
Iowa State University

From the SelectedWorks of Valery I. Levitas

2006

Kinetics of Strain-Induced Structural Changes
under High Pressure
Valery I. Levitas, Texas Tech University
Oleg M. Zarechnyy, Texas Tech University

Available at: https://works.bepress.com/valery_levitas/32/

http://www.iastate.edu
https://works.bepress.com/valery_levitas/
https://works.bepress.com/valery_levitas/32/


Kinetics of Strain-Induced Structural Changes under High Pressure

Valery I. Levitas* and Oleg M. Zarechnyy
Texas Tech UniVersity, Center for Mechanochemistry and Synthesis of New Materials,
Department of Mechanical Engineering, Lubbock, Texas 79409

ReceiVed: March 22, 2006; In Final Form: May 30, 2006

A mechanism-based microscale kinetic theory for strain-induced structural changes (SCs) (that includes phase
transformations (PTs) and chemical reactions (CRs)) is developed. Time is not an independent parameter in
this theory; instead, plastic strain is a time-like parameter. Kinetics depends essentially on the ratio of the
yield strengths of phases. Stationary and nonstationary solutions of the kinetic equations are analyzed for
various cases, including SCs between two phases in an inert matrix and between three phases in silicon and
germanium. A number of experimental phenomena are explained, and material parameters controlling the
kinetics of strain-induced SCs are determined. This includes the possibility of intensification (or suppression)
of SCs at the initial stage of straining by adding a stronger (or weaker) inert phase, zero pressure hysteresis
that however has nothing to do with phase equilibrium pressure, the possibility of obtaining some phases
(that cannot be obtained under hydrostatic loading) under strains, and the possibility to obtain some phases
under relatively small shear, which disappear under larger shear.

I. Introduction

In addition to SCs caused by temperature and/or pressure,
there is a broad class of SCs induced by plastic straining. Strain-
induced synthesis of various materials and chemical compounds
(superhard, amorphous, and semiconducting) by ball-milling
(mechanical alloying or mechanosynthesis) is one of the most
important technological examples.1,2 Interpretation of geophysi-
cal experiments (e.g., deep earthquakes,3-5 ignition of explo-
sives,6-8 and friction and wear data9) requires understanding
of shear-induced SCs, in particular, in shear bands. Fundamental
experimental aspects of strain-induced SCs are extensively
studied under high pressure. Starting with the pioneering work
by Bridgman10 on rotating cemented carbide anvils, followed
by the work on rotational diamond anvils by Blank’s group,11-16

it is well-known that the addition of plastic shear, through the
rotation of one of the anvils, leads to findings that have both
fundamental and applied significance and do not have coun-
terparts in pressure/temperature-induced SCs. Thus, plastic shear
leads to a significant (in some cases, by a factor of 3-5)
reduction of PT12,13 and CR17,18 pressure. It also leads to the
formation of new phases, which were not produced without
rotation.17-22 The most important point for the current study is
that the volume fraction of the product phase or the reaction
product is an increasing function of the plastic shear strain12,13,17,18

and is independent of time. Therefore, strain-controlled (rather
than time-controlled) kinetics is considered. Plastic shear reduces
pressure hysteresis, i.e., the difference between the start pressure
of direct and reverse PT.11,23 This lead to the hope that plastic
shear could be used to localize the phase equilibrium pressure.
In one case, pressure hysteresis was reduced to zero; from this,
it was claimed that the obtained PT pressure could be interpreted
as an equilibrium pressure.11 As we will show, this is not true.
In another case, the possibility of intensification (or suppression)
of CRs by adding a stronger (or weaker) inert phase was
observed experimentally.17,18

Despite the fundamental and applied importance of the effect
of plastic shear on SCs, until recently, there were no efforts to

explain this effect theoretically. Zharov17,18suggests the simplest
formal strain-controlled kinetic equations that can be fitted to
experiment for specific reactions. Gilman’s24,25 qualitative
atomistic models are focused on the effect of elastic rather than
plastic shear. Recently, we developed a theory describing the
strain-induced SCs at the macroscale26,27 (plastic flow of a
sample with SC), at the microscale28 (strain-controlled kinetic
equations), and at the nanoscale29 (nucleation at a dislocation
pileup). Our combined multiscale theory30,31 explains fifteen
mechanochemical phenomena.

The mere fact that the above phenomena are observed for
PTs and CRs in various classes of materials suggests that there
are some universal microscopic (on the scale of 1-1000 mm)
explanations for their existence, independent of specific atom-
istic and nanoscale mechanisms of SC. In this paper, we develop
and comprehensively study some general aspects of the mech-
anism-based microscale kinetic theory of strain-induced SCs.

In section II, we summarize the main universal nanoscale
features of the nucleation at the strain-induced defects (disloca-
tions, dislocation pileup, or various tilt boundaries) that can be
transferred into microscale kinetic equations. In section III, the
kinetic equations for ann-phase system are derived and
analyzed. This model allows us to describe some known
experimental phenomena and understand which material pa-
rameters control the kinetics of strain-induced SCs. Distin-
guished features of the new kinetic equations include the
following:

(a) The equality of the driving forces for SCs to zero does
not determine the relationship between phase equilibrium
pressure and temperature; instead, they result in strain-controlled
kinetic equations. The phase equilibrium pressure (or temper-
ature) does not participate in kinetic equations and consequently
cannot be determined from them.

(b) Time is not an independent parameter. Instead, plastic
strain is a timelike parameter, i.e., derivatives are evaluated with
respect to accumulated plastic strain rather than time. That is
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why we call this kinetics strain-controlled rather than time-
controlled.

(c) Kinetics depends essentially on the mechanical properties
of phases, namely, on the ratio of the yield strengths of phases.

(d) This dependence also involves the volume fraction of
phases which changes the order of the kinetic equations. In the
general case, the order of the reaction is not determined.

Explicit stationary solutions are derived for three-phase
systems, and their dependence on the ratio of the yield strengths
of phases is analyzed.

In section IV, SCs between two phases in an inert matrix are
studied. Both stationary and nonstationary solutions are obtained
and analyzed for several pressure ranges. The nonstationary
solutions explain the possibility of intensification (or suppres-
sion) of SCs by adding a stronger (or weaker) inert phase, which
was observed experimentally.17,18 However, such an intensi-
fication (suppression) is effective only at the initial stage of
the SC. Stationary concentration of the product phase is
independent of the inert matrix but can be reached at smaller
plastic strains. Section IV also explains zero-pressure hysteresis
observed in ref 11. It is demonstrated that it has nothing to do
with phase equilibrium pressure. At the initial stage of deforma-
tion, our equation results in a linear relationship between the
volume fraction and the plastic strain observed for a number of
CRs.17,18

In section V, stationary and nonstationary solutions for strain-
induced PTs between three phases in Ge and Si are studied
numerically and used to derive some general consequences.
Results demonstrate how phases that cannot be obtained under
hydrostatic loading could be obtained under applied strains. It
is also found that, while one of the phases can be obtained in
an experimentally detectable quantity under relatively small
shear, it almost disappears under larger shear.

