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1 Introduction

A large literature scatters widely in books and journals on Bernoulli
numbers Bn, and Bernoulli polynomials Bn(x). They can be studied
by means of the binomial expression connecting them,

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k, n ≥ 0. (1)

The study brings consistent attention of researchers working in combi-
natorics, number theory, etc. In this paper, we will establish a matrix
form of the above binomial expression using the following generalized
Pascal matrix P [x] introduced by Call and Velleman in [3]:

P [x] :=

((
n

k

)
xn−k

)
n,k≥0

, (2)

which we also call the Pascal matrix function and P [1] is clearly the clas-
sical Pascal matrix. Many well-known and new properties of Bernoulli
numbers and Bernoulli polynomials can be obtained through this ma-
trix approach. In fact, by denoting B(x) = (B0(x), B1(x), . . .)T and
B = B(0) = (B1, B2, . . .)

T , we may write (1) as

B(x) = P [x]B(0). (3)

P [x] is a homomorphic mapping from R to the infinite lower triangular
matrices with real entries due to Theorem 2 shown [3]:

Theorem 1.1 [3] (Homomorphism Theorem) For any x, y ∈ R,

P [x+ y] = P [x]P [y]. (4)

By noting (
i

k

)(
k

j

)
=

(
i

j

)(
i− j
k − j

)
, (5)

one immediately find the (i, j) entry of the right-hand side of (4) can
be written as

i∑
k=j

(
i

k

)
xi−k

(
k

j

)
yk−j, (6)
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while the (i, j) entry of the left-hand side of (4) is

(
i

j

)
(x+y)i−j =

(
i

j

) i−j∑
k=0

(
i− j
k

)
ykxi−j−k =

i∑
k=j

(
i

j

)(
i− j
k − j

)
xi−kyk−j,

which is exactly (6) completing the proof of Theorem 1.1. In [4], iden-
tity (5) is used to rederive several known properties and relationships
involving the Bernoulli and Euler polynomials. In this paper, a uni-
fied approach by means of P [x] is presented in the study of Bernoulli
polynomials and numbers and Euler polynomials and numbers.

For any square matrix A, the exponential of A is defined as the
following matrix in a series form:

eA = I + A+
1

2!
A2 +

1

3!
A3 + · · · =

∑
k=0

1

k!
Ak.

We say the series converges for every A if each entry of eA converges.
From [13] and the definition of eA, we have

e(α+β)A = eαAeβA for any α, β ∈ R,
(eA)−1 = e−A,

Dte
tA = AetA = etAA. (7)

For n ∈ N ∪ 0, denote Pn[x] = (
(
i
j

)
xi−j)0≤i,j≤n. [3] shows there exists

a unique Hn = (hi,j)0≤i,j≤n such that Pn[x] = exHn . In fact, from (7),
one may have

Hn = Dxe
xHn
∣∣
x=0

= DxPn[x]
∣∣
x=0

. (8)

Denote H = (hi,j)0≤i,j. Then (4) of Theorem 1.1 can be proved in one
line:

P [x+ y] = e(x+y)H = exHeyH = P [x]P [y].

It is easy to see that the entry hi,j of H and Hn, n = 0, 1, . . ., are

hi,j = (H)i,j =

{
i if i = j + 1,
0 otherwise.

, (9)
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and the entry of Hk are

(Hk)i,j =

{
i!
j!

if i = j + k,

0 otherwise.
(10)

Hence, Hk
n = 0 if k ≥ n.

In next section, we will define new matrix functions from Pn[x],
which and the matrix relationship (3) between the Bernoulli numbers
and the Bernoulli polynomials through P [x] will be used to re-build
some well-known properties of the Bernoulli numbers and the Bernoulli
polynomials in Section 3. Finally, in Section 4, a similar approach
is used to study the Euler numbers and Euler polynomials and their
relationships with Bernoulli numbers and Bernoulli polynomials.

