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PACS. 64.60.-i – General studies of phase transitions.

Abstract. – New surface- and size-induced microstructures are found as analytic solutions to
a phase field theory of first-order phase transformations. A recently developed exact stability
criterion, based on most destabilizing fluctuations, is used to analyze the stability and phys-
ical interpretation of each microstructure. Conditions for barrierless surface nucleation, i.e.
relationship between surface energy, driving force for the transformation and sample size, are
found. If they are met, some of these microstructures are destroyed resulting in the barrierless
transformation to alternative phases.

Introduction. – The phase field or Ginzburg-Landau (GL) equation (1) is used for the
description of a wide class of first-order phase transformations (PTs), including polymorphic,
ferroelastic, martensitic, reconstructive, ferroelectric and magnetoelastic PTs, as well as twin-
ning and dislocations. Several types of periodic analytic solutions of the time-independent
GL equation, i.e., static periodic microstructures, have been obtained for neglected surface
energy [1, 2]. However, differences in the surface energies of different phases may induce new
surface phenomena, e.g. surface pre-melting, ordering or disordering [3, 4], and can lead to
new microstructures in the bulk. The effects of surfaces are of course most pronounced in
nanoscale systems [4]. Surfaces were taken into account in [5], but for semi-infinite samples
only; hence, this analysis did not account for the influence of sample size. It was found in [6]
that the main effect of finite sample size, l, is a change in the bulk co-existence conditions.
However, none of the microstructures for finite l was obtained in closed form, a shortcoming
that prevented a comprehensive analysis of the combined effects of surfaces and sample size.

In this letter, all static surface-induced microstructures in a finite sample are obtained
analytically and a simple geometric method to analyze the effects of surfaces and sample size
is developed. Some of them exist only in nanoscale samples with phase-dependent surface
energies. Others can be generated by barrierless nucleation, i.e., nucleation that does not
require fluctuations; the conditions for barrierless nucleation are found. The stability of new
phases is analyzed using the method that we recently developed [7].

In one dimension, the standard dimensionless GL energy is of the form gGL = g(ξ)+ξ′(x)2,
where ξ is the order parameter and g(ξ) is the Landau potential. The energy of a specimen
c© EDP Sciences
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of thickness l is e =
∫ l/2

−l/2
gGLdx + f(ξ−) + f(ξ+), where f(ξ) is the surface energy, and ξ±

are the values of ξ at the boundaries x = ± l/2. The corresponding TDGL equation reads

∂ξ/∂t = −dg/dξ + 2ξ′′, (1)
ξ′− = p(ξ−); ξ′+ = −p(ξ+); p(ξ) := f ′(ξ)/2. (2)

The boundary conditions simplify to ξ′± = 0 if the surface energy is structure independent
(f ′ = 0). Solutions that satisfy boundary conditions (2) cannot be found in closed form.
However, given the general solution to eq. (1) (no boundary conditions imposed) we can “cut”
from it solutions that satisfy eq. (2). For ∂ξ/∂t = 0, the first integral of eq. (1) is (ξ′)2 = g−g0
with boundary conditions g(ξ±) = g0+p2(ξ±), where g0 is a constant and g ≥ g0. In this letter
we present results only for the potential g = B ξ2 − ξ3 + ξ4 (similar results are obtained for
a 2-4-6 potential). Note that the factors before ξ3 and ξ4, as well as the kinetic and gradient
energy coefficients in eq. (1), are set equal to unity by rescaling the length, time, energy
and order parameter. This potential has two minima if 0 < B < 9/32: a high-symmetry
phase, H (ξH = 0), and a low-symmetry phase, L (ξL = (3 +

√
9 − 32B)/8). When B < 1/4

(B > 1/4) the stable (lower-energy) phase is L (H); H and L are in thermodynamic equilibrium
for B = 1/4. The energy barrier between H and L is denoted gmax. For the surface energy
we adopt f = a + 2b|ξ|, then ξ′± = ∓b sign(ξ) and g± = g0 + b2. Thus, if ξ has the same (or
opposite) signs on both ends, the derivatives ξ′± at the ends have opposite (or the same) signs.
For ξ± = 0 we assume −|b| ≤ ξ′± ≤ |b|, i.e. the homogeneous phase H satisfies eqs. (1) and (2).

