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ON AN EXPLICIT METHOD FOR THE SOLUTION
OF A STEFAN PROBLEMf

WILLIAM F. TRENCH

1. Introduction. This paper is concerned with the numerical solution
of a boundary value problem for the simple form of the equation of heat
conduction, where the boundary is not completely specified in advance,
but must be determined as part of the solution. Specifically, it is required
to find functions z(f) and u(z, t) such that:

(a) Uz (2, 1) = wi(z, t) (0 <z <x(t),t >0).

(b) (0, 1) = —1 (¢ > 0).
(1.1) (c) u(z, t) =0 (z = 2(t),t = 0).

(d) z(0) = 0.

(e) i(t) = —u.(z(t), t) (t > 0).!

The problem has a simple physical interpretation, as given by Evans,
Isaacson and Macdonald [6]. Consider a bar of length L, made of a sub-
stance which undergoes a change in crystalline structure at a certain criti-
cal temperature, which we denote by 7', . Assume that this change involves
a latent heat of recrystallization, and that the cross-section of the bar
does not vary along its length. Let the bar be preheated in such a manner
that its initial temperature is T, throughout, and so that it is originally
in the crystalline form corresponding to the lower energy state. If a con-
stant heat source is applied at one end of the bar, recrystallization will
oceur, and a boundary line will be propagated along the bar separating the
recrystallized segment and that portion which remains in its original state.
After an appropriate choice of units for temperature, time, heat, and length,
the motion of the interface and the temperature of the bar at any time
¢t = 0 will satisfy (1.1), as long as z(¢) is less than the length of the bar.
Tor the sake of convenience, we may assume L = oo, for if the bar should
ever be completely recrystallized, the question of finding its temperature
reduces to a classieal, linear, heat flow problem.

Problems such as this, involving the solution of a parabolic equation
subject to an “‘extra’ boundary condition (1.1e) which defines the position
of the unknown boundary, have been treated in the recent literature under
the name of “Stefan problems” (1, 2, 3, 4, 5, 6, 11, 12]. Evans [5], Rubin-

t Received by the editors May 1, 1958 and in revised form October 31, 1958.
1 Throughout this paper, whenever a derivative is taken at the boundary z(¢),
it is to be interpreted as a derivative from the left.
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stein [11], and Sestini [12], have demonstrated the existence of a solution
of (1.1) by means of an iterative process based on equation (6.4) derived
below. Douglas and Gallie [3] have demonstrated existence for all ¢ such
that

0= =2(t) <1,

by means of a numerical approach based on an implicit finite-difference
analogue for (1.1a). Crank (1], Ehrlich [4], and Landau [9] have proposed
finite-difference methods for the solution of more general Stefan problems,
but have not given proofs of convergence. Douglas [2] has demonstrated
the uniqueness of the solution for a generalization of (L.1).

In the present work, an explicit numerical analogue for (1.1) is formu-
Jated. It is shown that the mesh functions so defined converge to z(t), and
u(zx, t), the solutions of (1.1),in0 = ¢ < =, and that the convergence is
uniform in every finite interval. The existence of the solution is not assumed
beforehand; rather, it is shown to be a consequence of the convergence of
the mesh functions and an existence theorem for a classical boundary
value. It is also shown that the explicit finite-difference algorithm, when
applied to a classical problem related to (1.1) defines mesh functions
which converge to the solution as the mesh size tends to zero.

To the author’s knowledge, the only previous proof of convergence of a
numerical integration of a Stefan problem is that of Douglas and Gallie.

9. Some preliminary results. In the following, a function u(z, t) will be
said to be regular in a domain D if u, and u. are continuous in D.

The question of convergence of the numerical solution of the Stefan
problem will be reduced to the same question for a classical boundary
value problem, which we now deseribe.

Let x(t) be given so that

z(0) =0,
(a) (t>0).

(2.1) z(t) > 0
(b) 0 < 2(t) —x(h) S b — N (>0 20).

Lemma 1. If x(t) satisfies (2.1), there exisls a unique function u(zx, t)
such that

(a) w(z, t) = uu(2, b), 0<z< x(t),t > 0).
22) (b) u:(0, 1) = —1 (t > 0).
(e) u(z, t) =0, (z 2 a(1),t 2 0),
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and u 1s regular in
R={@zt]o<z<=z(t), t>0i.

and continuous in the closed first quadrant x = 0, ¢t = 0.