2 Matrix functions Ln[x] and L̄n[x] related

to Pn[x]

We now present the integrals of P [x]. From [1] (on Page 240), there

holds expression of the linear mapping Ln : Pn[x] 7→
∫ 1

0
Pn[x]dx from

matrix functions to matrices as

Ln =

∫ 1

0

Pn[x]dx =
n−1∑
k=0

Hk
n

(k + 1)!
, (11)

which is simply from the fact Pn[x] = exHn and the last formula in (7).
Notice that L is a nonsingular lower triangular matrix with all main
diagonal entries equal to 1. We now extend matrices (11) to matrix
functions

Ln[x] :=

∫ x

0

Pn[t]dt =

∫ x

0

etHndt =
n−1∑
k=0

Hk
n

(k + 1)!
xk+1, (12)

which can be considered a mapping Ln[x] : Pn[t] 7→
∫ x
0
Pn[t]dt associ-

ated with any x ∈ R. It is obvious Ln[1] ≡ Ln defined in (11). From
(10) and noting k = i− j, the entries of Ln[x] can be given as

(Ln[x])ij =

{
1

i−j+1

(
i
j

)
xi−j+1, if i ≥ j ≥ 0,

0, otherwise.
(13)
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Particularly,

(Ln)ij =

{
1

i−j+1

(
i
j

)
, if i ≥ j,

0, otherwise.
(14)

We now give some properties of Ln[x] and its relationships with Pn[x].

Proposition 2.1 Let matrices Hn, Pn[x], and Ln[x] be defined as above.
Then there holds

HnLn[x] = Ln[x]Hn = Pn[x]− In. (15)

Proof. By transferring the indexes, we have

HnLn[x] = Ln[x]Hn =
n∑
k=1

Hk
n

k!
xk

=
n∑
k=0

Hk
n

k!
xk − In = Pn[x]− In.

Inspired by [1], we define

L̄n = Dn(−1)LnDn(−1)−1, and

L̄n[x] = Dn(−1)Ln[x]Dn(−1)−1, (16)

where Dn(−1) = diag(1,−1, 1,−1, . . . , (−1)n−1). Hence, L̄n = L̄n[1].

Note. Since Dn(−1)HnDn(−1)−1 = −Hn, we have

Dn(−1)Pn[x]Dn(−1) =
n−1∑
k=0

Dn(−1)Hk
nDn(−1)−1

k!
xk

=
n−1∑
k=0

(Dn(−1)HnDn(−1))k

k!
xk

=
n−1∑
k=0

(−Hn)k

k!
xk =

n−1∑
k=0

(Hn)k

k!
(−x)k = Pn[−x].

The relationship between Ln[x] and L̄n[x] can be shown below.
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Proposition 2.2 Let Ln[x] and L̄n[x] be defined as before. Then there
hold

L̄n[x] = −Ln[−x], Ln[x] = −L̄n[−x], and (17)

L̄n = −Ln[−1], Ln = −L̄n[−1]. (18)

Proof. From (16),

L̄n[x] = Dn(−1)

(∫ x

0

Pn[t]dt

)
Dn(−1)−1 =

∫ x

0

Pn[−t]dt = −
∫ −x
0

Pn[t]dt,

which implies (17), and (18) follows as well.

Using the above relationship between L̄n[x] and Ln[x] and Proposi-
tion 2.1, we immediately have

Proposition 2.3 Let Hn, Pn[x], and L̄n[x] be defined as before. Then

L̄n[x] =
n−1∑
k=0

(−Hn)k

(k + 1)!
xk+1, and (19)

−HnL̄n[x] = −L̄n[x]Hn = P [−x]− In, (20)
n−1∑
k=0

(−Hn)k

(k + 1)!
(−x)k+1 = −

n−1∑
k=0

Hk
n

(k + 1)!
xk+1. (21)

Proof. From (16) and (17)

L̄n[x] = Dn(−1)Ln[x]Dn(−1)−1

=
n−1∑
k=0

(Dn(−1)HnDn(−1))k

(k + 1)!
xk+1

=
n−1∑
k=0

(−Hn)k

(k + 1)!
xk+1,

i.e., formula (19). Again, (17) and (15) yield
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−HnL̄n[x] = HnLn[−x] = Pn[−x]− In

and

−L̄n[x]Hn = Ln[−x]Hn = Pn[−x]− In.

Substituting x = −x into (12) and noting (17) and (19), we have

n−1∑
k=0

(−Hn)k

(k + 1)!
xk+1 = L̄n[x] = −Ln[−x] = −

n−1∑
k=0

Hk
n

(k + 1)!
(−x)k+1,

which implies (21).

