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Department of Mechanical Engineering, Lubbock, Texas 79409
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A mechanism-based microscale kinetic theory for strain-induced structural changes (SCs) (that includes phase
transformations (PTs) and chemical reactions (CRs)) is developed. Time is not an independent parameter in
this theory; instead, plastic strain is a time-like parameter. Kinetics depends essentially on the ratio of the
yield strengths of phases. Stationary and nonstationary solutions of the kinetic equations are analyzed for
various cases, including SCs between two phases in an inert matrix and between three phases in silicon and
germanium. A number of experimental phenomena are explained, and material parameters controlling the
kinetics of strain-induced SCs are determined. This includes the possibility of intensification (or suppression)
of SCs at the initial stage of straining by adding a stronger (or weaker) inert phase, zero pressure hysteresis
that however has nothing to do with phase equilibrium pressure, the possibility of obtaining some phases
(that cannot be obtained under hydrostatic loading) under strains, and the possibility to obtain some phases
under relatively small shear, which disappear under larger shear.

. Introduction explain this effect theoretically. Zharbv'8suggests the simplest
In addition to SCs caused by temperature and/or pressure,forma.I straln-controllgq Kinetic .equatlo.ns thatscan b.e f'.tted 0
experiment for specific reactions. Gilma#fg®> qualitative

there is a broad class of SCs induced by plastic straining. Strain- L .
induced synthesis of various materials and chemical compoundsatom'suc models are focused on the effect of elastic rather than

. - , lastic shear. Recently, we developed a theory describing the
(superhard, amorphous, and semiconducting) by ball-milling plastic .
(mechanical alloying or mechanosynthesis) is one of the moststram-mduced SCs at the macroséafé (plastic flow of a

important technological examplé3Interpretation of geophysi- samp!e with SC), at the microscéﬁe(strain-controlIe.d kinef[ic
cal experiments (e.g., deep earthquakésgnition of explo- equations), and at the nanos@l@ucleation at a dislocation

sivess® and friction and wear dafarequires understanding  Pileup). Our combined multiscale thed?y* explains fifteen

of shear-induced SCs, in particular, in shear bands. FundamentaMéchanochemical phenomena.

experimental aspects of strain-induced SCs are extensively The mere fact that the above phenomena are observed for
studied under high pressure. Starting with the pioneering work PTs and CRs in various classes of materials suggests that there
by Bridgmar® on rotating cemented carbide anvils, followed are some universal microscopic (on the scale-61@00 mm)

by the work on rotational diamond anvils by Blank’s gradpt® explanations for their existence, independent of specific atom-
it is well-known that the addition of plastic shear, through the istic and nanoscale mechanisms of SC. In this paper, we develop
rotation of one of the anvils, leads to findings that have both and comprehensively study some general aspects of the mech-
fundamental and applied significance and do not have coun-anism-based microscale kinetic theory of strain-induced SCs.
terparts in pressure/temperature-induced SCs. Thus, plastic shear |5 section I, we summarize the main universal nanoscale

leads to a significant (in some cases, by a factor 58 features of the nucleation at the strain-induced defects (disloca-
reduction of P¥#1*and CR7® pressure. It also leads to the {jong dislocation pileup, or various tilt boundaries) that can be
formation of new phases, which were not produced without yransferred into microscale kinetic equations. In section I1l, the
rotation!’~22 The most important point for the current study is  inetic equations for am-phase system are derived and

that the volume fraction of the product phase or the reaction analyzed. This model allows us to describe some known

i i i i i ; 7,18 _ . )
proddyc'F |Zan mc(;reatsmfgt.funct!l?r? of ]Ehe platstlg shea; éﬁrlg'g' h experimental phenomena and understand which material pa-
and is independent of time. Therefore, strain-controlled (rather rameters control the kinetics of strain-induced SCs. Distin-

than time-controlle_d) _kinetics is_ considered. Plastic shear reduces uished features of the new kinetic equations include the

pressure hysteresis, i.e., the difference between the start pressu llowing:

of direct and reverse P1:23 This lead to the hope that plastic ' , .

shear could be used to localize the phase equilibrium pressure. (&) The equality of the driving forces for SCs to zero does

In one case, pressure hysteresis was reduced to zero; from thighot determine the relationship between phase equilibrium

it was claimed that the obtained PT pressure could be interpretedPr€Ssure and temperature; instead, they result in strain-controlled

as an equilibrium pressuféAs we will show, this is not true. ~ Kinetic equations. The phase equilibrium pressure (or temper-

In another case, the possibility of intensification (or suppression) ature) does not participate in kinetic equations and consequently

of CRs by adding a stronger (or weaker) inert phase was cannot be determined from them.

observed experimentally.18 (b) Time is not an independent parameter. Instead, plastic
Despite the fundamental and applied importance of the effect strain is a timelike parameter, i.e., derivatives are evaluated with

of plastic shear on SCs, until recently, there were no efforts to respect to accumulated plastic strain rather than time. That is
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why we call this kinetics strain-controlled rather than time- P
controlled.
(c) Kinetics depends essentially on the mechanical properties
of phases, namely, on the ratio of the yield strengths of phases.
(d) This dependence also involves the volume fraction of i
phases which changes the order of the kinetic equations. In the
general case, the order of the reaction is not determined. ..
Explicit stationary solutions are derived for three-phase '

ya
systems, and their dependence on the ratio of the yield strengths | é\ » b
N\ \
d

of phases is analyzed.

In section IV, SCs between two phases in an inert matrix are
studied. Both stationary and nonstationary solutions are obtained
and analyzed for several pressure ranges. The nonstationan
solutions explain the possibility of intensification (or suppres-
sion) of SCs by adding a stronger (or weaker) inert phase, which
was observed experimentafiy/18 However, such an intensi-
fication (suppression) is effective only at the initial stage of ) ) o
the SC. Stationary concentration of the product phase is Figure 1. Nucleation on a typical strain-induced defect that appears

independent of the inert matrix but can be reached at smaller 3U1ind the small prescribed strain incremuy. The resultant pressure
(curves in the figure) is a superposition of the external presgage,

plastic strains. Section IV also explains zero-pressure hysteresis,nq the pressure (in general stress) field of the defect. The stress field
observed in ref 11. It is demonstrated that it has nothing to do of the defect has different senses from both sides of the defect, and its

with phase equilibrium pressure. At the initial stage of deforma- magnitude reduces away from the defect. A nucleus of phase 2 within
tion, our equation results in a linear relationship between the phase 1 and a nucleus of phase 1 within phase 2 appear simultaneously.
CRsl7.18 the resultant pressure and the defepls;” andp3, * are the pressures

In section V, stationary and nonstationary solutions for strain- averaged over the nucleus that produc$ the same transformation work.
induced PTs between three phases in Ge and Si are studie ir,-]e "".‘rge“ the volume of the nucled4, (and conse_quentl;Aq -
numerically and used to derive some general consequences, V) is, t?e_ smaller the stress and the trans_formatlon work averaged
Results demonstrate how phases that cannot be obtained undq%vir th(-er\]/ n S Clogseqlienély‘ /tge transformation work decreases with
hydrostatic loading could be obtained under applied strains. It creasing & G)(4 6) = (da)/(da)
is also found that, while one of the phases can be obtained in
an experimentally detectable quantity under relatively small
shear, it almost disappears under larger shear.

