
DualGrounder: Lazy instantiation via Clingo
multi-shot framework

Yuliya Lierler1 and Justin Robbins1

University of Nebraska at Omaha, Omaha NE 68182, USA

Abstract. Answer set programming (ASP) is a declarative program-
ming paradigm that is geared towards difficult combinatorial search
problems. Sometimes, run times of ASP systems suffer due to so called
grounding bottleneck. Lazy grounding solvers aim to mitigate this issue.
In this paper we describe a new lazy grounding solver called Dual-
Grounder. The DualGrounder system leverages multi-shot capabil-
ities of the advanced ASP platform clingo. This paper also includes
experimental data to explore the performance of DualGrounder com-
pared to similar ASP grounding and solving systems.

Keywords: ASP · Lazy Grounding · Multishot Solving.

1 Introduction

Answer Set Programming (ASP) [3] is a prominent declarative programming
paradigm that aims to solve difficult search problems by describing problem’s
specifications by means of a logic program and solving the resulting program. The
process of solving ASP programs – logic programs under answer set semantics
– typically involves two stages depicted in Figure 1. To describe these stages
let us recall that a logic program consists of rules. When a program contains
variables we call it a non-ground program, and ground otherwise. During the
first stage of program’s processing each rule of a logic program is converted into
respective ground rules (rules without variables) in a process called grounding.
This process involves substituting variables with all possible constant values
that variables of given rules could have. The second stage is concerned with the
search of so called answer sets (sets of ground atoms representing solutions) of
the constructed ground program. The basic way of performing this process is to
(i) utilize a grounder, for instance, the gringo system [10] to ground an ASP
program, and then (ii) pipe the output to a solving system such as clasp [11]

Grounded
Program

Logic
Program Grounder Answer

SetsASP Solver

Fig. 1. Typical ASP system architecture.

2 Yuliya Lierler and Justin Robbins

or wasp [2]. However, grounding some programs may prove to be a bottleneck
in applying ASP technology. Converting a rule with variables into rules with
respective constants may require, in the worst case scenario, a substitution of
every possible combination of program’s constants into the rule. “Lazy ASP”
methods such as implemented in systems asperix [12], gasp [7], and omiga
[8] combat this issue by altering the typical ground-solve architecture of ASP
systems described here. Lazy ASP architectures delay grounding of some parts of
a program until it is determined to be necessary. At times grounding these parts
is never necessary. In this work, we design a lazy ASP architecture and implement
it within system DualGrounder, or DG, for short. It’s a close relative of the
wasp-based lazy ASP systems proposed and advocated in [5, 6]. The novelty
of the DG tool is its reliance on the clingo multi-shot framework [9]. This
way in place of implementing in house procedures for grounding and solving in
various stages of lazy approach we rely on existing instances of gringo and
clasp withing the clingo multi-shot architecture. Here we describe the exact
architecture of the DG system and provide the experimental analysis of the
approach comparing it to its close relatives.

2 Preliminaries

A logic/ASP program is a finite set of rules of the form

h1 | · · · | hn ← a1, . . . al, not al+1, . . . , not am, (1)

where m,n ≥ 0, hi (1 ≤ i ≤ n) and a1, ...am are atoms. Expressions to the
left hand side of an arrow and the right hand side of an arrow are called head
and body of a rule, respectively. An atom, literal, or rule is ground if it has no
variables within terms occurring in it. We call a rule a fact if its body is empty
(m = 0). A rule is a constraint if its head is empty (n = 0); in this case we can
identify it with the symbol ⊥. We say that a rule is disjunctive if its head has
multiple atoms (n > 1). Intuitively, constraints are meant to capture a condition
– by means of a set of literals – that should not take place in a valid solution
to the problem. We assume that a reader is familiar with the definition of an
answer set of a (ground) logic program and refer to the paper by Lifschitz et
al. [13] for details. One crucial result that constitutes a theoretical basis for this
work is the following theorem by Lifschitz et al. [13]:

Theorem 1 (Theorem on Constraints). For a ground program P and a
set C of constraints so that C ⊆ P , a set X of atoms is an answer set of P iff X
is an answer set of program P \ C and X satisfies every constraint in C.

It tells us that when a program contains constraints we may split a task of com-
puting its answer sets into two subtasks. In the first subtask, we are concerned
with finding answer sets of a program resulting from the original program some
of whose constraints are removed. In the second subtask, we are concerned with
checking that these constraints are satisfied. Grounding a logic program with

DualGrounder: Lazy instantiation via Clingo multi-shot framework 3

variables replaces each rule with all its instances obtained by substituting the
object constants occurring in the program, for all variables. For a program P ,
by ground(P) we denote the result of its grounding. Answer sets of a logic pro-
gram P with variables are the answer sets of ground program ground(P). It is
easy to see how the theorem on constraints generalizes to the case of programs
with variables.

