}$, respectively (Figure 1). This may be interpreted as a consequence of the coordination of the diethyl ether to niobium. Unsurprisingly, the proximal methylene group appears to be the most influenced by coordination to the strongly acidic niobium center. The region between 1360 and 1540 cm$^{-1}$ exhibits several differences between NbCl$_5$·OEt$_2$ and Et$_2$O that can be correlated to the methylene vibrations and represent indirect indicators of coordination of ether to NbCl$_5$; noticeably, a broad strong signal at 1524 cm$^{-1}$ (all C–H bending modes are found below 1500 cm$^{-1}$ in uncoordinated ether, Figure S2) and two strong overlapping peaks at 1442 and 1383 cm$^{-1}$. However, their assignment is complicated because this region also contains vibrations due to the methyl bending bands. Notably, comparable bands are also found in the FT-IR spectrum of 1a.

The structure of the surface niobium complex 1a was further investigated by applying 1H MAS and 13C CP/MAS SSNMR to probe the chemical shifts of the coordinating ether molecules (see Figure S3). The resonances due to the terminal methyl groups were clearly identified at 1.25 ppm (1H MAS) and at 10 ppm (13C CP/MAS) for 1a. Comparing the chemical shifts of 1a with those of uncoordinated liquid EtO$_2$, the signals of the methylene groups were significantly shifted downfield: 4.40 vs 3.50 ppm in 1H and 69 vs 65 ppm in 13C (see also Figure S7 for the 1H NMR of uncoordinated ether). In the case of NbCl$_5$·OEt$_2$, the peaks relative to the methylene groups show an even higher downfield shift at 4.68 and 75 ppm in the 1H and 13C NMR, respectively (Figure S3). This may be explained by the replacement of one oxygen atom (e.g., Si–O) by a chlorine in the coordination sphere of the niobium center. All these observations show that diethyl ether can serve as a useful probe for the presence of Lewis acids such as niobium.

Grafting of NbCl$_5$·OEt$_2$ on SiO$_2$·200 Two different grafting protocols were followed, one in which an excess of Nb precursor compared to the expected number of silanols was used (2a), and one for which the precursor/SiOH proportions were reversed (3a, See Table 1). In the cases of 2a and 3a, the FTIR spectra revealed the complete consumption of all isolated silanols at 3747 cm$^{-1}$ and of part of the bridging silanols present on the surface (Si-O-H···O(H)Si, broad bands in the 3300–3500 cm$^{-1}$ region, see Figure S4). The new peaks were comparable to those observed for 1a and were assigned to the formation of niobium etherate complexes. The very broad signals above 3000 cm$^{-1}$ can be attributed to the uncoordinated bridging silanols. Analysis of the 1H MAS and 13C CP/MAS SSNMR spectra of 2a and 3a (see Figures S5 and S6) suggests a strong similarity to the NMR spectra of 1a with a nearly identical pattern of resonances that may be assigned to niobium coordinated diethyl ether. In the cases of 2a, and 3a, signals arising from traces of diethyl ether physisorbed onto SiO$_2$·200 can be found in the SSNMR spectra (see Figures S5 and S7). Although some slight differences in the chemical shifts can be observed between the 1H MAS and 13C CP/MAS SSNMR spectra of 1a, and 2a and 3a, due to the influence of the Nb coordination sphere on the chemical shift at the 1H, and 13C nuclei of the ether ligand, this does not allow the unambiguous distinction between the different surface species. However, according to the elemental analysis data (Table 1), unlike 1a, the niobium content found in 2a, and 3a (0.65, and 0.47 mmol/g of silica, respectively) is lower than the theoretical metal loading based on the number of silanols present on SiO$_2$·200 (0.78 mmol/g of silica). Considering the density of silanol groups on SiO$_2$·200 the formation of bipodal species on the silica surface can be postulated by substitution of two chlorine atoms on the same NbCl$_5$·OEt$_2$ molecule by vicinal silanols. The amount of niobium in 3a (0.47 mmol/g of silica) is slightly higher than that previously reported for the bipodal grafting of other transition metals on SiO$_2$·200 (0.38 mmol/g of silica for Zr, 0.42 mmol/g for Ti, 0.42 mmol/g for V11) while, in the case of 2a, higher Nb loading was observed (0.65, vs 0.47 mmol/g). For 2a, the higher ratio of grafted niobium per silanol (0.83, or roughly one niobium per silanol), suggests that mainly monopodal surface species are formed. The tentative structures for 2a, and 3a based on these considerations are reported in Scheme 2. These results show that the density of available silanol groups has a strong influence on the podality of the surface complex formed, with the amount of Nb precursor employed playing an additional role as observed for 2a. The difference in niobium species density is evident also in the UV–vis diffuse reflectance spectra of 1a–3a (see Figure S9). In order to further characterize the distinctive properties of the surface species, we studied 1a–3a using 95Nb SSNMR (vide infra) spectroscopy. Reaction of 1a–3a with a probe molecule trimethylphosphine (PMe$_3$)$_2$ that completely displaced coordinated ether molecules yielded 1b–3b, and 1b–3b were studied by 31P SSNMR, as discussed below.
Probing the Niobium Environment Using Coordinated Trimethylphosphine, and 31P SSNMR Spectroscopy. Surface complexes 1a—3a were contacted with a vapor of PMe3 to displace the coordinated ether, and enable 31P NMR experiments on the surface species. It is assumed that the phosphine would displace the ether molecule, and remain bound to the surface niobium without being physisorbed or chemisorbed on the surface of the silica. Treatment of SiO2−700 or SiO2−200 by PMe3 shows that no changes are observed in the 1H, and 31P CP/MAS NMR spectra, and the FTIR spectra of these materials, indicating that the silica surface does not react or retain PMe3. The resulting complexes 1b−3b were characterized by 1H, and 31P SSNMR (Figure 2). In addition, 2b was subjected to 1H−31P HETCOR and 31P double-quantum/single-quantum NMR experiments (Figures 3 and 4).