Despite the fact that the constants in kinetic equations cannot
currently be determined experimentally, some experimental
phenomena are described, and a number of useful conclusions
are derived from our analysis. These results are important
especially from the point of view of the search for new strain-
induced phases. In addition, the effect of the yield strength of
phases on SC kinetics is analyzed. Our model provides methods
of characterization and control of strain-induced SCs. These
methods can be used to obtain and intensify SCs, which were
not obtained otherwise, e.g., leading to metallic hydrogen.32-34

II. Main Features of Strain-Induced Nucleation
Mechanism

We will summarize some of the results of nanoscale modeling
of strain-induced SCs29-31 which will be necessary for our study.
For CR, plastic flow produces a fragmentation, strain-induced
diffusion, and mixing of components at the same level as in
liquid-phase CR;17,18that is why mixing will not be considered
as the limiting factor. This will allow us to use the same
approach for both PTs and CRs. There is a fundamental
difference between pressure-induced SCs and strain-induced SCs
under high pressure. Pressure-induced SCs occur predominantly
at existing defects (e.g., dislocations, point defects, grain and
twin boundaries, stacking faults) which represent stress (pres-
sure) concentrators. Thus, the number of nucleation sites is
limited. That is why one has to increase pressure to activate
less potent defects. The strain-induced nucleation occurs at new
defects permanently generated during plastic flow. That is why
it is possible to increase local stresses and promote the SCs
near the new defects by increasing plastic shear at constant
pressure. Stress concentration near the defects significantly

increases the driving force for the SC and can cause SCs at
significantly lower external pressure, thus contributing to the
overall SC kinetics. Stress singularity near the defect effectively
reduces the nucleation barrier due to surface energy and for
strong enough defects (singularities) leads to barrierless nucle-
ation, which does not require thermal fluctuations. This explains
the relatively low-temperature sensitivity of strain-induced SCs,
as well as the strain-controlled rather than time-controlled
kinetics. Because of this, time is not an essential independent
variable, and strain plays a role of timelike parameter. Indeed,
the prescribed strain increment generates defects (dislocation
pileups, various tilt boundaries, shear-band intersections, grain,
twin, and subgrain boundaries, and stacking faults) with
barrierless (i.e., very fast) nucleation and growth of the product
phase up to the size where stress concentration is reduced and
cannot drive the interface further (Figure 1). For the typical
experimental observation time of the few second range, this
resembles instantaneous SC. As straining stops, no new defects
or nuclei appear, and the growth of the existing nuclei is
thermodynamically impossible. As the contribution of the stress
concentration to the driving force for SC in a finite volume is
finite, the lowest possible pressure,pε

ij, exists, below which
strain-induced SC from the low-pressure phasei to the high-
pressure phasej is undetectable. An additional important point
is29-31 that defects generate both compressive and tensile
pressures (stresses), which are of the same magnitude, e.g., for
dislocations (Figure 1) and dislocation pileups. Consequently,
similar defects produced in the product phase will increase the
driving force for the reverse SC. Thus, defects simultaneously
promote both direct and reverse SCs in different regions.
Furthermore, plastic strain is distributed heterogeneously in
a multiphase material. For example, for a two-phase mixture
1 + 2, the stronger phase 1 is, the smaller the fraction of the

Figure 1. Nucleation on a typical strain-induced defect that appears
during the small prescribed strain increment∆qi. The resultant pressure
(curves in the figure) is a superposition of the external pressure,pext,
and the pressure (in general stress) field of the defect. The stress field
of the defect has different senses from both sides of the defect, and its
magnitude reduces away from the defect. A nucleus of phase 2 within
phase 1 and a nucleus of phase 1 within phase 2 appear simultaneously.
The transformation work is proportional to the area enclosed between
the resultant pressure and the defects;pav

1f 2 andpav
2f 1 are the pressures

averaged over the nucleus that produce the same transformation work.
The larger the volume of the nucleusVn

ij (and consequently∆cj )
Vn

ij/V) is, the smaller the stress and the transformation work averaged
over theVn

ij is. Consequently, the transformation work decreases with
increasing (∆ cj)/(∆ qi) ) (dcj)/(dqi).
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plastic strain concentrated within it is, and the larger the
prescribed (external) plastic shear is required to be to cause the
SCs.

The results discussed above represent basic nanoscale reasons
for the mechanochemical phenomena that are of interest in this
paper. All of these results will be conceptually incorporated in
the microscale model.

III. Thermodynamically Consistent Strain-Controlled
Kinetic Equation for Structural Changes

Thermodynamic Criterion for Structural Changes. We
will consider a representative volumeV consisting ofn-phase
material; each phasei can generally be transformed into any
other phasej; simultaneously, phasej can be transformed into
i but with a different rate (Figure 2). If SC between some phases
is impossible, we will set the corresponding transformation rates
equal to zero. General theory of SCs in inelastic materials is
developed in refs 35 an 36 and summarized in ref 30. For solid-
solid SC, the transformation strain tensor,Et, transforms an
infinitesimal volume or a unit cell of the stress-free parent phase
into a unit cell of the stress-free product phase. In the case of
CR, both materials, before and after the CR, can consist of
several substances. For brevity, we will use the term “phases”
in this case as well. We neglect all internal atomic displacements
(e.g., shuffles) inside the volume under consideration.

We will describe plastic deformation averaged over the
volume V in terms of equivalent plastic strainq (Odqvist
parameter). By definition, the Odqvist parameterq is the scalar
path-dependent measure of plastic strain determined by the
equationq̆ :) (2dp:dp/3)1/2 (see, e.g., ref 37 or any textbook on
plasticity theory), wheredp is the plastic strain rate tensor, :)
is equal by definition, and : means double contraction of tensors.
For example, for pure compression (tension),q ) ln|h/h0|, where
h andh0 are current and initial lengths of the sample. For simple
shear, q̆ ) γ/x3 with γ for shear strain. For combined

compression and shear,q̆ ) x(ḣ/h)2+γ̆2/3, andq depends on
the loading path.30,31 Similarly, plastic strain in theith phase
will be characterized by the Odqvist parameterqi averaged over
the phasei. The goal of this section is to derive a strain-
controlled kinetic equation dci/dq ) f(p, cj) for the volume
fraction of each phasei, wherep is the macroscopic pressure
applied to the volumeV. Since the SCs represent a sequence of
nucleation events without further growth and time is not an
explicit parameter, kinetic equations have to be derived using
the thermodynamic criterion eq 1 for the appearance of each
strain-induced nucleus and the averaging procedure.29-31 This

is an extremely complex procedure. To obtain a simple analytical
expression, we approximate the microscopic transformation
work averaged over the transforming volumeVn

ifj (Figure 2)
by some decreasing function of dcj/dqi (eq 4). Validity of such
an approximation follows from our analysis of nucleation at
arbitrary strain-induced defects (Figure 1) as well as an analytical
solution for nucleation at dislocation pileup29-31 and finite
element modeling of nucleation at shear band intersection.38

Resolving the thermodynamic SC condition for dcj/dqi, we
obtain a strain-controlled kinetic equation (eq 5) for SCi f j.
In a similar way, a kinetic equation for the reverse SCj f i
can be derived (eq 6). In the next step, we express the strain in
each phaseqi via the prescribed strainq and the yield stresses
σyk of all phases (eq 8). Algebraically adding the rates ofi f
k and k f i SCs for all k * i and taking into account the
expressionqk(q, σyj) (eq 8), one obtains the final system of
kinetic eq 11 for dci/dq.