Stability of static microstructures: critical fluctuations. – A static solution ξ(x) of the
GL equation is stable under infinitesimal fluctuations if it minimizes the energy e[ξ]. The
solution ξ(x) yields a minimum of the energy if the second variation of the energy

δ2e[h]/2 =
∫ l/2

−l/2

[
C(x)h(x)2 + h′(x)2

]
dx+ p′−h

2
− + p′+h

2
+, C(x) :=

1
2

d2g(ξ(x))
dξ2

, (3)

is positive for all admissible fluctuations h(x). On the boundaries we have h′± = ∓p′(ξ±)h± in
general, and h′± = 0 for p = b sign(ξ) (excluding ξ = 0). Instead of considering all admissible
fluctuations, we have developed an exact method [7] in which we find the critical, i.e., most
destabilizing, fluctuation hc that minimizes δ2e. If δ2e[hc] > 0 (δ2e[hc] < 0), then the static
microstructure ξ(x) is stable (unstable). However, finding hc is not straightforward because
the proper problem formulation has to be determined. Our final problem formulation is [7]
δ2e→ min under the constraints

∫ l/2

−l/2
h(x)dx = const = N and

∫ l/2

−l/2
C(x)h(x)dx = 0, and it

results in

h′′(x) = C(x)[h(x) − α] + λ, (4)

where λ is the Lagrange multiplier. Integrating eq. (4) over [−l/2; l/2], one obtains α = λl/J

with J :=
∫ l/2

−l/2
Cdx > 0. The first constraint limits the magnitude of h(x); the second

constraint ensures that δ2e[hc] < δ2e[hc + α] for any constant shift α 	= 0. The solution to
eq. (4) and consequently N scale with λ. The arbitrariness in λ is physically relevant: only
the shape of the critical fluctuation is determined.

Static solutions I-IV of the GL equation are of the form

ξ(x) =
ξ2(ξ3 − ξ1) − ξ1(ξ3 − ξ2) sn2(xq/2, s/q)

ξ3 − ξ1 − (ξ3 − ξ2) sn2(xq/2, s/q)
, (5)

where sn is the Jacobi elliptic function, s :=
√

(ξ3 − ξ2)(ξ4 − ξ1), q :=
√

(ξ3 − ξ1)(ξ4 − ξ2),
and the ξi are the four roots of the equation g = g0. Interchange of any two roots in eq. (5)
yields another solution, but some are unphysical.
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Fig. 1 – (a) Gibbs potential for B = 0.24 and (b) the microstructures ξI (periodic in general) and ξII .
The ξI are associated with paths along the curve abecd that begin and end at b or c and include a
or d or both. For p < 0: AC (baec), AF (baeceab), AH (baeceabec), and DF (ceab) (critical nuclei for
B �= 1/4; equilibrium H-L microstructures for B = 1/4; FGN for B = 1/4 and small sample length).
For p > 0: CE (cdeb), CI (cdeaedc), CJ (cdeaedceb), and BD (bedc) (similar microstructures as for
p < 0). The ξII microstructures are ξH

II ∼ AB (bab) (p < 0) and ξL
II ∼ CD (cdc) (p > 0). KL (eae)

and LM (ede) are critical microstructures ξH
II = ξI and ξL

II = ξI (associated with tangency of the
curves g(ξ) and g0 + p2(ξ)) corresponding to barrierless nucleation of ξL

IV and metastable H.

H-L microstructures which exist for both p 	= 0 and p = 0. – If neither H nor L is
unstable (0 < B < 9/32), g0 > 0, and all ξi are real (we assume ξi ≤ ξi+1), then there
exist microstructures ξI(x), in general periodic, with n ≥ 1 interfaces (fig. 1b). The ξI(x)
oscillate between ξ2 and ξ3. For p = 0, the boundary conditions give l = 2nK (s/q) /q,
where K is the complete elliptic integral of the first kind. For p 	= 0 the microstructures ξI
are obtained geometrically (numerically) by restricting eq. (5) to closed intervals [x−, x+] for
which ξ′(x±) = ∓ p and ξ− 	= ξ+ (fig. 1). The intersections of the curves g(ξ) and g0 + p2(ξ)
give the boundary values ξ± (fig. 1a). For p 	= 0 and B 	= 1/4 the length l = x+ − x− can
be determined numerically only, but for B = 1/4, due to the symmetry of g with respect to
H and L, the length is independent of p, so it is given by the p = 0 expression. The period of
the microstructure is 2l/n. The length l diverges as g0 → 0 or as g0 → gL.