Figure 2. One-dimensional (1D) 1H MAS solid-state NMR spectra of 1b−3b (acquired at 400 MHz with a 10 kHz MAS frequency, a 4 s repetition delay, and 32 scans) and 1D 31P CP/MAS SSNMR spectra of 1b−3b (acquired at 9.4 T, (ν0(1H) = 400 MHz with a 10 kHz MAS frequency, 5000 scans, 4 s repetition delay, and a 2 ms contact time). Exponential line broadening of 80 Hz was applied prior to Fourier transformation.

Figure 3. 2D 1H−31P CP/MAS dipolar HETCOR spectrum of 2b (acquired at 9.4 T with a 10 kHz MAS frequency, 2000 scans per t1 increment (homonuclear 1H dipolar decoupling was applied during t1), a 4 s repetition delay, 32 individual t1 increments, and a 0.2 ms contact time).

Figure 4. 2D 31P−31P double-quantum (DQ)/single-quantum (SQ) solid-state NMR homonuclear correlation spectrum of 2b. The spectrum was obtained with the BABA pulse sequence with cross-polarization from 1H. The spectrum was acquired at 9.4 T with a 10 kHz MAS frequency, 8000 scans per t1 increment, a 4 s repetition delay, 32 individual t1 increments, and a 2 ms CP contact time.
monopodal species, in agreement with the structures proposed for 1a–3a in Scheme 2. This assumption is corroborated also by the 93Nb SSNMR spectra of the parent complexes 1a–3a (vide infra). Considering that using the same SiO2 support leads to either mainly monopodal niobium surface complexes or mainly bipodal complexes, it may be speculated that the monopodal niobium etherate complexes in 2a are rather close and that they could present neighboring Nb complexes. This is strongly supported by a double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b (Figure 4) that exhibits a correlation in the −5 ppm single-quantum resonance and confirms that this material presents very close Nb complexes which are potentially in the condition of interacting.

Further information on the relative positions of the niobium phosphorus complexes on the silica surface in 2b was obtained from a 31P−31P proton driven spin diffusion experiment (Figure S8). The spectrum only shows the presence of autocorrelations even after a long mixing period of 40 ms, suggesting that the phosphorus nuclei in the monopodal and the bipodal surface species are distant from one another and non-interacting.

93Nb Solid-State NMR Spectra of NbCl5 and 1a–3a. The surface species in 1a–3a were further investigated by submitting them to 93Nb SSNMR experiments. Niobium-93 possesses a nuclear spin (I) of 9/2, a moderate gyromagnetic ratio (Larmor frequency, νL = 122 MHz at 11.7 T) and is 100% naturally abundant. The sensitivity of 93Nb is approximately 2870 times that of 13C in natural abundance. 93Nb SSNMR has previously been applied to materials such as oxides, halides, and organometallic complexes, for example. In cases where niobium is present in a spherically symmetric coordination environment and thus the quadrupolar coupling constant (CQ) is small (<50 MHz), the 93Nb NMR powder patterns will typically span tens of kHz in breadth, and magic angle spinning (MAS) can be applied to obtain higher resolution spectra. However, the 93Nb nucleus possesses a moderately large quadrupole moment (Q) of −32 fm2, which means that 93Nb SSNMR spectra are often severely broadened by the quadrupolar interaction. Some materials yield broad 93Nb spectra because the niobium resides in an environment of low spherical symmetry. In such cases the CQ is large, and these spectra typically span several hundred kHz. Hence, MAS cannot be applied to improve resolution, and static wide-line SSNMR techniques are required. Figure 5 shows the static 93Nb SSNMR spectra of NbCl5, 1a, 2a, and 3a acquired with the WURST-QCPMG pulse sequence as it provides uniform broadband excitation and improved sensitivity. Spectra were acquired at two magnetic fields in order to obtain a more accurate determination of the electric field gradient (EFG) and chemical shift (CS) tensor parameters. Since NbCl5 is crystalline, sharp and distinct features are obtained in its 93Nb NMR powder patterns, and it is straightforward to obtain the EFG and CS tensor parameters, as well as the Euler angles describing the relative orientations of the CS and EFG tensors from analytical simulations (red traces) of the spectra. However, in the cases of 1a–3a, broad and featureless powder patterns are obtained. The broadening of the 93Nb SSNMR spectra and lack of sharp features likely reflect (i) the disordered nature of the amorphous silica surface and (ii) disorder in the position of the coordinating ligands around the niobium center.