In the simplest case, when the temperatureθ is fixed and
homogeneous in a transforming volume and the change in elastic
moduli is neglected, the criterion for barrierless (athermal) SC
i f j in the multiconnected volumeVn

ij of an elastoplastic
material is35,36

Here,Xij is the driving force for SCi f j, which represents
the calculated dissipation increment due to SC only (i.e.,
excluding plastic dissipation) during the entire transformation
process in the volumeVn

ij, averaged over the transforming
region Vn

ij; Kij is the actual dissipation due to SC related to
interaction of a moving interface with various defects, e.g., point
defects (solute and impurity atoms, vacancies), dislocations,
grain, subgrain, and twin boundaries, and precipitates, as well
as to the emission of acoustic waves and Peierls barrier;T is
the local stress tensor;∆ψij is the jump in the thermal part of

the free energy;T:dEt ) ∑
k)1Tkl dεt(lk) is the incremental

transformation work. For elastic materials, the expression for
XijVn

ij coincides with the change in Gibbs energy of the whole
system.35 The stress can be decomposed into a sum of the
macroscopic pressurep, which is homogeneous in a representa-
tive volume V . Vn

ij, and the microscopic heterogeneous
contribution,T̃: T ) pI + T̃, whereI is the unit tensor. Since
V is much larger thanVn

ij, the variation ofp is negligible
during a small SC increment. Macroscopic shear (deviatoric)
strength is limited by the yield strength, which is smaller than
p by a factor of 2R/h = 10-100 in the rotational diamond anvil
cell experiments30,31 (R and h are the radius of the anvil and
the current thickness of the disk sample). We will neglect it
and obtain from eq 1

whereεij is the volumetric transformation strain. To evaluate
the integral in eq 2, knowledge of the specific mechanism of
the strain-induced nucleation is required, and the corresponding
boundary-value problem must be solved either analytically or
numerically. For example, the nucleation at dislocation pileup
was treated analytically in previous studies.29-31 Nucleation at
the shear-band intersection in TRIP steel was investigated in
our paper39 using a finite element solution. However, such
solutions (especially if expanded for multiple defects) are too
complex to study the main microscopic features of strain-

Figure 2. Scheme of structural changes in three-phase model.

Xij ) 1

Vn
ij∫Vn

ij∫0

Et
ij

T:dEt
ij dVn

ij - ∆ψij(θ) ) Kij (1)

Xij ) pε
ij + 1

Vn
ij∫Vn

ij∫0

Et
ij

T̃:dEt
ij dVn

ij - ∆ψij ) Kij (2)
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induced kinetics. In addition, such solutions require that the
number of parameters be known (e.g., type and geometry of
the defect, defect concentration and distribution). Therefore, we
have to find the main property of the nanoscale model that can
be approximately transmitted to the microscale. One of the
results which can be extracted from this investigation is that
there is a significant decrease in the transformation work with
the ratio∆cj/∆qi = dcj/dqi, where∆cj is a small increment of
the volume fraction of a strain-inducedj phase that appeared
within the i phase due to the small accumulated plastic strain
increment in thei phase∆qi.

Qualitatively, this has to be the case for any mechanism of
nucleation due to strain-induced defects. Indeed, if a single
defect appears during the prescribed small strain increment∆qi,
its stress field reduces with an increasing distance from the
defect tip (Figure 1). As the volume of the nucleusVn

ij (and
consequently,∆cj ) Vn

ij/V) increases, the stress and the
average transformation work over theVn

ij decreases.
Thus, the main property of any nanoscale mechanism of

strain-induced nucleation is that the transformation work is a
decreasing function of dcj/dqi. We will use the following to
approximate such a function:

Here, ∆Xij is the maximum nanoscale contribution to the
transformation work for an infinitesimal nucleus, andaij, øij,
and úij are parameters. The factorci

úij takes into account that
SC i f j occurs in phasei only; therefore, if the parent phase
disappeared (ci ) 0), then dcj/dqi ) 0 as well. Substituting eq
3 in eq 2, we obtain the following microscopic criterion for SC
i f j averaged over the representative volumeV:

We will define the pressureph
ij under which SC occurs under

hydrostatic loading without a strain-induced contribution by the
equationph

ij
εij - ∆ψij ) Kij. For p g ph

ij, SC occurs to a high-
pressure phase (or forp e ph

ij, SC occurs to a low-pressure
phase), and one needs to use the traditional time-dependent
kinetic equationc̆ij ) fij(p, ck, t) for pressure-induced SC.
Including these conditions would complicate our study and will
not allow us to focus on the main regularities of strain-induced
SCs. For this reason, we will only consider the following two
limit cases:

(a) Kinetics of pressure-induced SCs is neglected because it
is much slower than kinetics of strain-induced SCs. This is the
case for fast plastic straining and will be referred to as strain-
dominated kinetics.

(b) Kinetics of pressure-induced SCs is considered to be
instantaneous because it is much faster than kinetics of strain-
induced SCs, i.e., when pressure reachesph

ij, phasei com-
pletely and instantaneously transforms to phasej. This is the
case for very slow plastic straining and will be referred to as
pressure-dominated kinetics.

We also define the minimal pressurepε
ij, under which strain-

induced SC can start at an infinitesimal rate, by the equation
pε

ij
εij - ∆ψij + ∆ Xij ) Kij. As a result, we find that∆Xij )

(ph
ij - pε

ij)εij .
Kinetic Equations for Structural Changes. Solving eq 4

for dcj/dqi yields a thermodynamically consistent strain-

controlled kinetic equation for dcj/dqi (for direct SCi f j)

For the reverse SCj f i, one may write

The SCi f j occurs forpjij g 0 only; forpjij < 0, we can assume
aij f ∞ or multiply eq 5 by the Heaviside unit step function
H(pjij) (H(x) ) 1 for x g 0; H(x) ) 0 for x < 0). Forph

ij > pε
ij,

the SC occurs from the low-pressure to the high-pressure phase
andp g pε

ij. Forph
ij < pε

ij, the SC occurs from the high-pressure
to the low-pressure phase, and the inequalityp e pε

ij is valid.
Similar reasonings are applicable to eq 6.