For given B and g0, l/n is a decreasing (increasing) function of p for B < 1/4 (B > 1/4).
In addition, l/n decreases as g0 → gmax for fixed p. It follows that l/n has a minimum value
lmin(p) corresponding to tangency of the curves g(ξ) and g0 + p2(ξ) (ξ− = ξ+, fig. 1a); for
p2 = b2, lmin is determined by the condition g0 + b2 = gmax. lmin(p) is minimized for p = 0,
which corresponds to ξ2 = ξ3 (fig. 1a), hence s = 0 and lmin(0) = 2K(0)/qmax = π/qmax,
where qmax =

√
(ξ3 − ξ1)(ξ4 − ξ2), ξ2 = ξ3 = (3 − r) /8, ξ1 ≈ −0.1264 + 0.0156r + 0.0009r2,

ξ4 ≈ 0.3764 + 0.2344r − 0.0009r2, and r :=
√

9 − 32B.
Due to the gradient term, eq. (1) possesses a characteristic length li � 20 which is the width

of an interface between H and L for l � li and B = 1/4. Typically, li is in the nanometer
range. If lmin ≤ l/n ≤ li, the microstructure consists of continuously varied phases with
continuously varying properties across the sample. In three dimensions, the crystal structures
and symmetries of these phases may differ from those of both H and L. Such microstructures
can be described as functionally graded nanophases (FGN) and may be observable in nanofilms
or nanotubes of large radius.

If H and L are not in thermodynamic equilibrium (B 	= 1/4), then ξI is unstable for any
n, b, and l. Numerical solution of the TDGL eq. (1) shows that the ξI are critical L nuclei
if B < 1/4 or critical H nuclei if B > 1/4. Their energies minus the energies of the initial
metastable phases are the activation energies for nucleation. Since the activation energies
∼ n, it is very improbable that critical nuclei with n > 2–3 would be observed.
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When H and L are in thermodynamic equilibrium (B = 1/4), an analysis of stability based
on eq. (4) for the critical perturbation shows that there is a critical length l

(n)
c for n interfaces

above (below) which ξI is stable (unstable). Similarly, there is a critical length for the mi-
crostructures ξII , ξIII and ξV discussed below. For l < l

(n)
c (δ2e < 0), the degree of stability

parameter, DS (defined in [7]), for ξI increases with l and decreases with p. As l → l
(n)
c from

below, δ2e → 0−, resulting in a logarithmic singularity in DS(1). Multi-interface microstruc-
tures correspond to periodically continued C(x) (period l/n) and hc(x), therefore δ2e(n) =
nδ2e(1). Consequently, DS(n) = DS(1) = DS and l

(n)
c = n l

(1)
c , both of which are unexpected:

since e(n) ∼ n we expect DS(n) < DS(1) and, therefore, l(n)
c > n l

(1)
c . Numerical calculations

for p = 0 give l(1)c = 44.1 and DS = 0.216 l − 2.02 (excluding the neighborhood of l → lc).
Referring to fig. 1a, as p2 is increased, the points b and c approach e and coincide when

the conditions g(ξ) = p2(ξ)+g0 and dg/dξ = 2pdg/dξ are both satisfied. Any further increase
in p2 destroys the ξI microstructure, thus new phases must be nucleated. Given an initial
microstructure ξI satisfying the above conditions, numerical solutions of the TDGL equation
for B = 1/4 reveal that an instantaneous increase in |p| or |B−1/4| results in ξI transforming
into ξL

IV (discussed below) for p < 0 and into pure H for p > 0. This nucleation (and
transformation) does not require fluctuations, i.e. it is barrierless. Note that for p2 = b2 the
conditions for barrierless nucleation reduce to g0 + b2 = gmax, which corresponds to minimum
specimen thickness, lmin(b). If lmin > l

(n)
c (lmin < l

(n)
c ), then ξI is stable (unstable) when

the condition for barrierless nucleation is satisfied. Barrierless nucleation could occur from
unstable ξI provided it is sufficiently long-lived, i.e. DS � 0.

Class II microstructures: surface- and size-induced transformations. – A class of non-
periodic microstructures, ξII(x), can be constructed from the same solution as ξI by restricting
it to an interval that is symmetric around a maximum or a minimum. These microstructures
exist only for p 	= 0. They are of two types, ξH

II and ξL
II , which correspond to the paths bab

and cdc in fig. 1a and to the paths AB and CD in fig. 1b. Given B and g0, l increases from
zero as |p| increases from zero. For B < 1/4 (B > 1/4), l → ∞ as g0 → 0 (g0 → gL) for ξH

II

(ξL
II) but l is always finite for ξL

II (ξH
II); if H and L are in equilibrium, both ξH

II and ξL
II exist

for l → ∞. When g0 + b2 = gmax, ξII coincides with ξI , and as for ξI , barrierless nucleation
occurs: ξH

II (p < 0) → ξL
IV and ξL

II (p > 0) → H. Remarkably, the transformation ξL
II → H,

which is possible in a finite sample only, is from the stable to the metastable phase.