In the introduction we presented a common architecture for processing logic
programs. Yet, modern answer set solvers are complex software systems that
are designed to accommodate a number of potential uses that go beyond their
typical utilization. For example, such answer set solvers as clasp and wasp
allow for something that we will denote incremental solving. Incremental ASP-
solving allows the user to solve several ground logic programs P1, P2, . . . , Pn

one after another (possibly in an ”online” mode when an instance of a solver is
never terminated but rather is put ”on-hold” while preserving its internal search
state), if Pi+1 results from Pi by adding ground constraints. In this case the
search for a solution to Pi+1 may benefit from the knowledge obtained during
solving P1, . . . , Pi sequence.

3 System DG

Lazy Instantiation by Cuteri et al. [5, 6] Here we review a lazy instantiation
method for finding answer sets of a program, studied by Cuteri et al. [5]. The
method separates a program P into a program composed of a predetermined
subset of its constraints C, and a program composed of the remaining rules
Pnc = P \ C. Program Pnc is processed using the typical ground and solve pro-
cess depicted in Figure 1, except on the onset of solving an instance of an ASP
solver capable of incremental solving is considered. As a result an answer set M
of Pnc is computed. This answer set M is then checked against the constraints
in C. If all of the ground instances of the constraints in C are satisfied by M ,
then M is returned by the method as an answer set of P . Otherwise, ground
instances of constraints that are violated by the candidate model are provided to
an incremental ASP solver to proceed with the search. The process is repeated
up to the point when we are able to either claim that a found M is indeed an
answer set of P or establish that P has no answer sets. It is easy to see that
at any point of computation an incremental solver is dealing with some subset
of ground(P). There are two interesting peculiarities of the approach studied
by Cuteri et al. [5]. First, the process of checking current answer set M of some
subset of ground(P) against the appropriate set of constraints stemming from C
is a custom program produced automatically for each unique problem. In par-
ticular, the authors illustrated the case study on three benchmarks. The authors
implemented such a check individually for each benchmark via a specialized
propagator interface provided by such answer set solvers as clasp and wasp.
Second, the process of computing ground instances of constraints at hand to
extend incrementally solved program was once more implemented by a custom
program designed for each problem. Cuteri et al. [5] demonstrated positive results

4 Yuliya Lierler and Justin Robbins

for their case study. Cuteri et al. [6] make the approach described above prob-
lem/benchmark independent. They developed an answer set solver based on lazy
instantiation method described here that is problem agnostic. In other words,
their method is able to utilize constraints of C to implement ”a propagator”
and then ”a grounder” for these constraints to communicate with an incremen-
tal solver at hand. C++ is used to implement procedures of above mentioned
propagator and grounder based on the information provided by constraints in C.

DG specifics The DG system mimics the efforts by Cuteri et al. [6]. The
key difference in our undertaking is the utilization of the available off the shelf
tools for the task of grounding (in particular, gringo) rather than implement-
ing a custom solution for this purpose. Implementation of system DG relies
on the clingo multi-shot framework [9] in a way that the key computational
tasks are executed by instances of grounding and solving routines available via
this framework. Thus, the role of DG is to orchestrate these routines. First,
system DG separates given program P into two parts: a program composed
of a specified subset of its constraints C, and a program composed of the re-
maining rules Pnc = P \ C. Second, system DG rewrites constraints in C pro-
cedurally. We use an example to illustrate this rewriting. Assume a sample con-
straint :- p1(X), p2(Y), not p3(X,Y). Rule p1’1 p2’2 not’p3’12’(X,Y):-

p1(X), p2(Y), not p3(X,Y). is used in place of this constraint. Constraints
in C rewritten in this way result in program C ′. Third, DG orchestrates the
back-and-forth communication of two major subroutines that we call main-gs
and aux-g (program C ′ plays a crucial role in the workings of the aux-g com-
ponent).

main-gs: A grounder-solver pair main-gs is responsible for incremental solv-
ing procedure of DG. It is first applied to Pnc to compute one answer set M ;
this answer set is then used within the second subroutine aux-g to either (i) es-
tablish that this set M of atoms is indeed an answer set of P or (ii) compute
ground constraints due to C that are violated by M ; these constraints are then
added incrementally to the logic program of main-gs and a solver of main-gs
is instructed to find a new answer set to repeat the described process.