To define the Odqvist parameter for each phase,qi, when
the Odqvist parameter for the mixture,q, is already defined,
one would have to solve a very complex elastoplastic micro-
mechanical problem. Currently, an analytical solution to such
a problem is not available. To find the simplest noncontradictory
solution, we assume

andσyi is the yield strength ofith phase. Let us prove that all
wij are the same, i.e.,wij ) w for all i and j. First, qj/qi ) Sij

wji;
from this equation, we obtainqi/qj ) Sij

wji, which after com-
parison with eq 7 results inwij ) wji. Then, qi/qk ) Ski

wik;
dividing this equality by eq 71, we obtainqj/qk )Ski

wikSij
wij. Since

qj/qk ) Skj
wjk is independent ofσyi (see definition in eq 7),Ski

wikSij
wij

) Skj
wjk results inwik ) wij ) wjk, which means that allwij are

the same. It follows from eq 7 that

For SC with three phases, eq 8 simplifies to

whereD :) c1σy2σy3 + c2σy1σy3 + c3σy1σy2. According to eq
8, with a stronger phase, the fraction of the equivalent strain
concentrated within the phase is smaler; forσy1 ) σy2 ) ... )
σyn, one hasq1 ) q2 ) ... ) qn ) q. As for σyi ) (4-10)σyk,
qi is negligible; the parameterw is estimated byw ) (2-5).
Adding algebraically the rates ofi f k andk f i SCs for allk
* i and taking into account eq 8, one obtains the final system
of kinetic equations

1

Vn
ij ∫Vn

ij∫0

Et
ij

T̃:dEt
ij dVn

ij ) ∆ Xij[1 -
aij

ci
úij(dcj

dqi
)1/mij] (3)

Xij ) pε
ij - ∆ψij + ∆Xij[1 -

aij

ci
úij(dcj

dqi
)1/mij] ) Kij (4)

dcj

dqi
) (ci

úij

aij
pjij)mij

wherepjij :)
p - pε

ij

ph
ij - pε

ij
(5)

dci

dqj
) (cj

úji

aji
pjji)mji

(6)

qi/qj ) Sji
wij andq ) ∑

k)1

n

ck qk whereSji :) σyj/σyi (7)

qi ) q(∑
k)1

n

ckSik
w)-1 (8)

q1 ) q
σy2σy3

D

q2 ) q
σy1σy3

D

q3 ) q
σy1σy2

D
(9)

dci

dq
) ∑

k)1,k*i

n [∂ci

∂qk

∂qk

∂q
H(pjki) -

∂ck

∂qi

∂qi

∂q
H(pjik)]

i ) 1, ..,n - 1 (10)
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or in explicit form

Natural constraint∑k)1
n ck ) 1 has to be taken into account.

To avoid i f i SC, we assumeaii f ∞ for eachi.
Equation 11 is correct for strain-dominated kinetics. In the

case of the pressure-dominated kinetics withpjij g 1, the phase
i instantaneously transforms to the phasej, i.e.,ci jumps to zero,
and cj has a jump by the value ofci before the jump. In this
case, the kinetic equation corresponding to phasei in eq 11
should not be used. The final kinetic equations (eq 11) have
the following features that are significantly different from the
classical chemical kinetic equation.

(a) The equations are derived from the equality of the driving
forces for SCs to zero (i.e., from the thermodynamic condition)
when nanoscale contribution to the driving force is properly
taken into account.

(b) Time is not an independent parameter. Instead, plastic
strain is a timelike parameter.

(c) Kinetics depends essentially on the mechanical properties
of the phases, namely, on the ratio of the yield strengths.

(d) This dependence also involves volume fraction of the
phases, which changes the order of the kinetic equations. Since
the effect of each fraction cannot be presented in the formci

n

with an exponentn, the order of the reaction is not determined.
(e) Kinetic parameters depend on pressure and two charac-

teristic pressures for each SC as follows: (1) the pressure at
which SC occurs under hydrostatic conditions, which takes into
account the deviation of the actual SC pressure from the
thermodynamic equilibrium pressurepe

ij (determined by the
equationpe

ij
εij - ∆ ψij ) 0) due to irreversible processes (Note

that the thermodynamic equilibrium pressure does not contribute
to kinetic eq 11 and consequently cannot be determined from
the results of strain-induced experiments. This is in contrast to
the hope formulated in refs 12, 40, and 41 that plastic shear
that reduces the pressure hysteresis allows for better localization
of the thermodynamic equilibrium pressure.); (2) the minimal
pressurepε

ij for the SC from the low-pressure to the high-
pressure phase (or maximum pressurepε

ij for the SC from the
high-pressure to the low-pressure phase) under which strain-
induced SC can start at an infinitesimal rate.

Stationary Solution. Equation 11 has a number of parameters
which makes it flexible to fit a wide range of experimentally
observed kinetics. It is, however, reasonable to assume that the
rate of each SCi f j is proportional toci (again, because of
the dependence of the term related to the yield strengths onck,
this does not mean that we consider the first-order reaction).
Indeed, the prescribed strain increment produces the prescribed
value of defect densities, and the number of strain-induced
nucleating defects in phasei is expected to be proportional to
the volume of phasei, i.e., toci. For this case, we haveúikmik

) 1 for all i andk, and an analytical stationary solution to system
of eq 11 can be found. For a three-phase system, within the
pressure range of coexistence of all three phases (i.e., for 0e
pjij e 1 for all i andj), the stationary solution has the following
form:

where

It is clear that∑ci ) 1. EachBi has contributions due to the
following SCs: direct SCs to the phasei, (j f i)(k f i); indirect
SCs to the phasei through another phase, (j f k)(k f i) and (k
f j)(j f i); and SCs from thei phase (i f j) do not contribute.
If all (1/aik)mik are the same, the stationary solution is independent
of aik. An analysis of the three-phase case will be considered
below for Si and Ge.

IV. Structural Changes Between Two Phases in an Inert
Matrix

Kinetic Equation. Here, we consider the case when one of
the three phases (for example, phase 3) does not participate in
SC, i.e.,c3 ) const; phase 1 and phase 2 are low- and high-
pressure phases, respectively. Then, only one of the equations
from eq 11 has to be considered, which can be presented in the
following form

Consider the pressure-volumetric strain (ε ) 1 - V2/V1 g

0) curve (Figure 3) under hydrostatic loading forph
21 ) const

and ph
12 ) const. For pressure-dominated kinetics, phase 1 is

absolutely unstable and cannot exist forp > ph
12; similarly,

phase 2 is absolutely unstable and cannot exist forp < ph
21. For

strain-dominated kinetics, phase 1 can exist forp > ph
12 and

phase 2 can exist forp < ph
21. For a volume fraction of the

second phase in a 1+ 2 mixture,cj2 :) c2/(1 - c3), one obtains
cj2 ) AB/AC. Along line BD (unloading), there is no structural
change. Strain-induced SC occurs under constant pressure due
to plastic shear and can be visualized by the horizontal line,
e.g., DE.