This is a consequence of a general theorem stated in [7].

In order to study the solution of (2.2), it is useful to examine the func-
tion v(x, ) which satisfies

(a) vz, 1) = v(z, 1), (—z(t) <z <=z(),t > 0).
(b) v(Zx(t), t) = z(t) (tz0),

and is regular in the domain | z | < z(¢), ¢ > 0. The existence and unique-
ness of »(z, t) follows from (2.1) and the classical theorem given in [7].

Lemma 2. Let u(x, t) and v(z, t) be the solutions of (2.2) and (2.3)
respectively. Then

(a) u(z,t) = v(z,t) —2
(b) 0=wu(xt)=2(l) —=
(¢) u(zx, t) has continuous derivatives of all orders in 0 = x < x(t),

(2.3)

(2.4)

t>0.

Proof. (a) v(—z, t) also satisfies (2.3) and is regular between the two
boundary curves. By uniqueness, v(—z, t) = v(z, t) and therefore »:(0, t)
— 0. The statement (a) now follows immediately from the uniqueness
theorem for (2.2), since v(x, t) — z is a regular solution of (2.2).

(b) We give a proof due to Evans [5]. From the maximum-minimum
theorem [10] for parabolic equations, and the monotonicity of x((), it
follows that

0 = o(x, t) S (1), |z | = =(¢).
Therefore, from (a)
—z £ u(x, t) = z(t) —2, 0= a s (1),

and we need only show that u(z, t) = 0. Let (2o, &) be such that u(zo, to)
< 0. Then by (2.2¢) and the maximum-minimum theorem, there exists
4 with 0 < &, < {, such that %(0, ¢,) is the minimum of u(z, {) in0 = =

< 2(7), 0 £ 7 £ L. But then

w(z, t) — u(0,4) > 0
: —_— ’

u,(0,4) = lim
z|0

which contradicts (2.2b).
(¢) If a function is a regular solution of the heat equation in a domain
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D, then all of its derivatives exist in that domain [8]. Hence, v(z, t) has
derivatives of all orders in —z(t) < 0 < z(t),t > 0.
But

"u(z,t) i a"v(z,t)
az" ax"

(0 =z <z(1)),

for n > 1. (Note that no implication is made concerning the existence or
continuity of derivatives at the boundary z = 2(t).)
Cororrary. If u(x, t) is the solution of (2.2), then

(2.5) 0wz, t) 1, 0=z<azlt), (>0

Consequently, u.(x, t) is uniformly continuous in x in the closed interval
0 =2 = x(1) for every t > 0.
Proof. Let At > 0, fixed but arbitrary, and let

v(z, t + At) — v(z,t)

Q(x)!) n At ?

-z(t) < z < (1),

where »(z, t) is the solution of (2.3). Then Q(x, t) is continuous in —z(t)
= v S (1), t = 0, and satisfies the heat equation in the interior of this
set. Also, by (2.4a) and (2.2¢),

Q&ﬂmﬂ=@ﬂ%§t@, (20

Therefore, by (2.4b) and (2.1)

x(t + At) — 2(8) <1

0 = Q+=(1),1] = — Al RS

and it follows from the maximum principle that
0=Q(x0 =1 |z|s=2(), t=20.

But from the definition of Q(z, t), and the fact that vi(z, t) = w(x, t) for
0 =z < z2(t), (2.5) follows by letting At tend to zero. The statement
concerning u, follows from (2.5), the mean value theorem, and (2.2a).

3. The difference equations. In this section we will define an explicit
numerical procedure which will be applied to the Stefan problem (1.1),
and to the classical problem (2.2), where a boundary curve z(f) is given
beforehand satisfying (2.1). It is convenient to consider the latter problem
first.

Let 1 > h > 0and k = M®, where X is a constant such that

(3.1) 0<A< i
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The quantities & and % will be taken to be increments in 2 and ¢, respec-
tively. Denote

z(nk) = x(n) (n=0,1,2,++-),
and let
(3.2) M, = [x(n)/h] — 1,
where [2] is the greatest integer in z. Also, define

_ a(n) = M, b

n Py .

Then
(3.3) 1 2P, <2

Let 9 (h) be the set of mesh points
2 _ m=0,1, cee, M,
aMm(h) = {(mk,nk) e } .