aux-g: The aux-g routine is responsible for supplying ground instances of
constraints in C violated by the “candidate” answer set M given by main-
gs. Each time aux-g subroutine is called it uses a new instance of a grounder
gringo supplying it with a new program to ground. Component aux-g calls
grounder gringo on program C ′∪M (here we identify set M of atoms with the
set of facts constructed from its elements). Due to the inner workings of gringo
and structure of program C ′ ∪M , gringo’s output consists of M together with
the facts such as p1’1 p2’2 not’p3’12’(4,5) (following our earlier example).
Facts of the form p1’1 p2’2 not’p3’12’(4,5) are translated procedurally by
system DG into constraints of the form :- p1(4), p2(5), not p3(4,5). Such
constraints are added incrementally to the main-gs grounder-solver pair of DG.
If given some candidate answer set M , gringo invoked on C ′ ∪M returns M
itself, the DG system returns M to the user as it is indeed the answer set to the
given program P as no constraints in C are violated.

DualGrounder: Lazy instantiation via Clingo multi-shot framework 5

4 Experimental Evaluation

Our experiments were run on a Linux machine, where each instance’s runtime
was limited to 10 minutes and given 16GB of memory to work with. The bench-
mark called Packing was given an extended 30 minute cutoff. Table 1 summarizes
the outcomes of our experimental analysis. The dualgrounder implementation
used for the experiments can be found at https://www.unomaha.edu/college-of-
information-science-and-technology/natural-language-processing-and-knowledge-
representation-lab/software/dualgrunder.php. We now provide the details on con-
sidered systems and benchmarks. In parenthesis we give abbreviations used in
Table 1. We tested two variants of DG, one with default clingo settings (DG-
Clingo) and another with settings/flags that emulate the heuristics of the wasp
solver (DG-Wasp) This was done to enable better comparison with other sys-
tems used in our experiments. We provide run times of systems clingo, wasp,
clingo with a lazy propagator (Clingo-Lazy) [5], wasp with a lazy propaga-
tor (Wasp-Lazy) [5], and the partial compilation system (Partial-Comp) [6]. We
used three benchmarks to assess performance of the DG system: Stable Mar-
riage, Natural Language Understanding, and Packing. These benchmarks come
from the experimental analysis by Cuteri et al. [5, 6]. We refer the reader to these
papers for exhaustive details about these benchmarks; the constraints selected
for lazy grounding mirror those chosen in these papers. Here we only include few
remarks on these problems.

Stable Marriage (SM). Our experiments utilize the 2013 encoding of Stable Mar-
riage from the fourth ASP competition [1]. The lazily grounded constraint for
SM checks to see if a couple would rather be with someone else than each other:

:- match(M,W1), manAssignsScore(M,W,Smw), W1 != W, , Smw > Smw1,

manAssignsScore(M,W1,Smw1) match(M1,W),Swm >= Swm1,

womanAssignsScore(W,M,Swm), womanAssignsScore(W,M1,Swm1).

Natural Language Understanding (NLU). First introduced by Schüller [14], the
NLU benchmark determines the solution to first order horn clause abduction
problems under a variety of cost functions. These cost functions are the cardi-
nality minimality (card), cohesion (coh), and weight abduction (wa) functions.
The lazily grounded constraint for these problems ensures transitivity between
equation atoms: :- eq(A,B), eq(B,C), not eq(A,C).

Packing. The third benchmark in the DG experiments is the packing problem,
in which the goal of the problem is to pack a number of different squares into
a rectangular area such that none of their areas overlap. This problem is the
same as the packing problem in the third ASP competition [4]. The constraints
that check for overlap between each defined square and those that check square
positions are difficult to ground, so they are lazily evaluated:

:- pos(I,X,Y), pos(I,X1,Y1), X1 != X.

:- pos(I,X,Y), pos(I,X1,Y1), Y1 != Y.

:- pos(I1,X1,Y1), square(I1,D1), pos(I2,X2,Y2), square(I2,D2),

I1!=I2, W1=X1+D1, H1=Y1+D1, X2>=X1, X2<W1, Y2>=Y1, Y2<H1.

6 Yuliya Lierler and Justin Robbins

Table 1. Experimental test results; the average execution time is displayed along with
the number of timed out instances for each system and benchmark.