For an SC from the low-pressure to the high-pressure phase,
pε

12 < ph
12, since strain-induced SC starts at a lower pressure

than under hydrostatic loading. For a SC from the high-pressure
to the low-pressure phase, we obtain similarly thatpε

21 > ph
21. A

dci

dq
) ∑

k)1,k*i

n {[ck
úki

aki

pjkiH(pjki)]mki

(∑
m)1

n

cmSkm
w )-1} -

(∑
m)1

n

cmSim
w )-1 ∑

k)1,k*i

n [ci
úik

aik

pjikH(pjik)]mik

i ) 1, ..,n - 1 (11)
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priori, pε
12 can be lower thanph

21 for strain-dominated kinetics.
However, for pressure-dominated kinetics, ifpε

12 < ph
21, then

for any pressurep in the rangepε
12 < p < ph

21, any amount of
strain-induced phase 2 immediately transforms back to phase
1. This means that the pressurepε

12 hasph
21 as its lower limit, or

ph
21 e pε

12. Similarly, we may conclude that for pressure-
dominated kinetics and SC from the high-pressure to the low-
pressure phase:pε

21 e ph
12.

There are two possible relations for pressurespε
12 and pε

21:
pε

12 > pε
21 andpε

12 < pε
21.

(1) The casepε
12 > pε

21 corresponds to a weaker effect of
strain on change in SC pressure. In this case, strain-induced
SC cannot occur in the pressure rangepε

21 < p < pε
12, and

volume fractions of phases remain constant and equal to their
values obtained during pressure-induced SCs. Equation 17
simplifies to

The stationary solution forp < pε
21 is cj1 ) 1 and forpε

12 < p is
cj2 ) 1, since only one SC occurs in each of these pressure ranges
(Figure 4).

Let us compare rates of SC for two cases: dc1
I /dq for σy1 )

σy3 and dc1
II/dq for σy1 * σy3. For c1 > 0, we obtain the

following:

Independent fromS12, it follows from eq 19 that if the yield
strength of the inert matrix is greater (or smaller) than the yield
strength of the parent phase,S13 < 1 (or S13 > 1), then SC II is
accelerated (or decelerated) in comparison to SC I withσy1 )
σy3. This corresponds to experiments in refs 17 and 18. An

increase ofc3 and decrease ofS12 intensify this process. When
σy3 ) σy1, addition of inert matrix does not affect SC, even if
σy3 > σy2. The analytical solutions of eqs 18 are

They can be inverted in the form

where ProductLog[z] gives the principal solution fory of the
equationz ) yey,42

and

Figure 6 quantitatively supports our qualitative conclusion of

Figure 3. Pressure-volumetric strain curve under hydrostatic loading.
SC 1f 2 occurs along the line AC; SC 2f 1 occurs along the line
GF; the strain-induced SC under constant pressure takes place along
line DE.
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Figure 4. Stationary solutions for volume fractions for two-phase
system in an inert matrix for the casepε

12 > pε
21.
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how the addition of an inert phase changes the rate of SC. Thus,
adding a large amount of a strong inert phase could be used as
a method of detection of a phase that cannot be revealed because
of a low rate of SC. The dashed line in Figure 6 corresponds to
the case with no inert phase. Note that the minimal hysteresis
in SC pressure for strain-induced SC is determined by pressures
pε

12 and pε
21, and this hysteresis is smaller than the hysteresis

ph
21 - ph

12 for pressure-induced SC. However, this does not
help in localizing the phase equilibrium pressurepe

12. There is
no currently available information that would provepε

12 < pe
12

< pε
21; instead, it may be thatph

21 < pe
12 < pε

12 or ph
12 > pe

12 >
pε

21.
(2) The opposite case,pε

12 < pε
21, corresponds to a stronger

effect of strain on the change in SC pressure. In the pressure
rangespε

21 < p andp >pε
12, one of two SCs is possible, and eqs

18-23 derived for case 1 are valid. The stationary solution for
pε

21 < p is c2s ) 1 and forp > pε
12 is c2s ) 0. In the regionpε

12

< p < pε
21, bothi T j SCs are possible, and both terms in eq 17

are present. A stationary solution of eq 17 can be presented in
the following form

where

The stationary case of SC with two phases was solved in ref 30
for c3 ) 0. In the pressure range 0e pj e 1 (i.e., forpε

12 < p <
pε

21), cj2s varies from 0 to 1, and the shape of thecj2s (p̃) curve
depends on the material parameters; see Figure 5. Whenp f

pε
12, one hascj2s ) 0; whenp f pε

21, one obtainscj2s ) 1. If, in
particular,M ) 1 (e.g., for equal material parameters of both
phases) andú12 ) ú21 ) 1, thencj2s ) p̃. If M f 0 (e.g., if
second phase is much stronger and/ora12

1/ú12/a21
1/ú21 f 0, i.e.,

kinetics of the high- to low-pressure SC is suppressed, and/or
(pε

21 - pε
12)1/ú21-1/ú12(ph

12 - pε
12)1/ú12/(pε

21 - ph
21)1/ú21 f 0, thencj2s

) 1. In the opposite caseM f ∞, cj2s f 0. If c < cj2s, then
direct SC will occur for straining under constant pressurepε

12

< p e pε
21. In the opposite case, the reverse PT will take place.

A number of conclusions can be made from analysis of eq 24
(see also ref 30), including the following:

(a) SC from the low- to the high-pressure phase is promoted
by plastic deformation at a pressure abovepε

12 only. This
explains what may seem like a contradiction formulated in ref
43, namely, why large plastic deformation during the compres-
sion of materials (i.e., belowpε

12) does not cause SC, yet
relatively small shear strain at relatively high pressure signifi-
cantly promotes SC.

(b) If M . 1, even if the initiation pressure for SC from
low- to high-pressure phase can be reduced significantly, only
a small amount of product phase can be produced at a pressure
aroundpε

12 due to strain-induced nucleation. This is important
for discovering a new phase but not for producing it. A
significant amount of the high-pressure phase can be obtained
under pressures aroundph

12, i.e., like for pressure-induced SC.
A significant amount of the high-pressure phase can be induced
by a large strain at a low pressure forM , 1 only (Figure 5).
One of the conditions for a smallM, (S21)1/g . 1, shows that
large plastic strains promote the appearance of hard phases more
than weak phases. When this condition is fulfilled, then plastic
flow localizes inside of phase 1 causing 1f 2 SC, while small
plastic strain in phase 2 causes a small advance of the reverse
SC.