Despite the fact that the constants in kinetic equations cannot
currently be determined experimentally, some experimental
phenomena are described, and a number of useful conclusion
are derived from our analysis. These results are important
especially from the point of view of the search for new strain-
induced phases. In addition, the effect of the yield strength of
phases on SC kinetics is analyzed. Our model provides method
of characterization and control of strain-induced SCs. These
methods can be used to obtain and intensify SCs, which were

nucleus nucleus 2

efect

par

increases the driving force for the SC and can cause SCs at
significantly lower external pressure, thus contributing to the
overall SC kinetics. Stress singularity near the defect effectively
reduces the nucleation barrier due to surface energy and for
strong enough defects (singularities) leads to barrierless nucle-
Sation, which does not require thermal fluctuations. This explains
the relatively low-temperature sensitivity of strain-induced SCs,
as well as the strain-controlled rather than time-controlled
4<inetics. Because of this, time is not an essential independent
variable, and strain plays a role of timelike parameter. Indeed,
the prescribed strain increment generates defects (dislocation

not obtained otherwise, e.g., leading to metallic hydroge#f. pil_eups, various tiIt_boundaries,_ shedrand inters_ections, grain,_
twin, and subgrain boundaries, and stacking faults) with

Il. Main Features of Strain-Induced Nucleation barrierless (i.e., very fast) nucleation and growth of the product

Mechanism phase up to the size where stress concentration is reduced and

. . _cannot drive the interface further (Figure 1). For the typical
We will summarize some of the results of nanoscale modeling experimental observation time of the few second range, this

g A i >
of stg:un |nlduqedf|SG§ ‘(’j"h'Ch W'”fbe necessary for OWSTlédy- g resembles instantaneous SC. As straining stops, no new defects
For CR, plastic flow produces a fragmentation, strain-induced -, ,0q appear, and the growth of the existing nuclei is

ﬁ'ffﬁj'oﬂ’ an%gﬂ?,{% (if. CO'EP?T:‘?!‘;S at_"t?]e tsE)ame rl‘e\_/éel rasd n thermodynamically impossible. As the contribution of the stress
quid-phase L at1s why mixing will not be considere concentration to the driving force for SC in a finite volume is

as the limiting factor. This will allow us to use the same finite. the | ¢ ibl . exi bel hich
approach for both PTs and CRs. There is a fundamental inite, the lowest possible pressurg,, exists, below whic

difference between pressure-induced SCs and strain-induced scstrain-induced SC from the low-pressure phase the high-
under high pressure. Pressure-induced SCs occur predominanti'€SSure phases undetectable. An additional important point
at existing defects (e.g., dislocations, point defects, grain and !S> °* that defects generate both compressive and tensile
twin boundaries, stacking faults) which represent stress (pres-Pressures (stresses), which are of the same magnitude, e.g., for
sure) concentrators. Thus, the number of nucleation sites isdislocations (Figure 1) and dislocation pileups. Consequently,
limited. That is why one has to increase pressure to activate Similar defects produced in the product phase will increase the
less potent defects. The strain-induced nucleation occurs at newdriving force for the reverse SC. Thus, defects simultaneously
defects permanently generated during plastic flow. That is why promote both direct and reverse SCs in different regions.
it is possible to increase local stresses and promote the SCd-urthermore, plastic strain is distributed heterogeneously in
near the new defects by increasing plastic shear at constania multiphase material. For example, for a two-phase mixture
pressure. Stress concentration near the defects significantlyl + 2, the stronger phase 1 is, the smaller the fraction of the
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is an extremely complex procedure. To obtain a simple analytical
expression, we approximate the microscopic transformation
work averaged over the transforming volung™” (Figure 2)

by some decreasing function of;ftig; (eq 4). Validity of such

an approximation follows from our analysis of nucleation at
arbitrary strain-induced defects (Figure 1) as well as an analytical
solution for nucleation at dislocation pilet¥p3! and finite
element modeling of nucleation at shear band interseétion.
Resolving the thermodynamic SC condition fog/dg, we
obtain a strain-controlled kinetic equation (eq 5) for SE j.

In a similar way, a kinetic equation for the reverse & i

can be derived (eq 6). In the next step, we express the strain in
each phase via the prescribed straig and the yield stresses
oy of all phases (eq 8). Algebraically adding the rates of

k andk — i SCs for allk = i and taking into account the
expressiong«(g, oy;) (eq 8), one obtains the final system of
kinetic eq 11 for d/dg.

In the simplest case, when the temperat@res fixed and

Figure 2. Scheme of structural changes in three-phase model.

plastic strain concentrated within it is, and the larger the

prescribed (external) plastic shear is required to be to cause thenomogeneous in a transforming volume and the change in elastic

SCs. , ) moduli is neglected, the criterion for barrierless (athermal) SC
The results discussed above represent basic nanoscale reasops_, i in the multiconnected volum' of an elastoplastic

for the mechanochemical phenomena that are of interest in thismaterial 85,36
paper. All of these results will be conceptually incorporated in
the microscale model. 1 e i i
X = v fw ST Tide] Vi — Ayy(6) = K; 1)
n

Ill. Thermodynamically Consistent Strain-Controlled

Kinetic Equation for Structural Changes Here, X; is the driving force for SA — j, which represents
) o the calculated dissipation increment due to SC only (i.e.,
Thermodynamic Criterion for Structural Changes. We excluding plastic dissipation) during the entire transformation

will consider a representative volunveconsisting ofn-phase
material; each phasecan generally be transformed into any
other phasg; simultaneously, phagecan be transformed into

i but with a different rate (Figure 2). If SC between some phases
is impossible, we will set the corresponding transformation rates
equal to zero. General theory of SCs in inelastic materials is
deyeloped in refs 35 an 36 gnd summanzed inref 30. Forsolid 14 |ocal stress tensofyy; is the jump in the thermal part of
solid SC, the transformation strain tensey, transforms an —_ _ 3 . i

infinitesimal volume or a unit cell of the stress-free parent phase e free energyT:de; = | £ T degy is the incremental
into a unit cell of the stress-free product phase. In the case oftransformation work. For elastic materials, the expression for
CR, both materials, before and after the CR, can consist of XiVy coincides with the change in Gibbs energy of the whole
several substances. For brevity, we will use the term “phases” System® The stress can be decomposed into a sum of the
in this case as well. We neglect all internal atomic displacements Macroscopic pressupe which is homogeneous in a representa-
(e.g., shuffles) inside the volume under consideration. tive volume V > Vy, and the microscopic heterogeneous