We will be considering functions of two variables which are defined on
points of M(A). For a funetion u(x, ¢), it will be convenient to denote its
values on mesh points by

wu(mh, nk) = u(m, n).

Now let x(¢) be given, satisfying (2.1), and let f(¢) and ¢(¢) be functions
such that a solution w(z, {) exists for the boundary value problem:

(a) wi(z, 1) = w2, t), 0 <x<a().
(3.4) (b) w(0, 1) = f(t), O<t=T.
() w(x(t), t) = g(b), o0=t=1).

Assume furthermore that f and g are such that

<K (r=1,23,4)

(35) ‘ 7% (a,1)

in the closed set
Rr={(x,0) |0 2= 2(t),0=t = T}.

Let ny = no(h) be the first integer such that M,, = 3. Then for n = ny,
the following relationships obtain between values of w(z, {) on mesh points
of M (k) for which (n + 1)k = T':
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(a) w(0,n+1) =w(l,n+ 1) — hf(n + 1) + K-0(&*)
(b) wim,n+1) =xw(m — 1, n) + (1 — 2N)w(m, n)

+ z(m + 1, n) + K-0(k") (m=1,2 , M, —1).
(3.6) (e) w(M,,n-+4+1) = + P. w(M, — 1,n) + (1 — —)w(M,.,n)
2\g(n) oo
- m + I - 0(Rh°).

Also, if M1 = 1 + M, , which will occur if
z(n) £ (M, + 2)h < z(n + 1),

then

W(Mnp,n+1) = _ Pan w(M,,n + 1)
1 i Pn-l-l
(3.6d)

gln 4 1) YT
+1 +Pn+1+K0(h)'
In each equation, the quantities 0(A%), 0(A*), and O(h') are independent
of K.

A detailed derivation of these equations is given in [13], and consequently
only a brief explanation need be given here. Equation (3.6a) is a discrete
analogue for (3.4b), while (3.6b) follows from (3.4a) for the case of equally
spaced values of the variable 2. Equation (3.6¢) also approximates (3.4a)
with unequal spacings in x, and it makes use of the boundary condition
(34c). The last relation, (3.6d), is simply linear interpolation for
w(M,e,n + 1) based on w(M,, n + 1) and the boundary value
g(n + 1). From (2.1), the fact that k is less than unity, and (3.1), it
follows that either

A/In-i-l = ﬂfn

Mn+1 = I + Ilfn.

Since that portion of (3.6) which is homogeneous in w(m, n) will be
ased several times throughout the remainder of the paper, it will be useful
to formulate it in a more convenient manner. Let S be a (1 + M,)-dimen-

sional vector
I' s(0)
3= s(_l)

Locir
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and fI(n) be the operator on 8 which produces the (1 4 M, .)-dimen-
sional vector

R = Hn)S,
with
(a) r(0) = r(1),
(b) r(m) = rs(m — 1) + (1 — 2))s(m) + As(m + 1)
(3.7) (m=12,--- M, — 1),
ry - 2\ . _ 2\
© 00) = 1P st = 1) + (1 I,_“) s(M,),
and if M4y = 1 4 M, , then r(M,4,) is given by
¥ il PrH—l y
(d) ?‘(ﬂfn“) = TP:H-: ?"(i”n) ,

Clearly fI(n) is a linear operator dependent on the sequence {z(n)} and
the mesh size h. A fundamental property of H(n) is the following:

Lemma 3. If the norm (|| || ) of a vector is taken to be the mazximum of the
absolute values of its components, then

(3.8) IRI=1H=)S|=|8],

or in words, H(n) is “stable”. Furthermore, if all components of 8 are non-
negative, so are those of R.

Proof. The assertion follows from the fact that the coefficients in (3.7)
are all nonnegative, and the sum of the coefficients in each equation does
not exceed unity. These properties are consequences of (3.1) and (3.3).

In terms of the operator f(n), we can write (3.6) as

Wn+1) = Am)W(n) + 8(n + 1),

where
w(0, n)
(39) Wy =| ©Ln)
w(ﬂf;. ,n)

and S(n + 1) isa (1 + M, ,)-dimensional vector whose components can
be ascertained by inspection of (3.6).