Corollary 2.4 Let Hn, Pn[x], Ln[x], and L̄n[x] be defined as before.
Then

Ln[x] = Pn[x]L̄n[x], or equivalently

Ln[x]Dn(−1) = Pn[x]Dn(−1)Ln[x]. (22)

Proof. For k = 1, 2, . . . , n, we have

Pn[x]L̄n[x]Hk
n = Pn[x](−Pn[−x]+In)Hk−1

n = (Pn[x]−In)Hk−1
n = Ln[x]Hk

n,

which imply (22) from the structure of Hk
n.

Proposition 2.5 Let Pn[x], Ln[x], and L̄n[x] be defined as before. Then

Ln[y]− Ln[x] = Pn[x]Ln[y − x] = Ln[y − x]Pn[x],

L̄n[y]− L̄n[x] = Pn[−y]Ln[y − x] = Ln[y − x]Pn[−y]. (23)
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Proof. The first formula of (8) can be proved as follows, and the second
formula is from the first formula and the relationship between Ln[x] and
L̄n[x] shown in (17). In fact,

Ln[y]− Ln[x] =

∫ y

x

Pn[t]dt =

∫ y−x

0

Pn[t+ x]dt = Pn[x]

∫ y−x

0

Pn[t]dt,

(24)
which completes the proof.

Proposition 2.6 Let Hn, Ln[x], and L̄n[x] be defined as before. Then
for a 6= 0,

Dn(a)Ln[x]Dn

(
1

a

)
=

1

a
Ln[ax],

Dn(a)L̄n[x]

(
1

a

)
=

1

a
L̄n[ax]. (25)

Proof. For a 6= 0, the left-hand side of the first equation of (25) can be
changed to

Dn(a)Ln[x]Dn

(
1

a

)
=

n−1∑
k=0

(aHn)k

(k + 1)!
xk+1

=
1

a

n−1∑
k=0

Hk
n

(k + 1)!
(ax)k+1,

which proves the proposition.

As n→∞, matrix functions of nth order, Ln[x] and L̄n[x], can be
extended to the infinite lower triangular matrix functions L[x] : P [x] 7→∫ x
0
P [t]dt and L̄[x] : P [x] 7→ −

∫ −x
0

P [t]dt(=
∫ x
0
P [−t]dt), respectively.

The properties shown in Propositions 2.1-2.6 can be extended to the
case of infinite series associated with certain convergence conditions
accordingly.
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3 Pascal matrix function applied to Bernoulli

numbers and Bernoulli polynomials

Since

P [−x]P [x] = P [x]P [−x] = P [0] = I, (26)

there exists

P [x]−1 = P [−x].

Thus, (3) implies the following inverse relationship between B(x) and
B:

Theorem 3.1 Let B(x) = (B0(x), B1(x), . . .)T and B = (B0, B1, . . .)
T ,

and let P [x] be defined as (2). Then there holds a pair of inverse rela-
tionship

B(x) = P [x]B(0) B = B(0) = P [−x]B(x). (27)

And the latter can be presented as


B0

B1
...
Bn
...

 =



(
0
0

)
0 · · · 0 0 · · ·(

1
0

)
(−x)

(
1
1

)
· · · 0 0 · · ·

...
...

...
...

...
...(

n
0

)
(−x)n

(
n
1

)
(−x)n−1 · · ·

(
n
n

)
0 · · ·

...
...

...
...

...
...




B0(x)
B1(x)
...
Bn(x)
...

 ,
(28)

which implies

Bn =
n∑
k=0

(
n

k

)
(−x)n−kBk(x) (29)

for n = 0, 1, . . ..

The proof of the theorem is straightforward from (26) and is omit-
ted. Similarly, we have
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Proposition 3.2 Let B(x) and P [x] be defined as above. Then there
hold

Bn(x+ y) = (P [x]B(y))n =
n∑
k=0

(
n

k

)
xn−kBk(y),

Bn(y) = Pn[−x]Bn(x+ y) =
n∑
k=0

(
n

k

)
(−x)n−kBk(x+ y). (30)

We now consider recursive relations of Bn(x).