We will describe plastic deformation averaged over the contribution,T: T=pl +U.T' Wherel_ is_ the unit_tensor._ Since
volume V in terms of equivalent plastic straiq (Odqvist Vv IS much larger tharVy, the variation ofp is negligible
parameter). By definition, the Odquist parameés the scalar during a small SC increment. Macroscopic shear (deviatoric)

path-dependent measure of plastic strain determined by thestrength is limited by the yield strength, which is smaller than
equationq := (2d,:dy/3)"2 (see, e.g., ref 37 or any textbook on P by a factor of ®/h = 10—100 in the rotational diamond anvil

plasticity theory), wherel, is the plastic strain rate tensor=:  Cell €xperiment®3! (R andh are the radius of the anvil and
is equal by definition, and : means double contraction of tensors. t€ current thickness of the disk sample). We will neglect it
For example, for pure compression (tensian: Infihg|, where ~ @nd obtain from eq 1

h andhg are current and initial lengths of the sample. For simple i1 d = i i

shear,q = y/«/§ with y for shear strain. For combined Xij = Ppe +\Wf\4;f; T:de; dVIn_A‘/)ij :Kij 2)
compression and shear,= +/(Wh)*+7/3, andq depends on "

the loading patii®3! Similarly, plastic strain in théth phase  where€i is the volumetric transformation strain. To evaluate
will be characterized by the Odqvist paramefesiveraged over  the integral in eq 2, knowledge of the specific mechanism of
the phasei. The goal of this section is to derive a strain- the strain-induced nucleation is required, and the corresponding
controlled kinetic equationaldq = f(p, ¢)) for the volume boundary-value problem must be solved either analytically or
fraction of each phask wherep is the macroscopic pressure numerically. For example, the nucleation at dislocation pileup
applied to the volum¥. Since the SCs represent a sequence of was treated analytically in previous studfés3! Nucleation at
nucleation events without further growth and time is not an the shearband intersection in TRIP steel was investigated in
explicit parameter, kinetic equations have to be derived using our pape¥ using a finite element solution. However, such
the thermodynamic criterion eq 1 for the appearance of eachsolutions (especially if expanded for multiple defects) are too
strain-induced nucleus and the averaging procetfufé.This complex to study the main microscopic features of strain-

process in the volumé/}, averaged over the transforming
region V',J1; Kj is the actual dissipation due to SC related to
interaction of a moving interface with various defects, e.g., point
defects (solute and impurity atoms, vacancies), dislocations,
grain, subgrain, and twin boundaries, and precipitates, as well
as to the emission of acoustic waves and Peierls baifiés;
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induced kinetics. In addition, such solutions require that the controlled kinetic equation forafdg; (for direct SCi — j)
number of parameters be known (e.g., type and geometry of

the defect, defect concentration and distribution). Therefore, we dc cicij o\ B
have to find the main property of the nanoscale model that can a B wherep; :=
be approximately transmitted to the microscale. One of the )
results which can be extracted from this investigation is that For the reverse SC— i, one may write
there is a significant decrease in the transformation work with '
the ratioAc/Aq; = dcj/dg;, whereAg; is a small increment of de i my

the volume fraction of a strain-inducgdhase that appeared P (l_ p-)

within the i phase due to the small accumulated plastic strain de & !

increment in theé phaseAd. o

Qualitatively, this has to be the case for any mechanism of The SCi — ] occurs forp; > 0 only; forp; < 0, we can assume
nucleation due to strain-induced defects. Indeed, if a single & — % or multiply eq 5 by the Heaviside unit step function
defect appears during the prescribed small strain incremognt ~ H(Pj) (H(X) = 1 for x = 0; H(x) = 0 for x < 0). Forp, > pf,
its stress field reduces with an increasing distance from the the SC occurs from the low-pressure to the high-pressure phase
defect tip (Figure 1). As the volume of the nuclev$ (and andp = p/. Forp; < p, the SC occurs from the high-pressure
consequently, A, = VI/V) increases, the stress and the to the low-pressure phase, and the inequality p; is valid.
average transformation work over thé decreases. Similar reasonings are applicable to eq 6.

Thus, the main property of any nanoscale mechanism of TO define the Odqvist parameter for each phagewhen
strain-induced nucleation is that the transformation work is a the Odqvist parameter for the mixture, is already defined,
decreasing function ofafdg. We will use the following to one woqld have to solve a very complex_elastoplgshc micro-
approximate such a function: mechanical problem. Currently, an analytical solution to such

a problem is not available. To find the simplest noncontradictory
- (dc \1/m;
2] e
c;~i\dq;
Here, AX; is the maximum nanoscale contribution to the

solution, we assume
transformation work for an infinitesimal nucleus, aag i,
and g; are parameters. The factofi takes into account that
SCi —j occurs in phaseonly; therefore, if the parent phase
disappearedd = 0), then @j/dg; = 0 as well. Substituting eq
3in eq 2, we obtain the following microscopic criterion for SC
i — j averaged over the representative voluvhe

p—p

P — P

(®)

(6)

1 4]' =~ . i
wafo T:de} AV} = A X;
n

g/g, = §" andq = Z GG whereS;:=oylo, (7)
=

andoy; is the yield strength oith phase. Let us prove that all
w; are the same, i.ew; = w for all i andj. First, g/q = §;
from this equation, we obtain;/g; i, which after com-
parison with eq 7 results imy; = w;. Then, g/gx = Si%;
dividing this equality by eq # we obtaingj/ox =Si*S". Since
gi/ak = S is independent ofi,; (see definition in eq 7)5*§"

i a; [dc;\Hmy = §/* results inwik = w; = wj, which means that all; are
Xij = pe’ — Ay + A%l 1 — E d_q| =Ky (4 the same. It follows from eq 7 that
I
n
We will define the pressurp under which SC occurs under g = q(; cSn " (8)
hydrostatic loading without a strain-induced contribution by the =
ionni el — Agp: = K i i
equationpye’ — Ay = K. Fi]Qrp = P SCoceursto ahigh o o0 i three phases, eq 8 simplifies to
pressure phase (or fqr < p;, SC occurs to a low-pressure
phase), and one needs to use the traditional time-dependent 0,s0,3
kinetic equationt; = fj(p, ok, t) for pressure-induced SC. q1=q%
Including these conditions would complicate our study and will
not allow us to focus on the main regularities of strain-induced 0O
SCs. For this reason, we will only consider the following two q=q2=2
limit cases: D
(a) Kinetics of pressure-induced SCs is neglected because it g
is much slower than kinetics of strain-induced SCs. This is the 0;=q %3’2 (9)

case for fast plastic straining and will be referred to as strain-

dominated kinetics.

(b) Kinetics of pressure-induced SCs is considered to be
instantaneous because it is much faster than kinetics of strain-

induced SCs, i.e., when pressure reachgsphasei com-
pletely and instantaneously transforms to phiaskghis is the

case for very slow plastic straining and will be referred to as

pressure-dominated kinetics. i
We also define the minimal pressysg under which strain-

induced SC can start at an infinitesimal rate, by the equation

pE__e‘J' — Ay + A Xj = Kj. As a result, we find that\X;
(P, — Pe'.