Assuming a pseudo-octahedral niobium coordination environment in 1a–3a, it is likely that there is no preference for the ether ligand to reside either “cis” or “trans” to the silica surface (this is confirmed by DFT calculations on silica models, vide infra). DFT calculations using models (see the Experimental Section for information about the model) of a monopodal niobium surface species suggest that the location of the ether
ligand strongly influences the 93Nb EFG tensor parameters (Table S3 and Figure 6). For all of these reasons the 93Nb SSNMR spectra of 2a and 3a (given the similarity in the appearance of the spectra of 1a and 2a, only the spectra of 2a were simulated since they were of higher signal-to-noise ratio) were simulated with a distribution of EFG tensor parameters using the QuadFit simulation program (red upper traces). By using a distribution of EFG tensor parameters, it was possible to adequately simulate the broad experimental spectra and obtain the estimated ranges of the EFG tensor, as well as the niobium CS tensor parameters (Table S3). Simulations of the spectra of 2a and 3a suggest that the average values of the quadrupolar coupling constants (C_Q) are similar in both cases and are greater than 60 MHz. In both 2a and 3a, the average value of the EFG tensor asymmetry parameter (η_0) was far from zero, suggesting that the EFG tensor parameters is asymmetric, and hence there are no high-order rotational or symmetry axes present for the majority of the surface species. Most importantly, simulations of the spectra of 2a and 3a confirm that the isotropic chemical shift (δ_is) of 3a is about 350 ppm lower than that of 2a.

DFT Structural Models of 1a–3a and Calculations of 93Nb NMR parameters. In order to better interpret the 93Nb SSNMR spectra, we created structural models of silica-bound monopodal [≡SiONbCl$_4$·OEt$_2$] and of bipodal [(≡SiO)$_2$NbCl$_4$·OEt$_2$] (Figure 6) and subjected them to DFT calculations, to calculate the 93Nb NMR tensor parameters. The DFT calculations predict that large values of C_Q should be obtained for all complexes (except for the trans model of 2a), in agreement with the observation of broad 93Nb NMR spectra for 1a–3a. The calculations also correctly predict that the niobium nucleus of the surface-supported niobium species should be more shielded (more negative chemical shifts) than those observed for NbCl$_5$. Importantly, the calculations suggest that replacing a chlorine from the Nb coordination sphere with a surface oxide when going from a monopodal tetrachloride to a bipodal trichloride surface species increases the magnetic shielding (decreases the chemical shift) by ca. 200–300 ppm. This is in reasonable accord with the ca. 350 ppm decrease in the niobium chemical shift observed experimentally when comparing the spectra of 2a (and 1a) to those of 3a. Therefore, taken together, the DFT calculations and 93Nb SSNMR spectra indicate that 1a and 2a primarily contain monopodal surface species, while 3a primarily contains bipodal surface species.

These findings are in good agreement with the information obtained from the 31P and 1H SSNMR spectra of 1b–3b. We have also recently observed via variable temperature 13C SSNMR that grafting of pentamethyl tungsten onto SiO$_2$ results in primarily monopodal surface species while grafting onto SiO$_2$ results in a substantial fraction (ca. 30%) of bipodal surface species, consistent with the conclusions arrived at by considering the 93Nb SSNMR data for 1a–3a. Therefore, the combined spectroscopic results show that species 2a and 3a differ in the podality of the main surface complex formed during grafting and that this can be attributed to the use of different amounts of NbCl$_5$OEt$_2$ during the initial grafting step. This can be rationalized by considering that following the grafting of the first complex, the reaction of a vicinal silanol with a second molecule of NbCl$_5$OEt$_2$ to afford neighboring monopodal surface complexes will be in competition with the reaction with the already grafted complex to afford a bipodal surface species. In the cases of 2a and 3a, it appears that varying the amount of Nb precursor makes it possible to drive the reaction toward the formation of the desired species as a major component. It remains unclear whether this unusual reactivity is driven by the formation of a loosely coordinated adduct between two Nb complexes before grafting when working at higher precursor concentrations or if it is simply due to the balance of the relative rates of the competing processes. However, DFT calculations on model silica surfaces (vide infra) show that in the presence of a grafted [≡SiONbCl$_4$·OEt$_2$] complex both processes (formation of a bipodal species or grafting of a second complex) are thermodynamically favored.