The statements concerning the size of the error terms in (3.6) are not
directly applicable to the classical problem (2.2) or to the Stefan problem,
For the former, although the existence of a solution is guaranteed by
Lemma 1, there is no reason to expeet that it has four bounded derivatives
in Ry for any T > 0. Obviously, nothing can be said about the latter at
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this time, since we have not yet shown that a solution exists. Nevertheless,
these estimates will be used to advantage in §3, in a situation where the
hypothesis of four bounded derivatives will automatically be satisfied.
For the present, we will make use of the transformations {H(n)} to formu-
late numerical methods for (1.1) and (2.2).

We consider first the case where the boundary curve z(t) is given in
advance. For each h > 0, we define a function v(x, ¢, h) in 0 £ z = z({),
t > 0. The function will be given on mesh points by the following differ-
ence equations, and intermediate values may be thought of as being
obtained by linear interpolation, and the condition that

(3.10) v(x, I, h) = 0, t=0, x = z(l).
Let
(3.11) w»(x, t, h) = 2(t) — 2, 0=z = 2(0), 0 =t = nok.
FFor n = ny, let the mesh point values be defined inductively by :
(3.12) V(n 4 1) = Hn)V(n) + D,
where V(n) is defined in analogy with W(n) in (3.9) and
h
_ 0
D=1|0
0
Thus, v(m, n) satisfies recurrence relations of the form (3.6) with K
= g(n) = 0 and f(n) = —1.

For the Stefan problem, it is necessary to compute an approximate
boundary curve x(f, h). Let

(3.13) x(t,h) =t 0= 1= nk,
and for n = ne, let
(3.14) O L 1) ) ”@}f};' ")

with »(z, ¢, h) defined as before by (3.10, 3.11, 3.12). Since the operator
H(n) depends only on z(n + 1), while the latter depends only on x(¢, h)
and »(x, t, h) for 0 < { =< nk, the computational process is well defined,
provided x(¢, h) satisfies (2.1). It will be shown in §4 that this is the case.
Of course, for the Stefan problem, H(n) depends on v(m, r) for » < n, since
2(n) is a funetion of these values. Consequently, {f(n)} is no longer a
linear sequence of operators, but Lemma 3 still holds, since it follows from
the properties of the coefficients in (3.7).
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4. Properties of the mesh functions. As a preliminary to the convergence
proof, we establish some results concerning the behavior of the mesh
funetions.

For convenience, define the difference quotients Av(m, n) and Ax(n) by:

sttt 1) = om, 0)

(41) Av(m,n) = E
(m=0,1,+,M,;n = n)
(42) ) . L 1’,3 = #(n) (n =012 ).
Also let
P:“ i 8 z(n + lz —_ J:(n)
From (3.12), and the definition of A (n), .

(8 i iy = =) = BCR) 4 500 1,6

(43) Q=ms M, —1).
2 [o(My— 1,n) _ o *Us, ]

(b) Aw(M, ,n) = r[ TP,

Also, if 2(¢f) is not given beforehand,
oy _ (M, m)

(4.4) A.‘L(ﬂ) e ‘—'—hpn .

We now state the recurrence relations which are satisfied by Av(m, n).
Lemma 4. Let Ax(r) satisfy

0= Ax(r) £ 1 (r =mng,no+1, -+, ).

Then if M, = M, , the difference quotients Av(m, n 4 1) are obtained
by means of the following formulas:

(a) Av(O,n+1) = &v(l,n+ 1)
(b) Av(m, n 4+ 1) = No(m — 1, n) + (1 — 2\)Av(m, n)

+)\Av(m+ln) (m=132"'°:ﬂ{"_1)-
(4.5)
MAz(n) 2 _
(e) |—1 + B ]Av(M,.,n +1) = i+ P, Av(M, — 1,n)

Dss(n) oMo, n 4 1)
1+ P,)P, hP} 1 '

i (1 = %) Aol ) b
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If My = 1 + M,, then equations (4.5a) and (4.5b) still hold, but
Av(M,,n + 1)is obl;ained by multiplying the right hand side of (4.5¢)
by the factor (1 + Pny)/2 and

(4.5d) A(Mus1,n+ 1) =0.

The derivation of these relations is a straightforward matter, and the
details are given in [13].

This lemma has as a consequence the following important theorem:

TureoreM 1. If x(t) is given, satisfying (2.1), and v(m, n) 1s defined by
means of the difference equations (3.12) for n > ng, and by (3.11) for n
= ng, then for n = ny :

(a) v(m,n) 20 (m=0,1,---, M,).
(b) Av(m,n) = 0 (m=0,1,--, M).
(4.6)  (e) 0=2v(imn) —v(m+1,n) =h
(m=0,1,---, M, — 1).
(d) v(m,n) < x2(n) — mh (m=0,1,---,M,).