SM(210) card(50) coh(50) wa(50) Packing(50)

Clingo 229.307 (26) 74.613 (5) 67.303 (7) 78.069 (7) 1521.853 (49)

Clingo-Lazy 142.992 (91) 5.761 (0) 6.211 (0) 6.472 (0) 556.457 (31)

DG-Clingo 93.168 (80) 2.197 (0) 2.718 (0) 3.193 (0) 415.834 (38)

DG-Wasp 94.814 (116) 2.374 (0) 2.598 (0) 2.785 (0) 417.251 (38)

Wasp 186.613 (55) 111.309 (3) 112.397 (3) 135.637 (2) 1550.349 (46)

Partial-Comp 27.613 (64) 5.049 (0) 15.311 (2) 51.757 (1) 447.513 (28)

Wasp-Lazy 11.606 (68) 3.078 (0) 23.292 (1) 37.657 (1) 306.962 (38)

Results Discussion. The goal of our experimentation was to evaluate the per-
formance of the DG system. Table 1 presents the experimental outcomes. The
number following the benchmark names is the total number of the instances
considered. The numbers in columns are average run times of the systems on
instances that did not timeout. The number in parenthesis specifies number of
timed out instances.

For the NLU tests (columns card, coh, wa), DG tends to perform slightly
better than other lazy grounding systems, while systems that did not utilize lazy
grounding fell behind by a large margin. The NLU benchmark seems to benefit
greatly from the removal of its “problem” rules. DG’s slightly higher performance
when compared to other lazy grounding systems seems to mostly stem from the
lack of overhead in DG when a solution is produced on the first cycle; if a solution
is found, no constraints are constructed and the program ends. In contrast to
the NLU benchmark, DG’s performance on the Stable Marriage and Packing
benchmarks drops significantly compared to the other tested systems, especially
on SM. We believe this is due to the string processing done by the system during
constraint construction, and by the increased overhead caused by using Python
over the C++ code used by, for example, the Part-Comp approach. For Stable
Marriage, this is compounded by the fact that the problem is not a good fit
for the lazy grounding approach, as all of the lazy grounding systems hit slower
execution times than the base clingo or wasp systems. The Packing problem
presents a problem that is very difficult for both the base systems and the lazy
grounding systems; none of the tested systems were able to solve all of the
tested instances. The performance of DG seems comparable to that of its lazy
grounding peers that overall outperform clingo and wasp.

Conclusions and Acknowledgements We trust that the DG system is a valu-
able representative among the class of lazy grounding systems. We also see its
great value in showcasing how clingo multi-shot framework can be used in ap-
parently “unintended” and meaningful ways. The work was partially supported
by NSF grant 1707371.

DualGrounder: Lazy instantiation via Clingo multi-shot framework 7

References

1. Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G.,
Krennwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C.,
Ricca, F., Schneider, P., Schwengerer, M., Spendier, L.K., Wallner, J.P., Xiao, G.:
The fourth answer set programming competition: Preliminary report. In: Cabalar,
P., Son, T.C. (eds.) Logic Programming and Nonmonotonic Reasoning. pp. 42–53.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

2. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP
solver based on constraint learning. In: Proc. of LPNMR 2013. LNCS, vol. 8148,
pp. 54–66. Springer-Verlag (2013)

3. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Communications of the ACM 54(12), 92–103 (2011)

4. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming com-
petition. Theory and Practice of Logic Programming 14(1), 117–135 (2014).
https://doi.org/10.1017/S1471068412000105

5. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Constraints, lazy constraints, or
propagators in ASP solving: An empirical analysis. Theory and Practice of Logic
Programming 17(5-6), 780–799 (2017)

6. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Partial Compilation of ASP Pro-
grams. Theory and Practice of Logic Programming 19(5-6), 857–873 (2019).
https://doi.org/10.1017/S1471068419000231

7. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set
programming with lazy grounding. Fundamenta Informaticae (2009).
https://doi.org/10.3233/FI-2009-180

8. Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., Weinzierl, A.: OMiGA: An open
minded grounding on-the-fly answer set solver. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (2012)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot asp solving
with clingo. Theory and Practice of Logic Programming 19(1), 27–82 (2019).
https://doi.org/10.1017/S1471068418000054

10. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. In:
Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR). pp. 345–351. Springer (2011). https://doi.org/10.1007/978-
3-642-20895-9 39, http://dx.doi.org/10.1007/978-3-642-20895-9_39

11. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89 (2012)

12. Lefèvre, C., Nicolas, P.: The First Version of a New ASP Solver : ASPeRiX (2009).
https://doi.org/10.1007/978-3-642-04238-6 52

13. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25, 369–389 (1999)

14. Schüller, P.: Modeling variations of first-order horn abduction in an-
swer set programming. Fundamenta Informaticae 149(1-2), 159–207 (2016).
https://doi.org/10.3233/FI-2016-1446