Catalysis. There is renewed interest toward the development of efficient catalytic systems for the synthesis of industrially and synthetically relevant cyclic carbonates from CO$_2$ and epoxides. We have recently reported simple molecular niobium catalysts and selected organic nucleophiles as efficient homogeneous catalysts for this transformation under ambient conditions. Only a few heterogeneous, recyclable catalysts are able to promote efficiently the cycloaddition of CO$_2$ and PO under mild conditions: these include one-component, silica-supported bimetallic aluminum selen complex$_2$ or MOFs$_2$ and other microporous organic network systems used in combination with tetralkylammonium salts. In light of the high catalytic activity measured for simple and inexpensive NbCl$_5$ in the homogeneous phase, we tested 1a–3a for the cycloaddition of CO$_2$ and PO under mild conditions (60 °C, 10 bar) in the presence of NbBu$_4$Br (tetra-n-butylammonium bromide) as a source of bromide ions (see also the SI). All runs selectively yielded propylene carbonate (see Table S1).

Comparison of the conversion data obtained in the first catalytic run shows a strong dependency of the catalytic efficiency on the precatalyst employed; 2a (90%) surpasses significantly 3a (61%) and 1a (25%) (Figure 7). To clearly assess the performance of the surface species, a second run was conducted using the solid phase collected after the initial
The difference in activity between the apparently similar heterogeneous Nb-based catalysts (1a and 2a are both mostly monopodal species according to the 31P and 93Nb SSNMR experiments and DFT calculations, *vide supra*) can be tentatively explained in terms of the fine structure of the surface complexes. Interestingly, the catalytic activity $2a > 3a > 1a$ determined experimentally follows the same order as that of the density of Nb atoms per unit area of surface (Table 1, considering the Nb loading per gram of silica). In particular, $2a$ presents the highest density of $\left[\text{SiOSiNbCl}_4\cdot\text{OEt}_2\right]$ surface species, and according to the double-quantum/single-quantum 31P NMR correlation experiment carried out on $2b$ (Figure 4), some of the niobium centers are proximate to one another on the surface. $3a$ presents a lower density of surface Nb complexes (due to the formation of mostly bipodal surface complexes), and $1a$, given the high degree of dehydroxylation of the SiO$_2$ support, presents only completely isolated monopodal Nb surface complexes. The low catalytic activity measured for $1a$ shows that the isolated NbCl$_5$ supported on silica is a poor catalyst under the mild reaction conditions employed. $2a$, on the other hand, presents neighboring Nb centers that might act in a cooperative fashion, comparably to the two centers of a bimetallic catalyst,29 with the surface maintaining the niobium centers in close proximity. The beneficial effect of cooperating metal centers on the catalytic efficiency in the cycloaddition of CO$_2$ and epoxides has been demonstrated in the case of a bimetallic Al-salen catalyst. It has been attributed to the bifunctional role of the metal centers in the parallel activation of CO$_2$ via the formation of a hemicarbonate moiety, and of activation of the epoxide ring for the nucleophilic opening by a cocatalyst at the second metal center.30 For the closely related reaction of CO$_2$/cyclohexene oxide copolymerization, cooperative catalysis between two zinc centers of homogeneously β-diamine complexes has been reported by Moore et al.; in that case one Zn center is supposed to coordinate and activate the epoxide while the other Zn atom delivers the propagating polymer chain.31 Indeed bimetallic catalysts are well established for this process.32 Cooperative effects by metal centers of a bimetallic Co-catalyst have been observed as well for the enantioselective polymerization of epoxides.33 In a recent study on the mechanism of the NbCl$_5$ catalyzed cycloaddition of CO$_2$ to PO in the homogeneous phase, D’Elia et al. have shown that the interaction between two Nb complexes might be required to lower the barrier for the insertion of CO$_2$ in the sterically hindered Nb–O bond generated on the hexacoordinated niobium center after the ring-opening of the epoxide.34 In the transition state relative to the process of CO$_2$ insertion the Nb–Nb distance between the cooperating complexes was calculated to be 6.34 Å. On the surface, a bimetallic mechanistic proposal would require the existence of closely related niobium chloride species able to establish a cooperative interaction between two metal centers during the catalytic event. This would explain the experimental results displaying much higher catalytic activity for $2a$ rather than $3a$ or $1a$. To provide a mechanistic framework consistent with the experimental results of activation of CO$_2$ on the silica surface and to verify the possibility of an interaction between neighboring Nb centers during catalysis, mechanistic DFT calculations were undertaken.