(c) Zero-pressure hysteresis was observed at pressurep )
1.8 GPa for B1T B2 PT in KCl,11 and it was assumed that
this is an equilibrium pressure which can be used to plot a
pressure-temperature phase diagram. However, if the initial state
of material under any pressurep and the volume fraction of the
phases corresponds to a stationary statecj2s, then any infinitesi-
mal pressure increase (or decrease) followed by plastic straining
will cause 1f 2 (2f 1) SC, i.e., pressure of direct and reverse
SC differs infinitesimally and pressure hysteresis is practically
zero (Figure 5). Since zero-pressure hysteresis can be obtained
for any pressure in the rangepε

12 < p < pε
21, zero hysteresis

definitely does not mean that the phase equilibrium pressure is
found. Similar to case 1, the equilibrium pressure cannot be
determined from a strain-induced experiment, because it does
not contribute to any equation for strain-induced SCs.

(d) The inert phase does not change the stationary value of
the volume fraction of the reacting phases with respect to the
mixture of reacting phases. Equation 24 is valid for ann-phase
system in any pressure range where only two phases undergo
the SC. However, SC kinetics, especially at the initial stage, is
significantly affected by the presence of an inert phase. Thus,
for infinitesimal c2 and for úij ) mij ) 1, eq 17 simplifies to

Equation 25 results in eq 19 withc1 = 1 - c3. Thus, the same
conclusion is valid that the stronger (or weaker) the inert phase
is with respect to the parent phase 1 the more SC is accelerated
(or suppressed). Because acceleration occurs mostly at the initial

Figure 5. Relation between the stationary value of the volume fraction
of the product phase 2 with respect to the mixture of phases 1 and 2
and the dimensionless pressurep̃ for mij ) ςij ) 1. Phases 1 and 2 are
deformed in an inert matrix andpε

12 < pε
21. Numbers near curves

designate values ofM. If the material is under any pressurep̃ and initial
volume fraction of the phases correspond to a stationary statecj2s, then
any infinitesimal pressure increase (or decrease) followed by plastic
straining will cause 1f 2 (or 2 f 1) SC, i.e., pressure of direct and
reverse SC differs infinitesimally, and pressure hysteresis is practically
zero. This corresponds to the experiments in ref 11.
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stage of SC, we can detect phases that otherwise could not be
detected, potentially discovering new phases. Similarly, we can
conclude that adding stronger particles to the material under
study will facilitate SC and could cause SC which would not
be obtained otherwise, e.g., metallic hydrogen.32-34 Adding
weaker particles will suppress SC, which is important, e.g., for
explosives. Note that the above problem was considered in our
papers28-31 using a stationary solution for a two-phase model
and some qualitative reasonings. It is clear that, for correct
interpretation of the experiments in refs 17 and 18, a nonsta-
tionary solution for a three-phase model is necessary.

A nonstationary analytical solution to eq 17 can be found in
the following inverse form:

Figure 7 based on eq 26 illustrates the effect of the ratio of the
yield strengths of the parent and inert phase and the concentra-
tion of the inert phase on the kinetics of SCs. The results are
qualitatively the same as in the above case when only direct
SC occurred. The only difference is that the stationary value
(the same in all parts of Figure 7) iscj2s < 1.

At the initial stage of deformation, Figures 6-7 demonstrate
the linear relationship between volume fraction and plastic strain,
which is observed for a number of CRs.17,18

V. Phase Transformations in a Three-Phase System in
Silicon and Germanium

Phase Transformations in Si and Ge.Silicon Si and
germanium Ge represent extremely important materials because

of Si- and Ge-based electronics as well as their applications in
solar cells and MEMS. PTs in Si and Ge are a subject of
intensive basic and applied studies. One of the reasons is related
to the variety of PTs, including martensitic, reconstructive, and
crystalT amorphous PT. Twelve crystalline and two amorphous
phases of Si were revealed under different thermomechanical
loadings. Understanding of strain-induced PTs in Si and Ge is
of great practical importance. Information on stress and strain-
induced PT in Si and Ge is crucial for understanding wear,
friction, and erosion of Si and Ge. Some strain-induced high-
pressure phases of Si and Ge are often observed in a machined
surface of Si and Ge single crystals.44 Machining of strong brittle
semiconducting Si I and Ge I is accompanied by microcrack
propagation inside the bulk materials. Utilizing strain-induced
PTs into ductile metallic Si II or Ge II during machining allows
one to realize and optimize the ductile regimes of machining.

There is a significant discrepancy in the phase behavior of
Si and Ge reported in the literature. This discrepancy is related
to the type of loading (hydrostatic pressure, nonhydrostatic
pressure, or plastic straining), the preliminary plastic deformation
(that changes the yield strength,K, and consequentlyph), the
initial structure (e.g., grain size), the size of the loading region
(e.g., nanoindentation versus microindentation), and the loading
rates. Since data for strain-induced PTs is available from refs
12, 13, and 45, we will rely on these refs for hydrostatic loadings
as well. Also, since in refs 12 and 13 PTs between phases Si I,
Si II, and Si III (and Ge I, Ge II, and Ge III) are studied, we
will not consider in our equations the difference between bc8
Si III and the rhombohedral structure r8 Si XII or the difference
between the diamond cubic structure Si I and the hexagonal
diamond structure Si IV; both of these pairs have a small
difference in specific volume. The crystal structure of Ge I and
the â-tin structure of Ge II are similar to the structures of Si I
and Si II, while Ge III has a simple tetragonal structure with
twelve atoms per unit cell and is not similar to Si III. Some
data taken from the recent review chapter46 will be used as well.

Figure 6. Change of the volume fraction of the phase 2,cj2, with plastic strain,q, in the presence of an inert phase (when reverse SC does not
occur) forp ) 7.5, pε

12 ) 5.45 GPa,ph
12 ) 11.2 GPa (parameters for Si), andS12 ) 1.875; 0,c3 0, no inert phase; 1,S13 ) 30; 2,S13 ) 7.5; 3,S13

) 3; 4, S13 ) 1.5; 5,S13 ) 1; 6, S13 ) 0.6; 7,S13 ) 7, S13 ) 0.3; 8,S13 ) 0.0075. (a)c3 ) 0.05; (b)c3 ) 0.5; (c)c3 ) 0.75; (d)c3 ) 0.9.
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Hydrostatic Loading. The equilibrium phase diagrams at
room temperature for Ge and Si are shown in Figure 8 based
on refs 12 and 13. We will consider the low-pressure semicon-
ducting phase Si I (Ge I), the high-pressure semiconducting
phase Si III (Ge III), and the high-pressureâ-tin metallic phase
Si II (Ge II). Here,pe

13 ) 8.4 GPa andpe
23 ) 9.3 GPa for Ge

and pe
13 ) 8.5 GPa andpe

23 ) 12.3 GPa for Si.12,13 The
schematic pressure-volumetric strain diagram of the three-phase
system under hydrostatic loading in Ge and Si is shown in Figure
9. During hydrostatic compression, Si I transforms at 9-16 GPa
into a denser phase Si II, and Ge I starts transformation into
Ge II at a pressure around 10 GPa.46 Semiconducting phases Si
III and Ge III are supposed to be stable within the pressure
ranges 8.5-12.3 GPa and 8.4-9.3 GPa, respectively,12,13 but
they cannot be obtained under hydrostatic conditions during the
pressure increase. Upon hydrostatic unloading, phases Ge II and
Si II transform to Ge III and Si III, sometimes through
intermediate phases (e.g., via Si IV45 or Si XII46,47).