Proposition 3.3 Let B(x), B, and P [x] be defined as above, and let
η(x) = (0, 1, x, x2, . . .)T . Then there hold

B(x+ 1)−B(x) = P [x](B(1)−B(0)) = P [x]η(0), (31)

(P [1]− I)B(x) = P [x]η(0), (32)

which imply

Bn(x+ 1)−Bn(x) = nxn−1, and (33)
n−1∑
k=0

(
n

k

)
Bk(x) = nxn−1, (34)

respectively.

Proof. It is well-known that Bn(1) − Bn(0) = (δn,1)
T for n = 0, 1, . . .,

where δ is the Kronecker symbol. Hence, by using η(x) = (0, 1, x, . . .)T ,
we may write

B(1)−B(0) = η(0).

Hence,

B(x+1)−B(x) = P [x](B(1)−B(0)) = P [x]η(0) = (0, 1, 0, . . .)T , (35)

which implies (33):
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Bn(x+ 1)−Bn(x) = nxn−1.

On the other hand, we may write Bn(x+ 1)−Bn(x) as

B(x+1)−B(x) = P [x+1]B−P [x]B = P [1]P [x]B−P [x]B = (P [1]−I)B(x).

Thus (32) follows from (31). Since the n+ 1st row of the matrix on the
rightmost side is

((
n

0

)
B0(x),

(
n

1

)
B1(x), . . . ,

(
n

n− 1

)
Bn−1(x), 0, . . .

)T
,

by comparing the components on the two sides of (32), we may have
(34).

Substituting x = 0 into (32) and (34), we immediately have

(P [1]− I)B = η(0),
n−1∑
k=0

(
n

k

)
Bk = δ1,n, n = 0, 1, 2, . . . .

From expressions (9) and (10), one may obtain the differential for-
mulas for Bn(x) readily.

Proposition 3.4 Let B(x) and P [x] be defined as above. Then there
hold

B(k)
n (x) = k!

(
n

k

)
Bn−k(x). (36)

Particularly, for k = 1

B′n(x) = nBn−1(x).
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Proof. From (10), we have

Dk
xB(x) = (Dk

xP [x])B = (Dk
xe
xH)B = HkP [x]B = HkB(x).

Comparing the nth components on both side vectors of the above equa-
tion, we obtain (36).

From the previous section, we have seen that the operator Ln :
Pn 7→

∫ 1

0
Pn[t]dt and its extension Ln[x] : Pn 7→

∫ x
0
Pn[t]dt as well as L̄n

and L̄n[x] have closed relationships with Pn[x], and, hence, they can be
used to derive integral properties of Bernoulli numbers and Bernoulli
polynomials accordingly. Denote bn(x) = (B0(x), B1(x), . . . , Bn−1(x))
and bn = (B0, B1, . . . , Bn−1). From the definition of Ln shown in (11)
and Theorem 3.1 (see also [1]),

Lnbn =

∫ 1

0

Pn[t]dtbn =

∫ 1

0

bn(t)dt = e0, (37)

where e0 = (1, 0, . . . , 0), the first element of the standard basis of Rn,

and the last step comes from
∫ 1

0
Bk(x)dx = δk,0. In [1], a sequence of

mappings, {L̂n}n≥0, from e0 to bn for any n ≥ 0 is defined as

L̂n =
n−1∑
k=0

Bk

k!
Hk
n. (38)

Thus, by using k!ek = Hk
ne0, we have (see also [1])

L̂ne0 =
n−1∑
k=0

Bkek = bn, (39)

where ek is the kth element of the standard basis of Rn. From the pair
of relations (37) and (39), we may say  Ln and L̂n are inverse each other
in the sense of (LnL̂n)e0 = e0 and (L̂nLn)bn = bn. In addition, denote
ξn(x) = (1, x, . . . , xn−1)T , there hold

bn(x) = Pn[x]bn = P [x]L̂ne0 = L̂nPn[x]eo

= L̂n

n−1∑
k=0

xk

k!
Hke0 = L̂n

n−1∑
k=0

xkek = L̂nξn(x) (40)
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and

Lnbn(x) = LnPn[x]bn = Pn[x]Lnbn

=
n−1∑
k=0

xk

k!
Hk
ne0 =

n−1∑
k=0

xkek = ξn(x). (41)