Mechanistic DFT Calculations. Similarly to what was disclosed earlier during the discussion of the 93Nb SSNMR parameters, to better reflect the experimental conditions in the

Figure 7. Top: Catalytic cycloaddition of CO$_2$ to propylene oxide (7 mL, 100 mmol) under mild conditions (60 °C, 10 bar, 18 h) using $1a$ (1.1 g; 0.33 mmol of Nb), $2a$ (0.5 g; 0.33 mmol of Nb) or $3a$ (0.7 g; 0.33 mmol Nb) in the presence of NBu$_4$Br (1 mmol). For run 2, the recovered silica materials (ca. 95% of the initial amounts) were reused in the presence of 1 mmol NBu$_4$Br. Bottom: Conversion determined for catalysts $1a$–$3a$ after two consecutive runs using fresh (left bar) and recycled (right bar) catalyst.
molecular-level calculations, two different silica cluster models have been applied. The first model is a silica cluster presenting a single silanol group (model 1), which we considered for monopodal, isolated species 1a and contains a total of 31 atoms. The second model is a silica cluster presenting six silanol groups (model 2), which we considered for species 2a and 3a and contains a total of 78 atoms (Figure 8; see also the experimental section).34 The energies computed for species 1a–3a grafted on different sites of these silica models and under the different possible conformations are listed in Table 2.

Table 2. Computed Gibbs Free Energies (kcal/mol) of Grafting of Surface Species 1a, 2a, and 3a on Different Sites of Models 1 and 2

<table>
<thead>
<tr>
<th>entry</th>
<th>species</th>
<th>site/model</th>
<th>cisa geometry</th>
<th>transa geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>model 1</td>
<td>−5.4</td>
<td>−5.8</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>model 2</td>
<td>−10.2</td>
<td>−10.2</td>
</tr>
<tr>
<td>3</td>
<td>2a</td>
<td>AB/model 2</td>
<td>−20.6</td>
<td>−20.9</td>
</tr>
<tr>
<td>4</td>
<td>AC</td>
<td>model 2</td>
<td>−20.0</td>
<td>−23.2</td>
</tr>
<tr>
<td>5</td>
<td>AD</td>
<td>model 2</td>
<td>−16.0</td>
<td>−15.8</td>
</tr>
<tr>
<td>6</td>
<td>AE</td>
<td>model 2</td>
<td>−18.8</td>
<td>−19.0</td>
</tr>
<tr>
<td>7</td>
<td>AF</td>
<td>model 2</td>
<td>−17.9</td>
<td>−14.9</td>
</tr>
<tr>
<td>8</td>
<td>3a</td>
<td>AB</td>
<td>−8.5</td>
<td>−9.7</td>
</tr>
<tr>
<td>9</td>
<td>AD</td>
<td></td>
<td>11.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

aFor entries 3–7, the geometry of $\text{[SiONbCl}_4\text{OEt}_2\text{]}$ at the A site is trans.

Considering that NbCl\textsubscript{5}OEt\textsubscript{2} might graft on the surface in a "cis" or "trans" geometry (see also figures S11–S13).

Isolated Monopodal Species (1a). The grafting of an isolated NbCl\textsubscript{5}OEt\textsubscript{2} on silica model 1 (1a) or model 2, with the release of an HCl molecule, is calculated to be a thermodynamically favorable process by 5.8 kcal/mol for model 1 and 10.2 kcal/mol for model 2, respectively (see Table 2, entries 1 and 2). Bearing in mind the structural difference between the silica models 1 and 2, we found that the different stability of species 1a is due to the difference in the dispersion energy for the considered two models. For 1a, the OEt\textsubscript{2} group is preferentially trans oriented with respect to the O atom of the surface silanol (1a\textsubscript{trans}; Figure S11b). The geometry of the cis-oriented species (1a\textsubscript{cis}; Figure S11a) is calculated to be only 0.4 kcal/mol higher in energy, indicating that both species can be present under catalytic conditions.

For a monopodal species on model 2, the trans and cis isomers are isoequivalent. For the sake of simplicity, we considered species 1a\textsubscript{trans} on model 1 to study the reaction mechanism for the cycloaddition of PO and CO\textsubscript{2} on an isolated Nb center on the silica surface.

Neighboring Monopodal Species (2a). For species 2a, we explored all the possible grafting sites with one $\text{[SiONbCl}_4\text{OEt}_2\text{]}$ moiety grafted on the silanol labeled as A, at the center of the cluster of model 2 (Figure 8), and the other $\text{[SiONbCl}_4\text{OEt}_2\text{]}$ centers grafted alternatively on one of the neighboring silanol sites B–F, thus generating the model pairs labeled as AB, AC, AD, AE, and AF (or generically AX). We considered the -OEt\textsubscript{2} group of the Nb species grafted on site A in the trans configuration with respect to the surface silanol and explored both cis (AX2a\textsubscript{cis}) and trans (AX2a\textsubscript{trans}) configurations of the -OEt\textsubscript{2} group for the second Nb species placed at B–F. Based on the values reported in Table 2 for the AB–AF pairs (entries 3–7), the grafting of the second NbCl\textsubscript{5}OEt\textsubscript{2} molecule, in the presence of a $\text{[SiONbCl}_4\text{OEt}_2\text{]}$ moiety at site A, is thermodynamically favorable at all sites (in particular at the AC pair for the AC2a\textsubscript{trans} species with the release of an additional 13.0 kcal/mol) indicating that no steric repulsion originates from the grafting of a second NbCl\textsubscript{5}OEt\textsubscript{2} complex on neighboring silanols. This is true also for the closely related AB pair that can also generate a bipodal species (vide infra) and supports the observation that by adding an excess of NbCl\textsubscript{5}OEt\textsubscript{2}, the grafting might produce a complete coverage of neighboring monopodal species as obtained in 2a. A comparison between the cis and trans orientation of the OEt\textsubscript{2} groups relative to the surface shows that for the AB, AD, and AE pairs, the two geometries 2a\textsubscript{cis} and 2a\textsubscript{trans} are nearly isoenergetic. However, for the AC pair, the AC2a\textsubscript{trans} species is more thermodynamically favorable by \sim3.0 kcal/mol over its cis analogue, while this trend is opposite for the AF pair, i.e., AF2a\textsubscript{cis} is \sim3.0 kcal/mol more stable than the trans species.