Compression and Shear in a Rotational Diamond Anvil
Cell.12,13 The following PTs are observed with an increase in
rotation angle under a fixed axial force: Si If Si IV f Si III
at 3-4 GPa, and both Si If Si III f Si II and Si If Si II at
higher pressure (similar for Ge). Experiments show that the
minimal pressure for Si If Si III (Ge I f Ge III) PT under a
very large plastic shear ispε

13 ) 3.1 GPa for Ge andpε
13 ) 2.5

GPa for Si. These values are significantly lower than the phase
equilibrium pressurespe

13 ) 8.4 GPa for Ge andpe
13 ) 8.5 GPa

for Si.12,13In addition, PT Si If Si II under shear was obtained
at 5.45 GPa (for Ge at 4.9 GPa), which is lower than the pressure
of 8.5 GPa required for reverse PT Si IIf Si III under
hydrostatic conditions (for Ge at 7.6 GPa). These data should
not, however, lead to the conclusion that the strain-induced phase
II has to immediately undergo pressure-induced PT to phase
III (this is not observed in experiments). The reason for such a
paradoxical result is as follows: data under hydrostatic condi-

Figure 7. Change of the volume fraction of the phase 2,cj2, with plastic strain,q, in the presence of an inert phase (when both direct and reverse
PTs occur) forp ) 7.5,pε

12 ) 5.45 GPa,ph
12 ) 11.2 GPa, andpε

21 ) 8 GPa,ph
21 ) 1 GPa) (parameters for Si), andS12 ) 1.875; 0,c3 ) 0, no inert

phase; 1,S13 ) 30; 2,S13 ) 7.5; 3,S13 ) 3; 4, S13 ) 1.5; 5,S13 ) 1; 6, S13 ) 0.6; 7,S13 ) 0.3; 8,S13 ) 0.0075. (a)c3 ) 0.05; (b)c3 ) 0.5; (c)
c3 ) 0.75; (d)c3 ) 0.9.

Figure 8. Equilibrium phase diagram for a three-phase system in Ge
and Si. Figure 9. Pressure-volumetric strain curve under hydrostatic loading

for a three-phase system in Ge and Si.
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tions are obtained without preliminary plastic deformation and
strain hardening, while data for strain-induced PT are affected
by large plastic straining. Large plastic straining increases the
yield strength, and consequently,K ) Lσyε

26,35(whereL is some
coefficient) and|ph - pe| ) K/ε ) Lσy. For this reason, the
difference|ph

23 - pe
23| after plastic straining is much larger (and

ph
23 is much lower) than without plastic straining and PT IIf

III does not occur after strain-induced PT If II. A similar
explanation may be used to justify why phase I transforms into
the phase II, without first transforming into phase III (despite
the fact that the equilibrium pressurepe

13 < pe
23, Figure 8, and

therefore, phase I should transform into phase III before phase
II). The yield strength of the strong semiconducting phase III
is much higher than that of the weak metallic phase II, which
is why ph

13 is higher thanph
12, and phase III cannot be obtained

under hydrostatic loading. We will apply a three-phase model,
Figure 2, and consider PTs among all three phases. We use the
following values of characteristic pressures for Ge:

and for Si

Other parameters,aij, mij, andw, are assumed to be 1. The
equalityaij ) 1 is equivalent to substitutingq with q/aij. Some
of these values (ph

12, pε
13, pε

32, and pε
12) were taken from

experimental data.12,13 Some values forpε
21, pε

31, and pε
23 are

given in refs 12 and 13, but since they are not the maximum
values for the strain-induced PTs to low-pressure phases, we
used larger numbers. The parameterph

23 was taken to be lower
than the experimentally observed value for the case without
preliminary plastic deformation (see the above discussion on
PT II f III). Finally, parametersph

13 and ph
32 are taken to be

above the pressure range of interest and parametersph
21 andph

31

are taken to be below the observed PT pressure, because none
of the above PTs occur under hydrostatic conditions.

Stationary Solutions.Stationary solutions for Ge and Si (eqs
12-16) are presented in Figure 10. The ratio of the yield stresses
of the phases are unknown, especially when Ge and Si are under
pressure and experience very large plastic deformations. It is
known that semiconducting phases are significantly stronger than
the metallic phase, and it can be assumed that the high-pressure
(denser) semiconducting phase is stronger than the low-pressure
semiconducting phase. Thus, we varied these parameters: solid
lines in Figure 10 correspond toS31 ) 1.33 andS21 ) 0.53,
while dotted lines correspond toS31 ) 1.20 andS21 ) 0.10.
The curves in Figure 10 are interpreted as the result of the
application of a very large shear under each chosen fixed
pressure. In the general case, the pressure region is divided into
three subregions. In the first subregion, there is only one phase.
Thus, within the pressure range 0e p e pε

13 (below the
pressure at which any strain-induced PT from phase 1 is
possible, while all PTs to phase 1 can occur),c1s ) 1. Within
the pressure rangep g pε

23 (above the pressure at which any
strain-induced PT from phase 2 can occur, while all PTs to phase
2 are possible),c2s ) 1. In the second subregion, two phases
coexist. Within the pressure rangepε

13 e p e pε
32, shear leads to

the increase of the fraction of phase 3 at the expense of phase
1. Similarly, for pε

21 e p e pε
23, phase 3 appears from phase 2

with an increasing volume fraction and a decreasing pressure.
The volume fractions of phases in two-phase regions are given
by eq 24 with corresponding subscripts.

In the regionpε
32 e p e pε

21, all three phases coexist, and the
volume fractions are given by eqs 12-16. It is clear from Figure
10 that there are jumps in the derivatives of the volume fraction
curves at pressurespε

kl, while characteristic hydrostatic pres-
sures,ph

kl, affect these curves in a continuous way.
In the presure rangepε

32 e p e pε
12, phase 2 appears from

phase 3, and PT 1f 3 f 2 occurs with increasingc2s andc3s;
however,c2s is very low. In the rangepε

12 e p e pε
31, direct PT

1 f 2 also takes place. Both transformation paths (1f 3 f 2
at lower pressure and 1f 2 for higher pressure) have been
observed experimentally,12,13while under hydrostatic pressure,
phase 3 cannot be obtained from phase 1.