Furthermore, if x(t) is not given beforehand, but is defined by (3.13) and
(3.14), then the above assertions still hold for v(m, n), and

(4.7) 0= Ax(n) = 1, (n=0,1,2 - ).

Proof. We proceed by induction on n. The conclusions of the theorem
are obviously true for n = n,. Assume only (4.6a) and (4.6b) are true
the nth time interval. We will show first that (4.6e, d) and (4.7) follow
from this assumption.

From (3.12), (4.3), and (4.6b),

h=v0,n) —o(l,n) 2v(l,n) —ov(2,n) = ---

(M, ,n)
P, :

This is the proof of (4.6¢). The statement (4.6d) follows obviously from
this, since

v(m,n) = [p(m,n) —ov(m + 1,n)]+ [w(m + 1,n) —v(m+2,n)] + ---
+ [(Mn =1, ) — v(Ma,n)] + o(M,, n)
< (M, —m)h + hP,

= oM, —1) —o(M.,n) =

= z(n) — mh.
For the Stefan problem, (4.7) follows from (3.14), (4.6a), and (4.6d) with
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m = M, . This yields the important fact that the boundary curve x(¢, k)
has the properties (2.1).

To see that v(m, n + 1) = O form = 0,1, ---, M,,;, we need only
use the induction assumption (4.6a) and the second conclusion in Lemma 3.
The fact that Av(m, n + 1) = 0form = 0, 1, --- M, follows from the
nonnegativity of the coefficients in the recurrence relations of Lemma 4,
and the induction assumption (4.6b). This completes the induection.

It is now possible to derive an important relationship between the fune-
tions x(¢, h) and »(x, ¢, k), which are proposed as numerical approximations
to the solution of the Stefan problem (1.1).

Turorem 2. Let x(t, h) and v(x, t, h) be the functions proposed in §3 for
the solution of the Stefan problem (1.1). Then for every t of the form t = nk
such that t > nohk, the following relationship obtains between x(t, h) and
v(x, &, h):

z(t A
(48) 2(t,h) = U1 + 0(h)] ~fn B R) 25

where the quantity 0(h) is independent of {.

Proof. It is meaningful fo speak of the integral of v(x, {, k), since this
function was extended between mesh points by linear interpolation. We
first derive a discrete analogue of (4.8), relating the values of (¢, &) and
v(z, ¢, h) on mesh points. IFrom the relations (4.3):

hk ff v(m, n) = k M“Z_;l im — 1,n) — 2v(m,n) + v(m + 1,n)]
m=1 m=

+

gg[u(ﬂf,, =1,n) _ v(M,,,n}:I
AL 1+P,. P, I

Using the fact that

U(o,ﬂ-) T ’U(I,n) i
..._._,._T. et

and (4.4), this equation can be written

I,

My 5 :
kh 3, Av(m,n) =k — kAz(n) — u"—)lﬁ

m=1

Av(M,,n).

Now let N > np and sum both sides of the last equation from n = n, to
n = N to obtain:

My

kh i‘, > Av(myn) = (N+ 1Dk —z(N +1)

n=ng m=1

(4.9) W
— mk + z(n) ~ 2% 3 (Py = DA, ).

2 n=ng
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3y interchanging the order of summation on the left, we obtain
KR oM D N, Av(my n) = 2 omMv(m, N + 1)k
— Do w(m, nm)h,

vhere for m = 1, 2, the quantity v(m, n,) is the initial value given by
'3.11) and for m > 2, it is the interpolated value given by (3.7d). There-
ore, from (4.6d)

“110)

4.11) S MY u(m, nw)h S b (3h) = 3M k.
By the definition of ng,

4.12) 0= a(m) — nok < k.
Also, the last sum on the right of (+.9) is dominated by

hl: &
Q=% 2 &(Ma,n),

& m=mg

vhich can be written as

h <X
Q=;520m.