(40) is given in [1] as (42). From the pair relations of (40) and (41),
we may also say  Ln and L̂n are inverse each other in the sense of
(LnL̂n)ξn(x) = ξn(x) and (L̂nLn)bn(x) = bn(x). By using (10), we
also have that the entries of L̂n are(

L̂n

)
i,j

=

{
Bi−j

(
i
j

)
if n− 1 ≥ i ≥ j ≥ 0,

0 otherwise.
(42)

From (40) and (14) we immediately obtain

Proposition 3.5 Let Bn(x) be the nth Bernoulli polynomial. Then

xn =
n∑
k=0

1

n− k + 1

(
n

k

)
Bk(x).

Theorem 3.6 For any n ≥ 1, there holds

bn(x) = HnLn[x]bn(t) + bn = −HnL̄n[−x]bn(t) + bn

= Hn

∫ x

0

bn(t)dt+ bn (43)

and then

Bn(x) = n

∫ x

0

Bn−1(t)dt+Bn. (44)

Proof. From (27) of Theorem 3.1 and (15) of Proposition 2.1, we have

bn(x)− bn = (Pn[x]− In)bn = HnLn[x]bn = Hn

∫ x

0

Pn[t]bndt,

which implies (43) and (44).
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Theorem 3.7 For any n ≥ 0, there holds∫ x+1

x

bn(t)dt = ξn(x) (45)

and then ∫ x+1

x

Bn(t)dt = xn. (46)

Proof. From Proposition 2.5, we may have

∫ x+1

x

bn(t)dt =

∫ x+1

0

bn(t)dt−
∫ x

0

bn(t)dt

= (Ln[x+ 1]− Ln[x])bn = Pn[x]Lnbn

= LnPn[x]bn = Lnbn(x) = ξn(x),

where the last step is from (41), which completes the proof.

Theorem 3.8 For any n ≥ 0, there holds

bn(y)− bn(x) = H

∫ y

x

bn(t)dt (47)

and then ∫ y

x

Bn(t)dt =
1

n+ 1
(Bn+1(y)−Bn+1(x)). (48)

Proof. From (27) of Theorem 3.1 and (15) of Proposition 2.1, we have

bn(y)− bn(x) = (Pn[y]− Pn[x])bn

= [(Pn[y]− In)− (Pn[x]− In)] bn

= (HnLn[y]−HnLn[x]) bn

= H

(∫ y

0

Pn[t]dt−
∫ x

0

Pn[t]dt

)
bn

= Hn

∫ y

x

Pn[t]dtbn = Hn

∫ y

x

bn(t)dt,

completing the proof of the theorem.
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Theorem 3.6 can be considered as a special case of Theorem 3.8.
Remark 3.1 It should be noted that the Pascal matrix function

P [x] we used in the study of properties of Bernoulli number set B
and Bernoulli polynomial set B(x) is a type of globe approach. Some
properties based on some internal relationships of B and B(x) may not
be obtained by using our approach. For instance, the matrix form of
the well-known property

Bn(x) = 2n−1
(
Bn

(x
2

)
+Bn

(
x+ 1

2

))
(49)

is

B(x) =
1

2
D(2)

(
B
(x

2

)
+B

(
x+ 1

2

))
,

or equivalently,

P [x]B =
1

2
P [x](I + P )D(2)B.

However, P [x] and (1/2)P [x](I+P )D(2) are different because (1/2)(I+
P )D(2) 6= I.

4 Pascal matrix function and Euler num-

bers and Euler polynomials

Euler polynomials En(x) can be presented in terms of Euler numbers
as

En(x) =
n∑
k=0

(
n

k

)(
x− 1

2

)n−k
Ek
2k
, n = 0, 1, . . . , (50)

where En = 2nEn(1/2). Denote E(x) = (E0(x), E1(x), . . .)T and E =
(E0, E1, . . .)

T . By making use of the Pascal matrix, we may write (50)
as a matrix form

E(x) = P

[
x− 1

2

]
D

[
1

2

]
E = P

[
x− 1

2

]
E

(
1

2

)
, (51)

where
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D[t] = diag[1, t, t2, . . .].