Kinetic Equations for Structural Changes. Solving eq 4
for dci/dg; yields a thermodynamically consistent strain-

whereD := ¢10y20y3 + C20y10y3 + C30y10y2. According to eq

8, with a stronger phase, the fraction of the equivalent strain
concentrated within the phase is smaler; dor = oyp = ... =

Oyn, ONE hagyy = g = ... = gy = q. As for oy; = (4—10)oy,

g is negligible; the parameter is estimated by = (2—5).
Adding algebraically the rates of—~ k andk — i SCs for allk

# i and taking into account eq 8, one obtains the final system
of kinetic equations

dc; n [ac g, ac, Aq;

—= — —H(pg) — — — H(P)
dq k:Z,zi g 0q ¢ ag aq -

i=1,..,n—1 (10)
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or in explicit form . B,
=

dc; n CEki Mi B
—= ; —PH(P) (Z CrSi) 1 B.oy,
dq k=Tk=i aki m= 02 =¥

n n CiCik Mic B

(Z CrSim) sz —RHPEY| i=1.,n—1(11) Bs0ys

m= k=TR=i | S C3:? (12)

Natural constrain{ﬂzl c« = 1 has to be taken into account. where
To avoidi — i SC, we assume;; — o for eachi.

Equation 11 is correct for strain-dominated kinetics. In the B = B,0y; 1 B,0y, + Byoyg (13)
case of the pressure-dominated kinetics \itte 1, the phase
i instantaneously transforms to the phase., ¢ jumps to zero, B = P2y ™[ Psp)| ™2 n Ps1) ™1 Py | ™ n Ps1) ™[ Pa3| ™
andc has a jump by the value a before the jump. In this 1 a, a, a, a, a, Ay,
case, the kinetic equation corresponding to phaseeq 11 (14)
should not be used. The final kinetic equations (eq 11) have
the following features that are significantly different from the (P2 ™22 ™2 [Py3|™3(Psz) M2 [Pyp|™2[Pag| M
classical chemical kinetic equation. B,= a g + 3_13 g + a g

(a) The equations are derived from the equality of the driving (15)
forces for SCs to zero (i.e., from the thermodynamic condition) . . . _ a .
when nanoscale contribution to the driving force is properly g _ p_ljmzs p_23)m23+ p_lS)m13 pii)mﬂ_'_ p_lS)m13 p_23)mza
taken into account. :\y Ay, sl \a

a3,
(b) Time is not an independent parameter. Instead, plastic (16)

strain is a timelike parameter. It is clear thaty ¢; = 1. EachB; has contributions due to the

(c) Kinetics depends essentially on the mechanical propertiesfollowing SCs: direct SCs to the phaiséj — i)(k— i); indirect
of the phases, namely, on the ratio of the yield strengths. SCs to the phasethrough another phasg, £ k)(k — i) and

(d) This dependence also involves volume fraction of the —j)(j —i); and SCs from théphase i(— j) do not contribute.
phases, which changes the order of the kinetic equations. Sincdf all (1/ay)™« are the same, the stationary solution is independent
the effect of each fraction cannot be presented in the fgtm  of ax. An analysis of the three-phase case will be considered
with an exponenh, the order of the reaction is not determined. below for Si and Ge.

(e) Kinetic parameters depend on pressure and two charac- )
teristic pressures for each SC as follows: (1) the pressure at!V: Structural Changes Between Two Phases in an Inert
which SC occurs under hydrostatic conditions, which takes into Matrix
account the deviation of the actual SC pressure from the Kinetic Equation. Here, we consider the case when one of
thermodynamic equilibrium pressug (determined by the  the three phases (for example, phase 3) does not participate in
equationplel — A yj; = 0) due to irreversible processes (Note SC, i.e.,c3 = const; phase 1 and phase 2 are low- and high-
that the thermodynamic equilibrium pressure does not contribute pressure phases, respectively. Then, only one of the equations
to kinetic eq 11 and consequently cannot be determined from from eq 11 has to be considered, which can be presented in the
the results of strain-induced experiments. This is in contrast to following form
the hope formulated in refs 12, 40, and 41 that plastic shear
that reduces the pressure hysteresis allows for better localization S _
of the thermodynamic equilibrium pressure.); (2) the minimal g, . P21H(P21)
pressurep! for the SC from the low-pressure to the high- qa - 2 a7
pressure phase (or maximum pressplrdor the SC from the 9 cS)+eSLTeSs ¢S+ 68, + S,
high-pressure to the low-pressure phase) under which strain-
induced SC can start at an infinitesimal rate.

Stationary Solution. Equation 11 has a number of parameters 12 . 2 .
which makes it flexible to fit a wide range of experimentally andp,” = const. For pressure-doml_nated k'nfzt'cs_' F_’hase lis
observed kinetics. It is, however, reasonable to assume that the2PSolutely unstable and cannot exist for> p,~ sm;lllarly,
rate of each SG — j is proportional toc; (again, because of phase 2 is absolutely unstable and cannot exisp ferp;,™. For
the dependence of the term related to the yield strengtits,on ~ Strain-dominated kinetics, phase 1 can existgor p;” and
this does not mean that we consider the first-order reaction). phase 2 can exist fop < p2’. For a volume fraction of the
Indeed, the prescribed strain increment produces the prescribegsecond phase in at 2 mixture,t; := ¢/(1 — c3), one obtains
value of defect densities, and the number of strain-induced T2 = AB/AC. Along line BD (unloading), there is no structural
nucleating defects in phasés expected to be proportional to  change. Strain-induced SC occurs under constant pressure due
the volume of phasg i.e., toc. For this case, we havigdmi to plastic shear and can be visualized by the horizontal line,
=1 for alli andk, and an analytical stationary solution to system €.g., DE.
of eq 11 can be found. For a three-phase system, within the For an SC from the low-pressure to the high-pressure phase,
pressure range of coexistence of all three phases (i.e., for 0 p> < pi’, since strain-induced SC starts at a lower pressure
pj = 1 for alli andj), the stationary solution has the following  than under hydrostatic loading. For a SC from the high-pressure
form: to the low-pressure phase, we obtain similarly ffat p2. A

C§12
1 —

2 PP
12

M2 CCzl My

Consider the pressurerolumetric strain € = 1 — volv; =
0) curve (Figure 3) under hydrostatic loading tuﬁl = const
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PA C,CrA
12 C
Ph
21
Pe 1
12 =1 z&=0
Pe 2
21 ¢, =0 c, =0
Ph
c, =1
» P
21 21 12 12
> ph pe ps ph
E Figure 4. Stationary solutions for volume fractions for two-phase

: : : 21
Figure 3. Pressurevolumetric strain curve under hydrostatic loading.  System in an inert matrix for the cap® > p?.
SC 1— 2 occurs along the line AC; SC-2 1 occurs along the line