2 e
vhere a,, is the growth of 2(m, n) during the time interval for which
(m+ Dh < z(n) £ (m+ 2)h.
['herefore
am < 3h,
wy (4.6d), and we have
1.13) Q = 3 My

By substituting (4.10) into (4.9) and applying the estimates (4.11), (4.12),
4.13), we obtain

|2(N 4+ 1) = (N + Dk + a8 o(m, N + 1)h| £ k + §MH
which, after the substitution { = (N + 1)k takes the form:

My E
xd, h) — t + 21 he(mh, t,h) | < k + %hz(t,h).

But, by Theorem 1, the function »(z, {, h) satisfies a Lipschitz condition
n x, independent of . Hence

My

x(t,h)
f o(z, b, k) de = 3. o(mh, t, k)h + 2(t, h)O(R),
0

m=1
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where O(k) is independent of ¢. Since z(, h) < ¢ by Theorem 1, the proof
of Theorem 2 is now complete.
CoroLLARY. For every t = nk withn = n,,

(4.14) x(t, h) [l + ‘-‘—(‘2—}‘2] = 1 + 0(R)).

Proof. By Theorem 1,
0 2o, t,h) < a(t, h) — z.

Hence

(4, h) + fo

xit,h)

z(t,h)
v(z, 4, k) dz < «(t, h) +fo (4, h) — 2] dz

= a(t, h) [1 - f%@].

To obtain (4.14), substitute this in (4.8).

We will now state a lemma which will be useful later.

Lemma 5. Let 2(¢) and y(¢) be two functions satisfying (2.1), and
v(x, ¢, h) and u(z, t, h) be the mesh functions defined (for the same h > 0),
for 2(t) and y(t) respectively, by means of the difference equations

(3.10), (3.11), (3.12). Then if

(4.15) l2(t) —y() | £ ¢
in0 =t £ 7, it follows that
(4.16) fu(z, t, h) — v(x, 4, h) | € € + 4h.

nd=a< e, 0t

The proof of this lemma is given in [13]. It makes use of the stability of
the linear operators defined in §3, and of (4.6d). For an analogous theorem
concerning the boundary value problem (2.2), the reader is referred to
Douglas and Gallie [3].

5. Convergence of the mesh functions for the classical problem. In
this section we will demonstrate the convergence of a numerical solution
for (3.4), under the strong assumption (3.5). We will then remove this
assumption and obtain a similar convergence theorem for the less general
problem (2.2). In each case it is assumed that z(t) satisfies (2.1).

For (3.4), assume that in some way, appropriate values z(m, ny) are
defined for m = 0, 1, 2. Then define z(m, n) on mesh points of M (k) by
requiring that z(m, n) satisfy (3.6) with K taken to be zero. Then we
have the following theorem:

THEOREM 3. Under the hypotheses (3.5),
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(5.1) |z(z,t,h) — w(x, t)| S o + KT-0(h), (2, 1) € Rr 0 M(R),
where
o = max, | z(m, no) — w(m, no) |.
Proof. Let
e(m,n) = w(im,n) — z(m, n).
By subtracting each of the equations defining z(m, n) from its counterpart
in (3.6), we obtain

Bn+1)=HEnR) +Th+1);m =n = [z],

where
[0(K")]
N 0(h")
Tn+1)=K| :
0(n*)
LO(R") ]
if Mpyr = M, , and
C0(R*)
0(h")

T(n +1) = K| o)

0(r")

| 0(h")_

if Moy = 1 4+ M, . In both these vectors 0(h*) occurs M, — 1 times.
Since the operators H(n) for a given () are linear, we may think of
F(n) as the superposition of four vectors

BE(n) = XiaEin),
where
(5.2) | Ei(no) || = bue (i=1,2234)
and

(5.3) Edn+1) = Hn)Ein) + Tin + 1) (no £ n < [T/K])
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with
841 0(h*)
- 82 O(R*)
Tin+1) = K :
82 0(A%)
Lﬁsz 0(h’)
if M, = M, and
[64 0(R")]
82 0(A")
Tin+1) =K| s, 0:(;,‘)
8: O(h")
85 0(h")

.

if M, = 1+ M, . Here again 0(h') occurs M, — 1 times in both cases.
The symbol & is the Kronecker delta.
It is convenient to estimate the norms of the vectors E:(n) separately,
making use of the stability of the operators as stated in Lemma 3.
Ei(n): From the mean value theorem and the fact that all coeffi-
cients in H/(n) are nonnegative, it follows that

| Ex(n) || = N AMm) |, (no = m < (T/R)).

where

(54) ;{(ﬂa) =0

and

P{h*
T2
0
0

An+ 1) = HAM) + (ng < n = [T/k]).