Since En(1) + En(0) = 2δ0,n, by denoting ξ(x) = (1, x, x2, . . .)T and
using the homomorphism of mapping P , we have

Proposition 4.1 Let En(x), E, and P [x] be defined as before. Then
there hold

E(x) = P [x]E(0), (52)

E[x+ 1] + E[x] = 2P [x]ξ(0), (53)

(P [1] + I)E(x) = 2P [x]ξ(0), (54)

E[x+ y] = P [x]E(y). (55)

In addition, (53), (54), and (55) imply

En(x+ 1) + En(x) = 2xn, (56)
n∑
k=0

(
n

k

)
Ek(x) + En(x) = 2xn, and (57)

En(x+ y) =
n∑
k=0

(
n

k

)
xn−kEk(y) (58)

respectively.

Proof. (52) is from (51) due to

E(x) = P

[
x− 1

2

]
E

(
1

2

)
= P [x]P

[
−1

2

]
E

(
1

2

)
= P [x]E(0).

Because of

E(x+ 1) + E(x) = P [x](E(1) + E(0)),

we obtain (53). On the other hand,

E(x+ 1) + E(x) = P [x+ 1]E(0) + P [x]E(0) = (P [1] + I)P [x]E(0).
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Thus, (54) follows from (53). From (52), we can find (55)

E(x+ y) = P [x+ y]E(0) = P [x]P [y]E(0) = P [x]E(y).

(56), (57), and (58) are from the comparison of components of two side
vectors of (53), (54), and (55), respectively.

We now discuss the relationships between Bernoulli polynomials
Bn(x) and Euler polynomialsEn(x). Denote en(x) = (E0(x), E1(x), . . . ,
En−1(x))T . From (54), we have

(Pn[1] + In)en(x) = 2Pnξ(0) = 2ξn(x),

or equivalently,

en(x) = 2(Pn + In)−1ξn(x), (59)

which and formulas (38) and (40) will be used rederive some relation-
ships between Bernoulli polynomials and Euler polynomials shown in
[4] and [11].

Theorem 4.2 Let bn(x) and en(x) be defined as above. Then

Dn(2)bn(x) = L̂nen(2x). (60)

Hence,

Bn(x) = 2−n
n∑
k=0

Bn−kEk(2x) (61)

for all n ≥ 0.

Proof. From the definition of Pn[x], we have

Dn(2)Pn[x] = Pn[2x]Dn(2),

where Dn(2) is the n×n diagonal matrix diag(1, 2, 22, . . . , 2n−1). Thus,
using (27) yields

Dn(2)bn(x) = Dn(2)Pn[x]bn = Pn[2x]Dn(2)bn

= Pn[2x]Dn(2)L̂ne0 (62)
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Substituting y = 2 and x = 1 into (23) of Proposition 2.5, we obtain

Ln[2] = Pn[1]Ln[2− 1] + Ln[1] = (Pn + In)Ln,

where Ln[2] can be written as 2D(2)LnD(1/2) due to (25) of Proposi-
tion 2.6. Thus,

2D(2)LnD(1/2) = (Pn + In)Ln,

or equivalently,

2D(2)Ln = (Pn + In)LnD(2).

Applying the both sides operators of the last equation to L̂ne0 yields

2D(2)(LnL̂n)e0 = (Pn + In)LnD(2)L̂ne0,

which implies

D(2)L̂ne0 = 2L̂n(Pn + In)−1D(2)e0

= 2L̂n(Pn + In)−1e0

= 2L̂n(Pn + In)−1ξn(0)

= L̂nen(0),

where the last step is due to (59). By combining the above equation
and (62), we finally have

D(2)bn(x) = Pn[2x]Dn(2)L̂ne0 = L̂nPn[2x]en(0) = L̂nen(2x),

where (52) is applied in the last step, which completes the proof of the
theorem with using (42).

Theorem 4.2 can be used to derive many relationships between
Bernoulli polynomials and Euler polynomials. For instance, we have

Corollary 4.3 Let bn(x) and en(x) be defined as above. Then

Hnen(x) = Dn(2)

(
bn

(
x+ 1

2

)
−B

(x
2

))
. (63)
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Hence,

En(x) =
2n+1

n+ 1

(
Bn+1

(
x+ 1

2

)
−Bn+1

(x
2

))
(64)

for n ≥ 0. Furthermore,

En(x) =
2

n+ 1

(
Bn+1(x)− 2n+1Bn+1

(x
2

))
. (65)

Proof. From (60), there holds

en(x) = LnDn(2)bn

(x
2

)
.