In the pressure rangepε
31 e p e pε

21, reverse PT of phase 3
into phase 1 is impossible. This leads to the disappearance of

Figure 10. Stationary solution for the volume fractions of strain-
induced phases vs pressure for SC in Ge (a) and Si (b).

ph
13 ) 18 GPa,ph

32 ) 20 GPa,ph
21 ) 1 GPa,ph

31 )

-0.5 GPa,ph
23 ) 3.5 GPa,ph

12 ) 10.5 GPa,pε
13 )

3.1 GPa,pε
32 ) 4.2 GPa,pε

21 ) 8 GPa,pε
31 ) 7 GPa,pε

23 )

10 GPa,pε
12 ) 4.9 GPa

ph
13 ) 18 GPa,ph

32 ) 20 GPa,ph
21 ) 1 GPa,ph

31 )

-0.5 GPa,ph
23 ) 3.5 GPa,ph

12 ) 11.2 GPa,pε
13 )

2.5 GPa,pε
32 ) 5.4 GPa,pε

21 ) 8 GPa,pε
31 ) 7 GPa,pε

23 )

10 GPa,pε
12 ) 5.45 GPa

Figure 11. Function c1 (c3) for PT in Si, for p ) 7 GPa,S12 )
1.875:1,S13 ) 30; 2, S13 ) 15; 3, S13 ) 5; 4, S13 ) 1.875; 5,S12 )
0.006.

16044 J. Phys. Chem. B, Vol. 110, No. 32, 2006 Levitas and Zarechnyy



phase 1 at pressurepε
21 when reverse PT 2f 1 also ceases to

occur. In addition, strain-induced PTs allow one to produce more
than 90% of the Ge III (Si III) phases in the pressure range
7-8 GPa, while under hydrostatic conditions, the pressure has
to reach a value that almost completes the If II PT (higher
than 11 GPa), and then, phase III will appear after unloading.

Comparison of the dashed and solid lines in Figure 10 allows
us to analyze the effects of the yield strength ratio. In these
figures, the ratioS31 increases very little, while the ratioS21

increases by a factor of 5.3. The solid curvec1s(p) lies slightly
lower than the dotted curve, which is logical, since a larger
strain is concentrated in phase I, and more of phase I transforms
to phase III. A large increase inS21 strongly suppresses PT If
II, and phase I transforms to phase III only.

Transformation Kinetics. Dividing the kinetic equation for
dc1/dq by the kinetic equation for dc3/dq, we exclude strainq
and obtain a differential equation for dc1/dc3. Figure 11 shows
the numerical solution of this equation for various values ofSij

in the region where all three phases are present. Each curve
presents all combinations betweenc1 andc3 that occur during
plastic straining (c2 ) 1 - c1 - c3). All curves end at the
stationary values ofc1 and c3. With decreasingS13, more of
phase III appears during straining at the same value ofc1, both
in the nonstationary and stationary regimes. ForS13 ) 0.075,
the stationary valuec3 ) 1.

To determine how the volume fraction of phases varies with
the accumulated plastic strain, we solve the system of ordinary
differential eq 11 numerically at some prescribed pressures.
Results forp ) 7 GPa and three different combinations of the
yield strengths of phases are presented in Figure 12. Stationary
values obtained in Figure 12 coincide with the corresponding
analytical solutions from eqs 12-16. Not only the stationary
solutions but also the critical strain necessary to reach them
depends on the ratio of the yield strengths of the phases. Thus,
an increase ofS31 from 1.333 to 6.0 reduces the critical strain
from ∼10 to∼5. The volume fraction of the second phase passes
through the maximum at relatively small strains for all cases
under consideration. An important conclusion follows from
Figure 12b. Despite the fact that the stationary value of phase
II is very small and not detectable in the experiment, at the
initial stage more than 10% of phase II was obtained. Conse-
quently, if phase II would be unknown, to reveal it relatively
small strains have to be applied. The same can be used for the
search of new phases in other material systems.

VI. Concluding Remarks

In this paper, a comprehensive conceptual approach to the
kinetics of strain-induced SCs under high pressure is developed.
Mechanism-based microscale kinetic equations for strain-
induced SCs are derived. The main results are summarized in
the Introduction.

Note that the current measurements of SC kinetics in both
the rotational diamond and the Bridgman anvil cell17,18,48are
only approximate. They have been related to the averaged
pressure over the anvil, while the local pressure is heterogeneous
and varies during the rotation. In particular, we believe that part
of the promoting effect of the inert matrix with the larger yield
strength is related to the pressure growth at the center of the
sample while under a fixed averaged force.30,31 In addition,
plastic strain is determined mostly by the rotation of the anvil,
which does not take into account relative sliding between the
anvil and the material. Even if relative sliding is taken into
account, another problem related to transformation-induced
plasticity (see below) may lead to significant inaccuracy.

One of the possible ways to measure SC kinetics is developed
in our recent papers20-22 where PT from the graphite-like boron
nitride BN to the superhard wurtzitic BN was studied. First, a
method was developed to create an almost homogeneous
pressure in the sample, which does not vary significantly during
shear and PT. The pressure and the X-ray patterns were
measured in situ locally along the radius of the sample for
various rotation angles of the anvil. The volume fraction of the
wurtzitic phase was evaluated using proper X-ray peaks. The
key point we found is that the degree of disorder (concentration
of turbostratic stacking faults,s), which also was evaluated using
proper X-ray peaks, is proportional to the plastic strain. That is
why s can be used as a local measure of plastic strain. Using
this approach, we found that, during the PT, actual plastic strain
is 20 times larger than the value calculated by evaluating the
rotation angle. The reason for such a huge plastic strain is that
a large volumetric transformation strain, during any SC, creates
significant internal stresses, which in combination with external
nonhydrostatic stresses lead to additional plastic flow called
transformation-induced plasticity. This demonstrates that using
geometric measures of plastic strain (like rotation angle or shear
strain) is not sufficient. Instead, one has to define and use a
physical measure of plastic strain, similar tos. The density of
different types of strain-induced defects, like dislocation density,
twin density, and densities of slip bands and their intersection
are all possible physical measures.

Figure 12. Change in volume fraction of three phases of Si during
straining forp ) 7 GPa: (a)S31 ) 1.333,S21 ) 0.533; (b)S31 ) 6.0,
S21 ) 0.533; (c)S31 ) 1.333,S21 ) 0.133.
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It is clear that the suggested kinetics is only the first
approximation, and more complex relationships can be devel-
oped. One advancement may be made by taking into account
strain hardening, i.e., dependence ofσyi on qi. Since strain
hardening is different for different phases, it changes the kinetics.
Strain hardening also suppresses SCs due to the equationK )
Lσyε:26,35 growth in σy increasesK and the deviation of the
characteristic pressure,ph, from the equilibrium pressure. This
will complicate the analysis of stationary and nonstationary
solutions. Fortunately, for largeq (q > 1 for metals andq >
0.4 for rocks), strain hardening is saturated, andσyi is becoming
strain-independent.37
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