0

But by dividing both sides of the last equation by Kh/2, it can be seen
from (3.11), (3.12), (4.6d), and (5.4) that

| A(n) || £ Kha(n)/2.
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Therefore
| Ei(n) | = TKR/2 (0 £ n = [T/R).

Fy(n): From (5.2) and the repeated application of (5.3) for ¢ =
it follows that

H Ez(ﬂ,) || = Zf?-frﬁl I T‘J(k) I
< nK-0(h") < TK-0(h)  (no < mn < [T/k]).

Ey(n): The components of Ts(n) are all zero except for values of n
where interpolation is necessary. Now, for those values of n under con-
sideration, the number of times that this occurs does not exeeed the ratio
x(T)/h, which is by assumption less than 7'/h. Hence,

| Ba(n) || £ 2ingss || Ta(k) || < KT-0(h).
Ein):  Since the error vector Ts(n) vanishes for all n,
I Zi(n) || < || E(mo) || = o

These estimates can be combined to yield (5.1).

THEOREM 4. Let 2(t) be given, satisfying (2.1), and let u(x, t) be the solu-
tion of (2.2), and v(x, t,h) bedefined for the curve x(1) by (3.11), (3.12). Then
for any T > 0 and ¢ > 0, there exvists a quantity ho > 0 such that h = ho
implies:

|v(z, t, h) — uz, t) | £ ¢
on all mesh points of M(h) N Ry .
Proof. Let
ye(t) = a(t) — /458 2 L,
where
te = sup {t]a(t) = /4.

Then by Lemma 2, statement (2.4¢), u(z, t) has four uniformly bounded
a-derivativesin 0 £ o = y(f), t. £ t < T. Let K, be this common bound,
and

u(y.(t), t),
wa]

g.(t)
fe(t)

for t = t.. Take n, to be the first integer such that y(mk) = 3h, and define
a mesh function »,(m, n) in

R(T)={0sz2yt),t. St T
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by
n(m, m) = v(m, ny)

form = 0, 1, 2 and for n = n; by the recurrence formulas (3.6) with

f(n) = ......l,
g(n) = g(n),
K =0,

and z(t) replaced by y.(f). Then since the hypotheses of Theorem 3 are
satisfied,

(5.5) | vi(m, n) — u(m, n) | = K.T-0(h)

in R(T) N am(h).
Now define vo(m, n) in R.(T) N 9M(h) by means of (3.11), (3.12) with 2:(¢)
replaced by y.(t). From (2.4b),

lgn) | S e/t n=m,m+ 1, -,
and therefore from the stability of the difference operators,
(5.6) [va(m, n) — v(m, ) | S /4

on all mesh points under consideration. However, if v.(m, n) is taken to
be zero to the right of y.(¢), it follows from Lemma 5 and (4.6d) that

(5.7) | vo(m, n) — v(m, n) | = 4h + /4
in R(T') N 91t(h). Combining estimates (5.5), (5.6), (5.7), we conclude that
lv(m, n) — u(m, n) | < K.T-0(h) + ¢/2.
To complete the proof, choose k so that
KT-0(h) < ¢/2.

6. Convergence of the mesh functions for the Stefan problem. In §4 it
was shown that for every k > 0, the curve z(¢, k) computed for the Stefan
problem satisfies the conditions (2.1). Hence the family of funetions

F = {x(t,h) |h > 0}

is equibounded and equiuniformly continuous for all ¢ = 0. If G is an in-
finite subfamily of F, it follows from the theorem of Arzela and Ascoli that
there is a sequence {z(¢, h,)} of funetions in G which converges to a limit
x(¢) in¢ =z 0, and uniformly in every finite interval. Hence, we may choose
a sequence {h,} with the following properties:
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(a) he>ha>0
(b) limeswhy = 0
(6.1) (¢) hea divides h, .
(d) The sequence {x(¢, h,)} converges to a limit z(¢) in ¢ = 0,
and uniformly in every finite interval.

Lemma 6. The limit function x(t), defined by (6.1), has properties (2.1).

Proof. The Lipschitz condition (2.1b) is obvious, since every approxi-
mating function x(¢, h,) satisfies the condition. To see that x(f) > 0 for
£ > 0, simply let h tend to zero in (4.14).