GF; the strain-induced SC under constant pressure takes place alon . . .
line DE. P P Yncrease ot and decrease @, intensify this process. When

oy3 = oy, addition of inert matrix does not affect SC, even if
oy3 > oy. The analytical solutions of eqs 18 are
priori, pt? can be lower thap?" for strain-dominated kinetics.
However, for pressure-dominated kineticspjf < p?', then (1-c) (Ss— SQ’S){ c 1 1-c; ]
for any pressur in the rangep? < p < p?’, any amount of 4= Pda)™ S \a—c) b, 1-c,—g
strain-induced phase 2 immediately transforms back to phase 2r=2 3 :
1. This means that the pressy’@ hasp?' as its lower limit, or for p < pZ* (20)
pt < p*? Similarly, we may conclude that for pressure-
dominated kinetigls anolIZSC from the high-pressure to the low- (1 —¢) (S— S ¢ 1 og[ 1-c¢ )
pressure phasep:™ < p;~. e M2 — b, 1—c, —
There are two possible relations for pressyEsand p*- CEED &2 \(1 @ P b 3T
p* > p*andp!” < p?* forp.”<p (21)
(1) The casep® > p** corresponds to a weaker effect of
strain on change in SC pressure. In this case, strain-induce

SC cannot occur in the pressure rangé < p < p* and [

OIThey can be inverted in the form

volume fractions of phases remain constant and equal to theirc, = (1 — ¢){ 1 + 1 ProductLog

values obtained during pressure-induced SCs. Equation 17 b,
simplifies to _
b, exd—b, — q Sia(Po/a)™
" I[-)21)”‘21 U eSS,
dc a
o for p < p?* forp < pZ* (22)
A4 ¢S+ 658, + ¢Sy,
CJC_H M2 c,=(01- CS)[ 1+ bl ProductLog
- P 2
de_ %o forp*<p  (18) m
- A 2
da ¢, +c S+ St ‘ b, exr{—bz _q SdP1/a) ) ]
| | L [1+ o1+ SIS,
The stationary solution fap < p.~is T, = 1 and forp,” < pis 12
;= 1, since only one SC occurs in each of these pressure ranges for p;” < p (23)
(Figure 4). . . .
Let us compare rates of SC for two cases./dh for oy, = where Producthzgil gives the principal solution foy of the
oys and @!/dq for 6,1 # oys. Forc; > 0, we obtain the ~ €duationz=ye,
following:
9 b, — (—1+c)(S5— S
| Il 1
dode . S5~ 19) [1+cy(—1+ DS,
dq’ dg C+c(A-9S)+ S,
and
Independent fron$,, it follows from eq 19 that if the yield _ _
strength of the inert matrix is greater (or smaller) than the yield b, = (C1+ (S~ S

strength of the parent phas&z < 1 (or Si3 > 1), then SC Il is 2

: . : [1+c(—1+ S3]IS]
accelerated (or decelerated) in comparison to SC | wjth=
oys. This corresponds to experiments in refs 17 and 18. An Figure 6 quantitatively supports our qualitative conclusion of
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Gy, pr? one hag,s = 0; whenp — p*’, one obtaing,s = 1. If, in
particular,M = 1 (e.g., for equal material parameters of both
ol 0.01 phases) andi> = {21 = 1, thenTys = p. If M — 0 (e.g., if
o1 second phase is much stronger and#ff*¥a;=* — 0, i.e.,
o3 kinetics of the high- to low-pressure SC is suppressed, and/or
o8 (P! — peoyHear Woa(pi? — pr2)Meadl(pZt — p)Me — 0, thentes
] = 1. In the opposite caskl — o, Tys — 0. If ¢ < Tys, then
0.4 direct SC will occur for straining under constant presspjfe
i/ s <p=< pfl. In the opposite case, the reverse PT will take place.
02 10 A number of conclusions can be made from analysis of eq 24
(see also ref 30), including the following:
100 | ~ (a) SC from the low- to the high-pressure phase is promoted
0 02 0.4 06 08 1 P by plastic deformation at a pressure abq@é only. This

Figure 5. Relation between the stationary value of the volume fraction €Xplains what may seem like a contradiction formulated in ref
of the product phase 2 with respect to the mixture of phases 1 and 243, namely, why large plastic deformation during the compres-
and the dimensionless pressfireor my = ; = 1. Phases 1 and 2 are  sjon of materials (i.e., below'?) does not cause SC, yet
deformed in an inert matrix ang:? < p. Numbers near curves relatively small shear strain at relatively high pressure signifi-
designate va_Iues of. If the material is under any pre_ssu"rarld initial cantly promotes SC.
volume fraction of the phases correspond to a stationary Giatben . S
any infinitesimal pressure increase (or decrease) followed by plastic (b) If M > 1, even if the initiation pressurg fo_r_ SC from
straining will cause 1~ 2 (or 2— 1) SC, i.e., pressure of direct and |0W- to high-pressure phase can be reduced significantly, only
reverse SC differs infinitesimally, and pressure hysteresis is practically & small amount of product phase can be produced at a pressure
zero. This corresponds to the experiments in ref 11. aroundp’? due to strain-induced nucleation. This is important
for discovering a new phase but not for producing it. A
how the addition of an inert phase changes the rate of SC. Thus,significant amount of the high-pressure phase can be obtained
adding a large amount of a strong inert phase could be used aé'ind.er .?ressures arouﬁ, 'ﬁ"h“ke for presaure-lnduct:)eq %C. d
a method of detection of a phase that cannot be revealed becausg S'g:" |canttamou?t OI the hig -presf;u<r<e f asle C;.n e '2 uce
of a low rate of SC. The dashed line in Figure 6 corresponds to 03;: ci‘r?k?escroarlmgigogs %Vr Zrzsrﬁ;‘rne (821)1/9 ;nly ghg\x/rseth;t
the case with no inert phase. Note that the minimal hysteresis ; . ’ ’
in SC pressure for strain-induced SC is determined by pressure arge plastic strains promote .the appearance O.f hard phases more
12 21 . o ._ than weak phases. When this condition is fulfilled, then plastic
p.” andp;-, and this hysteresis is smaller than the hysteresis

. ) flow localizes inside of phase 1 causing-12 SC, while small
21 12 ; ! =S '
Ph — Py for pressure-induced SC. However, this does not aqsic strain in phase 2 causes a small advance of the reverse
help in localizing the phase equilibrium presspﬁé There is SC.

no currently available information that would pflong <12I0$2 (c) Zero-pressure hysteresis was observed at pregsare
= Pc instead, it may be that” < p.® < p” or p” > pe” > 1.8 GPa for B1=> B2 PT in KCI}! and it was assumed that
pe this is an equilibrium pressure which can be used to plot a

(2) The opposite casqewt12 < pfl, corresponds to a stronger pressure-temperature phase diagram. However, if the initial state
effect of strain on the change in SC pressure. In the pressureof material under any pressupeand the volume fraction of the