Class III microstructures: surface-induced transformations. – We now consider another
class of surface-induced phases, ξIII , for which two of the roots ξi are real and the other
two are complex conjugate (fig. 2). Like ξII , they are of two types, ξL

III which exists for
gL ≤ g0 ≤ 0 and p 	= 0, and ξH

III which exists for 0 ≤ g0 ≤ gL and p < 0. When p > 0 (p < 0),
the magnitude of the order parameter decreases (increases) on approach to the surface in order
to minimize the free energy. The condition for barrierless nucleation is again g0 + b2 = gmax;
graphically this condition is the coincidence of points b and c in fig. 2a, i.e. coincidence of
points A and C, and B and D in figs. 2b and c. Numerical solution of the TDGL equation
shows that the final microstructures are the same as for barrierless nucleation from ξI and
ξII . Note that a barrierless transformation from the stable to the metastable phase can occur
as g0 → gL, i.e. for an infinite sample (in contrast to ξII).

Microstructures AB, A′B′ and EC (fig. 2b) only are stable for l greater than the critical
length. For p > 0, the microstructures CD, CB and AD are critical nuclei for transformations
H ↔ ξL

III(AB). For p < 0 and B > 1/4, all the microstructures ξH
III but A′B′ are critical nuclei

for transformations H (or ξH
III(A′B′)) ↔ ξL

IV . For p > 0 and B < 1/4, the microstructure
ξL
III(EF ) is a critical nucleus for the transformation ξH

IV ↔ ξL
IV ; the microstructure ξL

III(EA)
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and they correspond to the paths dab, dac, dad, cab, cac, cad, bab, bac and bad, respectively.

is a critical nucleus for the transformation ξL
III(EC) ↔ ξL

IV . When g0 + p2 < 0 for p > 0 or
g0 + p2 < gL for p < 0, one solution ξIII only exists for each p. Note that only one of the
microstructures, either ξII or ξIII , exists for the same l, B and p.

For a semi-infinite sample, barrierless nucleation (termed interface delocalization) for B →
1/4 was obtained in [5]. For the specific choice f = mξ2, it was continuous, i.e. the static
solution existed for the entire process B → 1/4. The nature of the barrierless nucleation, i.e.,
continuous or discontinuous, can be ascertained for any combination of g, f , and l by means of
the analysis methodology developed in this letter. If l is finite, the nucleation is discontinuous
even for f = mξ2.

Class IV microstructures: stable phases for p < 0. – Two additional types of microstruc-
tures always exist for p < 0 (see fig. 3). Type ξL

IV , which corresponds to the path qrq in fig. 1a,
varies in the range ξL < ξ4 < ξL

IV <∞, i.e. the order parameter lies above that of the L phase,
and it exists for g0 ≥ gL. Type ξH

IV corresponds to the path fef in fig. 1a, it varies in the
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range −∞ < ξH
IV < ξ1 < 0, i.e. its order parameter is below that of H, and it exists only for

g0 ≥ 0. In contrast to ξI , ξII , and ξIII , which are destroyed if |p| is sufficiently large, the ξIV

phases exist for arbitrarily large |p|. Since C(x) > 0 everywhere for the ξIV , they are stable.

Class V microstructures: surface-modified phase ξH and surface-stabilized ξL − ξH mi-
crostructure for p < 0. – They correspond to g0 < gmin and g0 < 0, i.e. to two pairs of
complex conjugate roots ξi. The analytical solution is

ξV (x) =

(
b1 + a1g1 − b1(1 + g2

1)
1 + g1 tan(am( 1

2 (c1 + c2)x, 4c1c2
(c1+c2)2

))

)
/g1;

a1 = (ξ1 + ξ2)/2; a2 = (ξ3 + ξ4)/2; b21 = −(ξ1 − ξ2)2/4; b22 = −(ξ3 − ξ4)2/4;

c21 = (a1 − a2)2 + (b1 + b2)2; c22 = (a1 − a2)2 + (b1 − b2)2; g2
1 =

4b21 − (c1 − c2)2

(c1 + c2)2 − 4b21
, (6)

where am gives the amplitude for Jacobi elliptic functions. There are three types of these
microstructures:

1) ξH
V (AB, A′B′ and A′′B′′ in fig. 4, dc in fig. 2a, line 1, and lb in fig. 2a, line 2) which is

similar to the microstructure ξH
III (EC in fig. 2b).