The structure of model 2 offers the possibility to study the mechanism of the cycloaddition reaction of PO and CO\textsubscript{2} by exploring the interaction of neighboring $\text{[SiONbCl}_4\text{OEt}_2\text{]}$ species placed at different distances. The distance (measured at the anchoring O atoms) of the AX pairs ranges from 2.81 Å for AB to 7.17–7.38 Å of the AC, AE, and AF pairs.

For our mechanistic study we considered the AX2a\textsubscript{cis} species at sites X = B, D, and F (the latter was chosen as representative for all AX pairs having an O–O distance in the 7.17–7.38 range), having the surface silanol O–O distances at 2.81, 5.70, and 7.38 Å, respectively. The cis geometry was chosen as it is slightly more stable than the corresponding trans geometry for sites D and F (Table 2, entries 5–7), or nearly isoenergetic for site B (Table 2, entry 3). The optimized structures for the neighboring monopodal species used for the mechanistic investigation are reported in Figure S12.

Bipodal Species (3a). For species 3a, the possible grafting sites on the silica model 2 are AB and AD, having the surface silanol O–O distances of 2.81 and 5.70 Å, respectively. Our results show that the bipodal grafting of NbCl\textsubscript{5}OEt\textsubscript{2} on the AB sites (AB3a\textsubscript{trans}; see Figure S13a), with release of two HCl molecules, is favored by 9.7 kcal/mol (see Table 2, entry 8). Considering that monopodal NbCl\textsubscript{5}OEt\textsubscript{2} grafting at the A site leads to the release of 10.2 kcal/mol, this implies that the second grafting event is basically thermoneutral, indicating that the electronic gain due to the formation of the SiO-Nb bond is balanced by the strain energy. While the bipodal grafting of NbCl\textsubscript{5}OEt\textsubscript{2} on the AB pair sites is possible, bipodal grafting at the AD sites is endothermic by 10.5 kcal/mol (or \sim20.0 kcal/mol less favorable than the grafting at the AB sites).

Figure 8. Optimized structures of the silica models considered in the present mechanistic DFT study. Color code: white, H; red, O; blue, Si.
which indicates that for surface O–O distances as large as 5 Å the bipodal grafting would not occur. Site AB represents, therefore, the locations where a pair of monopodal Nb centers or a single bipodal species might be found according to the preparative conditions. Additionally, we explored the stability of the AB3acis species (see Figure S13b), and the resulting species was less thermodynamically stable (~1.0 kcal/mol) than AB3trans. We considered the AB3trans species for the study of the reaction mechanism via a bipodal species.