21 12 . : . s e . .
rangesp.” < p andp >p.*, one of two SCs is possible, and eqs phases corresponds to a stationary staieghen any infinitesi-
18—-23 derived for case 1 are valid. The stationary solution for mal pressure increase (or decrease) followed by plastic straining
pfl < pisc,s= 1 and forp > piz is C;s = 0. In the regiorpelz will cause 1— 2 (2— 1) SC, i.e., pressure of direct and reverse
< p < p?, bothi < j SCs are possible, and both terms in eq 17 SC diff(_ars infinites_imally and pressure hystere_sis is practica_lly
are present. A stationary solution of eq 17 can be presented inZero (Figure 5). Since zero-pressure hysteresis can be obtained

the following form for any pressure in the rangg® < p < p?', zero hysteresis
definitely does not mean that the phase equilibrium pressure is
S, 1 (24) found. Similar to case 1, the equilibrium pressure cannot be
S

determined from a strain-induced experiment, because it does

- 1+M@1-— ﬁ)l/Cu/r)l/Qz
not contribute to any equation for strain-induced SCs.

where (d) The inert phase does not change the stationary value of
the volume fraction of the reacting phases with respect to the
W ais (pr2 — ptyte COT mixture of reacting phases. Equation 24 is valid fomephase
M=(S)) Ven 12l 2 P —p) system in any pressure range where only two phases undergo
™ (P — Ph) the SC. However, SC kinetics, especially at the initial stage, is
significantly affected by the presence of an inert phase. Thus,
g= Cijmj for infinitesimal ¢, and for g = my = 1, eq 17 simplifies to
12
~ p - pe dCZ (Cl — ) 1
= W=l (25)
P P —p? dg \ap, ¢, + ¢3Sy,
The stationary case of SC with two phases was solved in ref 30 Equation 25 results in eq 19 with = 1 — ca. Thus, the same
for c3 = 0. In the pressure range=0p < 1 (i.e., forpt* < p < conclusion is valid that the stronger (or weaker) the inert phase
pfl), Cos varies from 0 to 1, and the shape of teyg (p) curve is with respect to the parent phase 1 the more SC is accelerated

depends on the material parameters; see Figure 5. \When (or suppressed). Because acceleration occurs mostly at the initial



16042 J. Phys. Chem. B, Vol. 110, No. 32, 2006 Levitas and Zarechnyy

@® o ©
I i

08 0.8
8
0.6 gl 0.6 /6
5 625 5
0 4, 7 2 ] 4
0.4 0.4 3
P 1 2
02 Vo 0.2 i
/ n
1 2 3 4 1 1 7 3 4 . d
by e ¢
1 I
8
08 08 il
5
0.6 ; 0.
876 5 g 0
04
0.4 3 0.4 3
0.2 3 0.2 2
i
14 1 i 12 g
1 2 3 4 5 1 2 3 4 5

Figure 6. Change of the volume fraction of the phasec2,with plastic straing, in the presence of an inert phase (when reverse SC does not
occur) forp = 7.5,p*? = 5.45 GPap;? = 11.2 GPa (parameters for Si), aBg = 1.875; 0,c3 0, no inert phase; 1513 = 30; 2,Si3 = 7.5; 3,Si3
=3;4,5:=15;5.S35=1;6,53=0.6; 7,53 =7, Si3 = 0.3; 8,53 = 0.0075. (a)cz; = 0.05; (b)cs = 0.5; (c)cz = 0.75; (d)cz = 0.9.

stage of SC, we can detect phases that otherwise could not bef Si- and Ge-based electronics as well as their applications in
detected, potentially discovering new phases. Similarly, we can solar cells and MEMS. PTs in Si and Ge are a subject of
conclude that adding stronger particles to the material under intensive basic and applied studies. One of the reasons is related
study will facilitate SC and could cause SC which would not to the variety of PTs, including martensitic, reconstructive, and
be obtained otherwise, e.g., metallic hydrogért* Adding crystal<> amorphous PT. Twelve crystalline and two amorphous
weaker particles will suppress SC, which is important, e.g., for phases of Si were revealed under different thermomechanical
explosives. Note that the above problem was considered in ourloadings. Understanding of strain-induced PTs in Si and Ge is
paperd®—31 using a stationary solution for a two-phase model of great practical importance. Information on stress and strain-
and some qualitative reasonings. It is clear that, for correct induced PT in Si and Ge is crucial for understanding wear,
interpretation of the experiments in refs 17 and 18, a nonsta- friction, and erosion of Si and Ge. Some strain-induced high-

tionary solution for a three-phase model is necessary. pressure phases of Si and Ge are often observed in a machined
A nonstationary analytical solution to eq 17 can be found in surface of Si and Ge single cryst&tdviachining of strong brittle
the following inverse form: semiconducting Si | and Ge | is accompanied by microcrack
propagation inside the bulk materials. Utilizing strain-induced
8

q

= ((1 —¢,—c)A+Blog Y ) PTs into ductile metallic Si Il or Ge Il during machining allows

[Y+(1-c,—c)X one to realize and optimize the ductile regimes of machining.
There is a significant discrepancy in the phase behavior of
— _ — _ Si and Ge reported in the literature. This discrepancy is related
A= (S5~ 89X B=X(1 =6+ 6855 to the type of loading (hydrostatic pressure, nonhydrostatic
_ _ _ pressure, or plastic straining), the preliminary plastic deformation
X= (@nSist aPiS) Y= a1(C ~ 1paSis  (26) (that changes the yield strengti, and consequentlp), the
Figure 7 based on eq 26 illustrates the effect of the ratio of the initial structure (.., grain size), the size of the loading region
. X (e.g., nanoindentation versus microindentation), and the loading
yield strengths of the parent and inert phase and the concentrasqes  Since data for strain-induced PTs is available from refs
Qualiaiely the same a5 n he above case when only diret 23, 10 45 we il relyon theso ef forycrostat oadings
SC occurred. The only difference js that the stationary value gls Ivl\feaﬁd gci),”?l(n;:dwl;rsls, Geal?, and GeSIII()a z\;\/rzeguﬁ)dizz??/vel '
(th,it?ﬁ;niiilt?a?!tggngoc:eﬁggrlrjr:;iz )nwlszi;u%és—a demonsirate will not consider in our equations the difference between bc8
the_ Iingar relationship between volume fralgtion and plastic strain, E;w/:gg ttrr:?a rg;ﬂ%?qzegﬁiitgzﬁﬁs ;I i(!r?(; t{]he,ad;]f;ir:élgsm
which is observed for a number of CRs! diamond structure Si IV; both of these pairs have a small
difference in specific volume. The crystal structure of Ge | and
the 5-tin structure of Ge Il are similar to the structures of Si |
and Si Il, while Ge lll has a simple tetragonal structure with
Phase Transformations in Si and Ge.Silicon Si and twelve atoms per unit cell and is not similar to Si lll. Some
germanium Ge represent extremely important materials becauselata taken from the recent review chafftevill be used as well.