Hence, noting (15) of Proposition 2.1 we have

Hnen(x) = HnLnDn(2)bn

(x
2

)
= (Pn − In)Dn(2)bn

(x
2

)
= Dn(2)Pn

[
1

2

]
bn

(x
2

)
−Dn(2)bn

(x
2

)
= Dn(2)

(
bn

(
x+ 1

2

)
− bn

(x
2

))
.

Combining (49) and (64), we may prove (65).

We can also derive the following known results (see, for example,
[9]) by using our simple unified approach.

Corollary 4.4 Let bn(x) and en(x) be defined as above. Then

en(2x) = 2Dn(2)

∫ x+1/2

x

bn(t)dt. (66)

Hence,

En(2x) = 2n+1

∫ x+1/2

x

Bn(t)dt (67)

for n ≥ 0. Particularly, Euler numbers
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En = 22n+1

∫ 3/4

1/4

Bn(t)dt (68)

for n ≥ 0.

Proof. From (25) of Proposition 2.6, we have

Ln = 2Dn(2)Ln

[
1

2

]
Dn

(
1

2

)
.

Thus, by using (60) and Ln[x+ 1/2]− Ln[x] = Pn[x]Ln[1/2], we have

en(2x) = LnDn(2)bn(x) = 2Dn(2)Ln

[
1

2

]
P [x]bn

= 2Dn(2)

(
Ln

[
x+

1

2

]
− Ln[x]

)
bn

= 2Dn(2)

∫ x+1/2

x

Pn[t]dtbn

= 2Dn(2)

∫ x+1/2

x

bn(t)dt,

which implies (67) and (68) after inputing En = 2nEn(1/2).

Note. In Sun and Pan’s work [10, 12], they have presented numerous
new identities by using the finite difference calculus and differentiation.
But we do not know whether our matrix method can be applied or not.
Further investigations are needed.

5 An extension of Bernoulli polynomials

and their application in numerical anal-

ysis

The properties of B′n(x) = nBn−1(x) and Bn(0) = Bn(1) for n ≥ 2
make important rule in the applications of Bernoulli polynomials. For



Pascal Matrix Function 21

instance, from those properties we immediately have
∫ 1

0
Bn(x)dx = 0

for every n ≥ 1, which can be used to construct numerical integra-
tion formula as follows (see a survey in [6]). Due to the property
B′n(x) = nBn−1(x), we may say that Bernoulli polynomials Bn(x) are
“deformations” of standard polynomials xn.

We start from the Daroux formula. The Darboux formula, first
given in 1876, is an expansion formula for an analytic function with
Taylor formula as one of its special cases. Let f(z) be normal analytic
on the line connecting points a and z, and let φ(x) be a polynomial of
degree n. Then there holds

d
dx

∑n
k=1(−1)k(z − a)kφ(n−k)(x)f (k)(a+ x(z − a))

= −(z − a)φ(n)(x)f ′(a+ x(z − a))
+(−1)n(z − a)n+1φ(x)f (n+1)(a+ x(z − a)),

which can be proved using the product rule. By taking the integral in
terms of x from 0 to 1 and noting that φ(n)(x) = φ(n)(0), we obtain

φ(n)(0)[f(z)− f(a)]

=
n∑
k=1

(−1)k−1(z − a)k
[
φ(n−k)(1)f (k)(z)− φ(n−k)(0)f (k)(a)

]
+(−1)n(z − a)n+1

∫ 1

0

φ(x)f (n+1)(a+ x(z − a))dx. (69)

Equation (69) is the Darboux formula. Now we will consider several of
its special cases.

Let φ(x) = (x−1)n in equation (69). Then φ(n)(0) = n!, φ(n−k)(1) =
0, and φ(n−k)(0) = (−1)kn!/k!, for 1 ≤ k ≤ n. This is the Taylor
formula with a Cauchy integral form remainder.