Reaction Pathways and Free Energy Surfaces for Model Surface Species Modeling Catalysts 1a, 2a, and 3a. Figures 9 and 10 show the most stable species and the free energy profiles for the cycloaddition of CO₂ to PO mediated by model silica supported compounds resembling catalyst 1a–3a, in the presence of NBu₄Br as a source of bromide ions. In case of 1atrans and 3atrans (AB3trans), the reaction pathway starts with the displacement of the OEt₂ ligand by a solvent PO molecule at the Nb of catalytic species 1 leading to the formation of intermediates II (Figure 9). For 2acis (AB2acis, AD2acis, AF2acis; for simplicity only the values corresponding to AF2acis are displayed), the two OEt₂ ligands are displaced by a PO molecule and a Br⁻ ion (Figure 10). Substitution of -OEt₂ by a PO on the Nb center is predicted to be thermodynamically favored by 1.7 kcal/mol for 1atrans and endergonic by
2.6 kcal/mol for 3a$_{\text{trans}}$ while the combined substitution of the OEt$_2$ by a PO on one Nb center, and by a bromide anion on the second Nb center in AF2a$_{\text{cis}}$, is predicted to be highly exergonic with the release of 28.3 kcal/mol. The next step corresponds to the PO ring-opening of intermediates II by a Br anion, leading to the formation of more stable coordination intermediates III. For catalytic species 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$, this step is predicted to be barrierless, which is in line with our previous results for the same process, but under homogeneous reaction conditions. On the other hand, for species AF2a$_{\text{cis}}$, the PO ring-opening barrier assisted by a Br$^-$ ion is calculated to be just 7.7 kcal/mol above II. From a thermodynamic standpoint, for species 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$, intermediate III lies 42.2 and 42.7 kcal/mol below the corresponding intermediate II and Br$^-$, respectively. For species AF2a$_{\text{cis}}$, intermediate III lies 6.2 kcal/mol below II. The attack of the Br anion coordinated on a Nb center to the epoxide coordinated on a neighboring Nb atom as observed in AF2a$_{\text{cis}}$ is reminiscent of the mechanism of epoxide ring-opening for the bimetallic Co-catalyst reported by Ahmed et al. In the next step we studied the insertion of CO$_2$ to give the hemicarbonate intermediate IV. From the case of AF2a$_{\text{cis}}$, consistent with the mechanism proposed for the homogeneous catalysis, where the CO$_2$ insertion step was assisted by a Nb center presenting a coordination vacancy, we considered intermediate III having a pentacoordinated Nb center. This presents a free coordination site next to the Nb center where CO$_2$ insertion takes place following the ring-opening by the Br anion. Our results show that the CO$_2$ insertion step is predicted to be the rate-determining step for all species studied. For instance, the predicted transition-state barrier TS-III-IV for 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$ lies \sim31.0 kcal/mol above III, while for AF2a$_{\text{cis}}$, this barrier is reduced to 15.9 kcal/mol by considering the contribution of the neighboring Nb center. This observation is in line with the experiments, suggesting that the presence of a second Nb center bearing a vacant coordination site in proximity to the first Nb center is necessary to explain the higher catalytic activity of catalyst 2a over 1a and 3a. Nevertheless, when considering the experimental temperature of 60 °C, the predicted barriers for 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$ (\sim31.0 kcal/mol) are still reasonable as experimentally observed suggesting that the studied cycloaddition reaction might occur, albeit with much slower rate when compared with species 2a$_{\text{cis}}$. The predicted TS-III-IV barrier for 2a$_{\text{cis}}$ species on the AD pair sites (15.3 kcal/mol, see Figure S14) is similar to that calculated for the AF pair sites. Ring-opening on this site proceeds with a low barrier (3.1 kcal/mol) suggesting that on the selected silica model 2 all the possible sites containing AX2a$_{\text{cis}}$ species with surface silanol O–O distances between 5.70 and 7.38 Å might have similar catalytic efficiency in terms of CO$_2$ insertion. In the case of sites AB, ring-opening of the epoxide (27.2 kcal/mol) and CO$_2$ insertion (28.8 kcal/mol) were found to occur with considerably higher barriers than for AF and AD. The higher values of these barriers arise from the lower degree of flexibility of the cooperating surface complexes due to the proximity of the corresponding surface oxygen atoms on II and III. However, the barrier calculated can be overcome at 60 °C. From IV, we studied the ring closing step to form the desired cyclic carbonate product V. The predicted ring-closing barrier TS-IV-V for species 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$, amounts to \sim20.0 kcal/mol, while for species AF2a$_{\text{cis}}$, this barrier is reduced to 13.1 kcal/mol (13.6 kcal/mol for AD2a$_{\text{cis}}$). This observation indicates that the presence of a second Nb center may also contribute to reduce the cyclization barrier. For species 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$, product V lies 8.1 and 7.8 kcal/mol below the starting species I, respectively, while for AF2a$_{\text{cis}}$, product V is more stable being located 14.9 kcal/mol below I. Thus, the overall reaction energy profile is more exergonic in the case of species 2a when compared with species 1a and 3a. Finally, intermediate V would release the carbonate product and a Br$^-$ ion, regenerating the intermediate II with recooordination of a free PO molecule, in the case of species 1a$_{\text{trans}}$ and 3a$_{\text{trans}}$ and of both PO and a Br$^-$ ion, in the case of species AF2a$_{\text{cis}}$, thus closing the catalytic cycle. Based on these results, the experimentally observed higher catalytic activity of species 2a over species 1a and 3a can be explained by the interaction between neighboring Nb centers that facilitates the steps of CO$_2$ insertion and ring closure by significantly reducing the corresponding barriers, TS-III-IV and TS-IV-V. The results presented for the mechanism of the heterogeneous catalytic reaction are in line with our proposed homogeneous catalytic mechanism for the same reaction.

CONCLUSION

We have reported the preparation and the characterization of new surface complexes 1a–3a and 1b–3b obtained by grafting NbCl$_5$/OEt$_2$ on SiO$_2$700 (1a) and on SiO$_2$200 (2a, 3a) and by subsequent displacement of diethyl ether by PMe$_3$. 1a and 1b have been identified as monopodal niobium chloride species that are highly dispersed on silica dehydroxylated at 700 °C. Based on our combined SSNMR/DFT investigation, 2a, 2b, and 3a, 3b have been shown to include monopodal and bipodal Nb complexes, with the population distributions depending on the amount of niobium precursor employed within the grafting protocol. 1a–3a were employed as catalysts for the cycloaddition of propylene oxide and CO$_2$. Species 2a, in which, according to our investigation, the Nb centers are placed in close proximity, has emerged as the most effective catalyst for this process. This spectacular effect has been correlated to the cooperative interaction between two Nb centers during the catalytic cycle, as supported by a systematic DFT investigation on model silica-supported niobium complexes. The mechanism developed for the heterogeneous process could be anticipated on the basis of our recent discoveries in the field of CO$_2$ activation by cooperating metal atoms.