2) ξV (AC, A′C ′ and A′′C ′′ in fig. 4, db in fig. 2a, line 1, and lc in fig. 2a, line 2) which
is similar to the microstructure ξH

III (EA in fig. 2b). It represents a critical nucleus for
the transformations ξH

V ↔ ξHL
V .

3) The H-L microstructure ξHL
V (AD, A′D′ and A′′D′′ in fig. 4, dg in fig. 2a, line 1, and ld

in fig. 2a, line 2).

With increasing |p|, the microstructures ξH
V and ξV tend toward each other and their coin-

cidence corresponds to barrierless nucleation of the microstructure ξHL
V . With decreasing |p|,

when the number of intersection points between g and g0 + p2 decreases from four to two, the
microstructure ξHL

V transforms to ξL
IV for g(0) > g(L) and to ξH

V for g(0) < g(L). The larger |p|
is the more stable the microstructure ξHL

V is, since its larger part at both surfaces belongs to
the region with positive C(x). For the microstructure ξH

V , an increase in |p| leads to stabiliza-
tion of the part for ξ < 0 and destabilization of the part for ξ > 0 finally leading to barrierless
transformation to the microstructure ξHL

V . When p → 0, then the final microstructure is H-L
microstructure (for B = 1/4), pure H phase (for B > 1/4), and pure L phase (for B < 1/4).
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The energy depends on B, l and b. As an example, we present the results for B = 1/4,
l1 = 11.28 and l2 = 20.26 and five values of |b| between zero and the maximum values
(bm1 = 0.0539 and bm2 = 0.0624) corresponding to coincidence of ξI and ξH

II . Note that ξIII

does not exist for B = 1/4. For b > 0, the energy grows in the following sequence: H-ξL
II -ξI

for both l and all b; for b > bm, the phase H exists only. For b < 0, the situation is more
sophisticated. For l = l1, b1 = −0.0127, b1 = −0.0260 and b1 = −0.0393, as well as for
l = l2 and b2 = −0.00363, the energy sequence is ξL

IV -ξH
II - ξH

V -ξH
IV -H-ξI -ξHL

V -ξV (note that for
b1 = −0.0127 solutions ξHL

V and ξV do not exist). For l = l2, b2 = −0.0107 and b2 = −0.0256
the energy grows in the sequence ξL

IV -ξH
II - ξH

V -ξH
IV -H-ξHL

V -ξI -ξV . For l = l1, b1 = −0.0498 and
b2 = −0.0539, the energy sequences are ξL

IV -ξH
II - ξH

V -ξI -ξHL
V -ξH

IV -ξV -H and ξL
IV -ξHL

V -ξH
II - ξI -ξH

IV -
ξH
V -ξV -H. For l = l2, b2 = −0.0488 and b2 = −0.0624, the energy grows in the sequences
ξL
IV -ξHL

V -ξH
II - ξH

V -ξH
IV -ξI -ξV -H and ξL

IV -ξHL
V -ξH

II - ξI -ξH
V -ξV -ξH

IV -H. Note that for large p and
l < li, microstructures ξII -ξV are FGN.

It is of interest to determine the l → ∞ microstructure corresponding to each of the ξI -ξIV

for p 	= 0. Class I microstructures are comprised of n ≥ 1 interfaces separating macroscopic
layers of H and L plus FGN at the surfaces. The l → ∞ limits of ξII , ξIII , and ξIV are pure
H or L (no interfaces) with surface FGN; the limits of ξV are H or L-H with surface FGN.

In summary, new surface- and size-induced microstructures were found analytically. The
stability and physical interpretation of each microstructure was analyzed using a novel method.
The conditions for barrierless surface nucleation, i.e. the relationship between surface energy,
driving force for the transformation, and sample size, were obtained. Our results are appli-
cable to metastable surface-induced microstructures, e.g. those associated with pre-melting
as well as disordering and ordering [3, 5, 6]), and to PTs in nanoparticles or nanograined ma-
terials where the surface energy leads to PTs from stable to metastable phases in the bulk [4–6].
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