V. Phase Transformations in a Three-Phase System in
Silicon and Germanium
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Figure 7. Change of the volume fraction of the phase&2 with plastic straing, in the presence of an inert phase (when both direct and reverse
PTs occur) fop = 7.5,p'? = 5.45 GPap;? = 11.2 GPa, ang®’ = 8 GPa,p2’ = 1 GPa= (parameters for Si), anfi, = 1.875; 0,cs = 0, no inert
phase; 153=30; 2,S3=7.5;3,S3=3;4,S3=1.5;5,S3=1; 6,S3=0.6; 7,S3 = 0.3; 8,S3 = 0.0075. (a)cs = 0.05; (b)c; = 0.5; (c)

cs = 0.75; (d)C3 =0.9.
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Figure 8. Equilibrium phase diagram for a three-phase system in Ge €
and Si. Figure 9. Pressurevolumetric strain curve under hydrostatic loading

for a three-phase system in Ge and Si.

Hydrostatic Loading. The equilibrium phase diagrams at
room temperature for Ge and Si are shown in Figure 8 based Compression and Shear in a Rotational Diamond Anvil
on refs 12 and 13. We will consider the low-pressure semicon- Cell.1213 The following PTs are observed with an increase in
ducting phase Si | (Ge 1), the high-pressure semiconducting rotation angle under a fixed axial force: St Si IV — Si lll
phase Si lll (Ge Il), and the high-pressiy#g¢in metallic phase at 3—4 GPa, and both Si+ Silll — Sill and Si |— Si Il at
Si Il (Ge Il). Here,p}® = 8.4 GPa ang2® = 9.3 GPa for Ge  higher pressure (similar for Ge). Experiments show that the
and pé3 = 85 GPa andp§3 = 12.3 GPa for Si213 The minimal pressure for Si+ Si lll (Ge | — Ge Ill) PT under a
schematic pressurevolumetric strain diagram of the three-phase  very large plastic shear jg° = 3.1 GPa for Ge ang!> = 2.5
system under hydrostatic loading in Ge and Si is shown in Figure GPa for Si. These values are significantly lower than the phase
9. During hydrostatic compression, Si | transforms-afl8 GPa equilibrium pressurepé‘? = 8.4 GPa for Ge and(le3 =8.5GPa
into a denser phase Si Il, and Ge | starts transformation into for Si.1213In addition, PT Si I Si Il under shear was obtained
Ge Il at a pressure around 10 GP&emiconducting phases Si at 5.45 GPa (for Ge at 4.9 GPa), which is lower than the pressure
Il and Ge Il are supposed to be stable within the pressure of 8.5 GPa required for reverse PT Si 4 Si Ill under
ranges 8.512.3 GPa and 849.3 GPa, respectivel?;13 but hydrostatic conditions (for Ge at 7.6 GPa). These data should
they cannot be obtained under hydrostatic conditions during the not, however, lead to the conclusion that the strain-induced phase
pressure increase. Upon hydrostatic unloading, phases Ge Il andl has to immediately undergo pressure-induced PT to phase
Si Il transform to Ge Il and Si lll, sometimes through Il (this is not observed in experiments). The reason for such a
intermediate phases (e.g., via Si*Por Si XI146:49, paradoxical result is as follows: data under hydrostatic condi-
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Figure 10. Stationary solution for the volume fractions of strain-
induced phases vs pressure for SC in Ge (a) and Si (b).

tions are obtained without preliminary plastic deformation and

strain hardening, while data for strain-induced PT are affected
by large plastic straining. Large plastic straining increases the

yield strength, and consequently/= Loye2635(whereL is some
coefficient) and|p, — pe| = Kl/e = Loy. For this reason, the
difference|p?> — p2¥| after plastic straining is much larger (and
p22is much lower) than without plastic straining and P+

Il does not occur after strain-induced PT Il. A similar

explanation may be used to justify why phase | transforms into

the phase I, without first transforming into phase Il (despite
the fact that the equilibrium pressupg® < p2, Figure 8, and
therefore, phase | should transform into phase Il before phas
II). The yield strength of the strong semiconducting phase IlI
is much higher than that of the weak metallic phase II, which
is why pi2 is higher tharp;>, and phase IIl cannot be obtained
under hydrostatic loading. We will apply a three-phase model

Figure 2, and consider PTs among all three phases. We use th

following values of characteristic pressures for Ge:

=18 GPapy’ = 20 GPap,' = 1 GPap;' =
~0.5 GPap;’= 3.5 GPap}’ = 10.5 GPap’ =
3.1GPap?*=4.2 GPap?' = 8 GPap]' = 7 GPap?’ =
10 GPap!*= 4.9 GPa

and for Si

P =18 GPapy’ = 20 GPap:' =1 GPap ' =
—0.5 GPap?*= 3.5 GPap;’= 11.2 GPap.®’ =
2.5 GPap” = 5.4 GPap?' = 8 GPap’ = 7 GPap® =
10 GPap!®=5.45 GPa
Other parametersy;, m, andw, are assumed to be 1. The
equalitya; = 1 is equivalent to substituting with ¢/a;. Some

of these values p%, p®, p¥ and p) were taken from
experimental dat&!3 Some values fop?’, p*', and p*® are

€
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Figure 11. Functionc; (c3) for PT in Si, forp = 7 GPa,S;2
1.875:1,S3 = 30; 2,53 = 15; 3,53 = 5; 4, S;3 = 1.875; 5,S»
0.006.

given in refs 12 and 13, but since they are not the maximum
values for the strain-induced PTs to low-pressure phases, we
used larger numbers. The paramgigrwas taken to be lower
than the experimentally observed value for the case without
preliminary plastic deformation (see the above discussion on
PT Il — Il). Finally, parametersp:> and p:” are taken to be
above the pressure range of interest and paramgfeandp"

are taken to be below the observed PT pressure, because none
of the above PTs occur under hydrostatic conditions.

Stationary Solutions. Stationary solutions for Ge and Si (egs
12—-16) are presented in Figure 10. The ratio of the yield stresses
of the phases are unknown, especially when Ge and Si are under
pressure and experience very large plastic deformations. It is
known that semiconducting phases are significantly stronger than
the metallic phase, and it can be assumed that the high-pressure
(denser) semiconducting phase is stronger than the low-pressure
semiconducting phase. Thus, we varied these parameters: solid
lines in Figure 10 correspond t&; = 1.33 and$;; = 0.53,
while dotted lines correspond #&; = 1.20 and$;; = 0.10.

The curves in Figure 10 are interpreted as the result of the
application of a very large shear under each chosen fixed
pressure. In the general case, the pressure region is divided into
three subregions. In the first subregion, there is only one phase.
€Thus, within the pressure range © p < p*® (below the
pressure at which any strain-induced PT from phase 1 is
possible, while all PTs to phase 1 can occug),= 1. Within
the pressure range > pfs (above the pressure at which any
' strain-induced PT from phase 2 can occur, while all PTs to phase
9 are possible)gos = 1. In the second subregion, two phases
coexist. Within the pressure rangE < p < p, shear leads to
the increase of the fraction of phase 3 at the expense of phase
1. Similarly, forp?* < p < p?® phase 3 appears from phase 2
with an increasing volume fraction and a decreasing pressure.
The volume fractions of phases in two-phase regions are given
by eq 24 with corresponding subscripts.