EXPERIMENTAL SECTION

Detailed descriptions of catalysis results and SSNMR experiments are provided in the Supporting Information.

Quantum Chemical Calculations of NMR Tensor Parameters. These quantum chemical computations were performed using the Amsterdam Density Functional (ADF) software, version 2010.02, which is produced and distributed by Scientific Computing & Modelling (SCM). For geometry optimizations and NMR tensor calculations, the zeroth-order regular approximation (ZORA) was used to include relativistic effects. Geometry optimizations included effects at the scalar level, while NMR tensor calculations included both scalar and spin–orbit contributions. Calculations generally used an all-electron triple-ζ basis set which included polarization functions (i.e., TZ2P) and the generalized gradient approximation (GGA) exchange-correlation functional developed by Perdew, Burke, and Ernzerhof (i.e., PBE). For the bipodal Nb species supported on silica, as a larger model of the silica surface was required, geometry optimizations used a partially frozen core basis to enhance computational efficiency. All computations included a dispersion correction, as specified by Grimme’s three parameter model. Magnetic shielding calculations were carried out using the “NMR” module which comes bundled with the ADF software.
For models of monopodal species on SiO$_2$, the initial silica surface selected for NMR property computations was taken from the previously optimized structure of Emley and co-workers. The surface species was exchanged from that of the prior study with the species of interest here and truncated to the second coordination sphere for the NMR tensor computations. Where applicable, oxygen atoms at the silica surface were terminated with hydrogen atoms. For all monopodal surfaces, the silicon and oxygen atoms at the surface were frozen, while the surface species of interest and the hydrogen atoms terminating the silica surface were optimized. Further details are provided in the SI (computational details and Tables S3 and S4).

Models of bipodal species on SiO$_2$ were constructed with the silica surface model of Sautet and co-workers. The silica models in Figure 8 were elaborated from the large quadruple-site silica surface model of Sautet and co-workers.

The electronic contributions were included with the ADF software package for NMR tensor calculations and did not correspond to a slice along the [001] plane of NbCl$_5$ dimer were taken from the original structure described by Cotton et al. Due to the small size of this cluster, we were able to employ the large quadruple-ζ basis set ([QZAP] included within the ADF software package for NMR tensor calculations and did not include dispersion corrections. Other than these changes, computations were carried out in a similar fashion as compared to the surface-supported species. Euler angles were determined using EFGshield.

The coordinates for all the optimized structures, as well as the calculated bond energies can be found in Table S4.

Mechanistic Studies. All the DFT geometry optimizations were performed at the GGA BP86 level with the Gaussian09 package. The electronic configuration of the systems was described with the split-valence SVP basis set for the main group atoms, while for Nb we adopted the quasi-relativistic SDD effective core potential, with the associated triple-ζ valence basis set. The reported free energies were built through single point energy calculations on the BP86/SVP geometries using the BP86 functional and the triple-ζ TZVP basis set on main group atoms, and the D3 version of Grimme’s dispersion (empiricaldispersion=gd3). Solvent effects were included with the PM6 model using the modeled PO solvent. To these BP86/TZVP electronic energies in solvent, zero point energy, and thermal corrections were included from the gas-phase frequency calculations at the BP86/SVP level at T = 333.15 K and p = 1354 atm, as suggested by Martin et al. The silica models in Figure 8 were elaborated from the work of Sautet et al. using structure 001-5 for model 1 and structure 001-4 for model 2.

ACKNOWLEDGMENTS

This work was supported by funds from King Abdullah University of Science and Technology and Saudi Basic Industries Corporation (SABIC). C.M.W. acknowledges the Natural Sciences and Engineering Council of Canada (NSERC) for a postdoctoral fellowship. Computational resources for selected DFT calculations were provided by the Pôle Scientifique de Modélisation Numérique (PSMN). J.D.A.P. and V.D.E. thank Alexander Barthel for his contribution.

REFERENCES

(2) (a) Monassier, A.; D’Elia, V.; Cokoja, M.; Dong, H. L.; Pelletier, J. D. A.; Basset, J. M.; Kuhn, F. E. ChemCatChem 2013, 5, 1321.

ASSOCIATED CONTENT

Supporting Information

General information, experimental procedures, IR and NMR spectra, additional catalytic results, leaching experiments, optimized structures for the silica supported complexes, and complete computational details. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b02872.

AUTHOR INFORMATION

Corresponding Authors

*jeremie.pelletier@kaust.edu.sa
jeanmarie.basset@kaust.edu.sa

Author Contributions

*V.D.E. and H.D. contributed equally.

Notes

The authors declare no competing financial interest.