Now let T > 0, and let 9(h.) be the mesh corresponding to A, , for
the curve z(t), as defined in §5. From (6.1¢) every mesh point of 9 (A,)
is also a mesh point of M (A,41). Let

m = U::ﬂ m(hr)-

Then 91 is dense in R(T'), from (6.1b).

As before, let v(x, {, h,) be the mesh function which is computed along
with the boundary z(t, k), according to the method given in §3 for the
Stefan problem.

TaeOREM 5: If

z(t) = limew2(t, h),

where {h,} is a sequence of the type (6.1), and #f u(x, t) is the solution of
(2.2) for this boundary, then the sequence {v(z, !, h.)} converges uniformly
to u(a, t) on M.

Proof. For the limit curve x(t), form the mesh functions {u(x, ¢, h,)}
according to the definitions (3.11), (3.12). Let ¢ > 0 be given, and choose
ro so that for r = ry:

(a) L ulz, b, h) — ulz,t) | < g ((z,t) € m(h,)).
(62) (b) | 2(t, be) — 2(t) | < § 0=<t=T).
(e) 4h, < %

The existence of such an integer r, is guaranteed by Theorem 4, and (6.1).
But by Lemma 5 and (6.2b, ¢), we have for r = o :
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?_e
3

on mesh points of 9(k,). Combining this with (6.2a), we conclude that
forr = no

l "'I(xl t! hf) - u(x} t; hr) | é % + 4}51- é

[o(z, ¢, he) — u(z, 8) | < €

on mesh points of 9M(h,).

TurorEM 6. Let (t) = limq.. x(l, h,) and u(z, t) be the solution of (2.2)
for this boundary. Then x(t) is differentiable in t = 0 and
(a) #(0) =1
(6.3) 0
(b) a(t) = —ulx(t), t) (t>0).

Consequently the pair of functions x(t) and u(x, t) is a solution of the Stefan
problem (1.1).
Proof. (6.3a) follows from the fact that for ¢ > 0

120, 1

= ot T 142

Simply let ¢ — 0. For (6.3b), we give a proof similar to that of Evans [5];
however, we do not assume, as he did, that w,(z, t) is continuous in the
closed set 0 £ « < 2(¢), ! = 0. From (4.8) and Theorem 5, it follows that

£10]
(6.4) z(t) =t — _l; u(zx, t) dr

for any t which appears in the mesh 9. But these values of ¢ are dense in
0 = ¢t = T, and both sides of (6.4) are continuous in ¢; hence it holds for
all £ in (0, =), since T is arbitrary.

For At > 0 it follows from (6.4) that

z(t + At) — x(t) _ O (e, t 4 A1) — ulz, 1)
¢+ o) —alt) g fa N dx

z(I+AL)
_ ulzx, t + Atf) 5 t>0).
z(t) Al
But from (2.4b) and (2.1a), the second term is dominated by Af. Further-
more, from (2.5), the difference quotient in the first integral on the right
tends boundedly to wu.(z, t) = wu..(x, t). Hence, by Lebesgue’s bounded
convergence theorem, #(¢) exists (from above) and

z(t)
#(t) =1 — j; gz, t) dx (t > 0).

To complete the proof, perform the indicated integration and apply (2.2b).
A similar argument applies to the case At < 0.
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TueorEM 7. If h, is any sequence having properties (6.1), then {x(t, h,)}
and {v(x, ¢, h.)} converge uniformly to x(t) and u(x, t), the solution of the
Stefan problem.

Proof. From the uniqueness theorem of Douglas [2], the solution of (1.1)
whose existence is guaranteed by Theorem 6 is the only one. Suppose there
is a sequence [k} for which {z(¢, h,)} does not converge. Then by the
Arzela-Ascoli theorem, it would be possible to choose two subsequences
thi} and [hy} such that

limyaw (8, ) = 21(8),

limae 2(8, her) = 22(8),

and x,(¢) # a2(t) for some value of {. But by Theorem 6, both x; and .
would be boundary curves for the Stefan problem, and this would con-
tradiet the uniqueness theorem. Since, from Theorem 5, the convergence
of {x({, h,)} implies the convergence of {v(x, t, k)], the proof is complete.

Condition (6.1¢) is not essential for any of these conclusions; it is im-
posed simply as a matter of convenience in exposition.
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