In the regionp>” < p < p?', all three phases coexist, and the
volume fractions are given by eqs-126. It is clear from Figure
10 that there are jumps in the derivatives of the volume fraction
curves at pressurqﬁg', while characteristic hydrostatic pres-
sures,pﬁ', affect these curves in a continuous way.

In the presure rangp” < p < pt, phase 2 appears from
phase 3, and PT -+ 3 — 2 occurs with increasing,s andczg,
however cysis very low. In the rangg’” < p < p2’, direct PT
1 — 2 also takes place. Both transformation paths+(8 — 2
at lower pressure and -+ 2 for higher pressure) have been
observed experimentalf?;'®while under hydrostatic pressure,
phase 3 cannot be obtained from phase 1.

In the pressure range" < p < p”’, reverse PT of phase 3
into phase 1 is impossible. This leads to the disappearance of
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® 10 To determine how the voIl_Jme fraction of phases varies yvith
\ the accumulated plastic strain, we solve the system of ordinary
038 \\1 ‘//.»—»‘—-»-”’””’3*’ﬁ_ differential eq 11 numerically at some prescribed pressures.
TN _ Results forp = 7 GPa and three different combinations of the
0.6 \ // ’ yield strengths of phases are presented in Figure 12. Stationary
S/ values obtained in Figure 12 coincide with the corresponding
04 \/4\ analytical solutions from eqs ¥216. Not only the stationary
/’ N solutions but also the critical strain necessary to reach them
0.2 depends on the ratio of the yield strengths of the phases. Thus,
[ — 2 an increase 08%s; from 1.333 to 6.0 reduces the critical strain
\ S — from ~10 to~5. The volume fraction of the second phase passes
2 4 6 8 10 through the maximum at relatively small strains for all cases
(b) Ic e under consideration. An important conclusion follows from
\ - ) 3 Figure 12b. Despite the fact that the stationary value of phase
0.8 Il is very small and not detectable in the experiment, at the
initial stage more than 10% of phase Il was obtained. Conse-
0.6 quently, if phase Il would be unknown, to reveal it relatively
small strains have to be applied. The same can be used for the
04 search of new phases in other material systems.
0.2 VI. Concluding Remarks
P In this paper, a comprehensive conceptual approach to the
q kinetics of strain-induced SCs under high pressure is developed.
2 4 6 8 10 Mechanism-based microscale kinetic equations for strain-
© Ic induced SCs are derived. The main results are summarized in
\ e the Introduction.
YIRY _— 3 Note that the current measurements of SC kinetics in both
\ e the rotational diamond and the Bridgman anvil Eel#*8are
0.6 yd only approximate. They have been related to the averaged
&/ pressure over the anvil, while the local pressure is heterogeneous
0.4 RN and varies during the rotation. In particular, we believe that part
/ \ of the promoting effect of the inert matrix with the larger yield
0.2 o strength is related to the pressure growth at the center of the
o T— 2 sample while under a fixed averaged fof€é! In addition,
— q plastic strain is determined mostly by the rotation of the anvil,
2 4 6 8 10 ; . . -
Figure 12. Change in volume fraction of three phases of Si during Whl(.:h does not take. Into account rel.atlve .Sl!dlng betweel_w the
straining forp = 7 GPa: (a)S: = 1.333,51 = 0.533; (b)Sn = 6.0, anvil and the material. Even if relative sliding is Fake.n into
S1 = 0.533; (C)Su = 1.333,S: = 0.133. account, another problem related to transformation-induced

plasticity (see below) may lead to significant inaccuracy.

One of the possible ways to measure SC kinetics is developed
phase 1 at pressup§1 when reverse PT 2> 1 also ceases to  in our recent papef$2?2where PT from the graphite-like boron
occur. In addition, strain-induced PTs allow one to produce more nitride BN to the superhard wurtzitic BN was studied. First, a
than 90% of the Ge Il (Si Ill) phases in the pressure range method was developed to create an almost homogeneous
7—8 GPa, while under hydrostatic conditions, the pressure haspressure in the sample, which does not vary significantly during
to reach a value that almost completes the Il PT (higher shear and PT. The pressure and the X-ray patterns were
than 11 GPa), and then, phase Ill will appear after unloading. measured in situ locally along the radius of the sample for

Comparison of the dashed and solid lines in Figure 10 allows various rotation angles of the anvil. The volume fraction of the
us to analyze the effects of the yield strength ratio. In these wurtzitic phase was evaluated using proper X-ray peaks. The
figures, the ratioS;; increases very little, while the rati§;; key point we found is that the degree of disorder (concentration
increases by a factor of 5.3. The solid cungp) lies slightly of turbostratic stacking faults), which also was evaluated using
lower than the dotted curve, which is logical, since a larger proper X-ray peaks, is proportional to the plastic strain. That is
strain is concentrated in phase |, and more of phase | transformswvhy s can be used as a local measure of plastic strain. Using

to phase lll. A large increase B; strongly suppresses PT+ this approach, we found that, during the PT, actual plastic strain
II, and phase | transforms to phase Il only. is 20 times larger than the value calculated by evaluating the

Transformation Kinetics. Dividing the kinetic equation for rotation angle. The reason for such a huge plastic strain is that
dcy/dq by the kinetic equation for@/dg, we exclude straim a large volumetric transformation strain, during any SC, creates

and obtain a differential equation focgddcs. Figure 11 shows significant internal stresses, which in combination with external
the numerical solution of this equation for various value§;of nonhydrostatic stresses lead to additional plastic flow called
in the region where all three phases are present. Each curveransformation-induced plasticity. This demonstrates that using
presents all combinations betweenandcs that occur during geometric measures of plastic strain (like rotation angle or shear
plastic straining ¢ = 1 — ¢ — c3). All curves end at the strain) is not sufficient. Instead, one has to define and use a
stationary values o€; and cz. With decreasings s, more of physical measure of plastic strain, similardoThe density of
phase Ill appears during straining at the same valug,dfoth different types of strain-induced defects, like dislocation density,
in the nonstationary and stationary regimes. Bgr= 0.075, twin density, and densities of slip bands and their intersection
the stationary valuez = 1. are all possible physical measures.
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It is clear that the suggested kinetics is only the first

approximation, and more complex relationships can be devel-

oped. One advancement may be made by taking into accounty,

strain hardening, i.e., dependence @f on g. Since strain
hardening is different for different phases, it changes the kinetics.
Strain hardening also suppresses SCs due to the eqiation
Loye:26:35 growth in o, increaseK and the deviation of the
characteristic pressurpy, from the equilibrium pressure. This
will complicate the analysis of stationary and nonstationary
solutions. Fortunately, for largg (g > 1 for metals andy >

0.4 for rocks), strain hardening is saturated, afds becoming
strain-independert.
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