Without a loss of generality, let the highest power term of φ(x)
be xn and F (x) be the derivative of f(x) (F (x) is assumed to be n
order continuously differentiable; then the following integral quadrature
formula will be obtained by setting a = 0 and z = 1 in equation (69)∫ 1

0

F (x)dx =
n∑
k=1

(−1)k−1

n!

[
φ(n−k)(x)F (k−1)(x)

]x=1

x=0

+
(−1)n

n!

∫ 1

0

φ(x)F (n)(x)dx. (70)
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Particularly, let φ(x) = Bn(x), the nth Bernoulli polynomial, then (70)
becomes

∫ 1

0

F (x)dx

=
F (1) + F (0)

2
+

n∑
k=2

(−1)k−1

k!
Bk(0)

(
F (k−1)(1)− F (k−1)(0)

)
+

(−1)n

n!

∫ 1

0

Bn(x)F (n)(x)dx (71)

for n ≥ 2, which is a numerical integration formula with the remainder
associated with Bernoulli polynomials. For n = 1, the summation term
in (71) vanishes, and its right-hand side can be shown as identical as
its left-hand side by using integration by parts for the integral term.
For n = 0, the right-hand side of (71) reduces to the same integral as
its left-hand side. In this sense, (71) holds for all integers n ≥ 0. To
prove (71) from (70), we need use the fact Bn(1) = Bn(0) for n ≥ 2
and (36), i.e.,

Bn−k
n =

n!

k!
Bk(x).

In fact, equation (70) can easily be verified directly by applying n times
integral by parts to its integral form remainder.

One may rewrite the above formula into a more general form (a
suitable transformation of variable is needed).

∫ b

a

F (x)dx =
n∑
k=1

(−1)k−1

n!

[
φ(n−k)(x)F (k−1)(x)

]x=b
x=a

+Rn (72)

where remainder Rn is

Rn =
(−1)n

n!

∫ b

a

φ(x)F (n)(x)dx. (73)

Equations (72) and (73) can be understood as the integral form
of the Darboux formula. However, the applications of the Darboux
formula to numerical integration were only given attention to after 1940
(see [8]).
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The formula shown in equation (72) has two features: (1) Except for
the remainder, the right-hand side of the equation consists of the values
of the integrand and its derivatives at end points of the integral interval.
Hence, the formula is a boundary type quadrature formula (BTQF). (2)
By choosing a suitable weight function φ(t) in the remainder (73), we
can make Rn ≡ Rn(F ) have the smallest possible estimate in various
norms.

In addition, setting φ(t) as the nth order generalized Bernoulli poly-
nomial B̃n(x) defined on interval [a, b] in equation (72), we obtain the
Euler-Maclaurin type formula. Here, B̃n(x), x ∈ [a, b], n ∈ N0, are
defined as

B̃n(x) = (b− a)nBn

(
x− a
b− a

)
. (74)

Hence, for [a, b] = [0, 1] B̃n(x) = Bn(x). Denote B̃(x) := (B̃0(x),
B̃1(x), . . .)T for x ∈ [a, b]. Particularly, for [a, b] = [0, 1] B̃(x) = B(x)
defined before. From (3), we have

B̃(x) = P

[
x− a
b− a

]
B. (75)

Using (75), we may transfer the properties of Bn(x) to their general-
ization B̃n(x). For instance,

B̃′n(x) = n(b− a)n−1Bn−1

(
x− a
b− a

)
= nB̃n−1(x), n ≥ 0, (76)

and

B̃n(b) = B̃n(a), n ≥ 2. (77)

From Theorem 3.1 and Proposition 3.3, we have

Proposition 5.1 Let B̃n(x), B̃(x), B(x), and B be defined as before.
Then there hold
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B̃(x) = P

[
x− a
b− a

]
B, B = P

[
a− x
b− a

]
B̃(x), (78)

B̃n(x+ b− a)− B̃n(x) = n(b− a)(x− a)n−1, (79)
n−1∑
k=0

(
n

k

)
(b− a)n−kB̃n(x) = n(b− a)(x− a)n−1. (80)

Proof. The correction of the formulas (78)-(80) may be proved from
(75) and (76) straightforwardly.

The analogies of some other properties of Bn(x) for B̃n(x) can be
derived similarly. Substituting φ(x) = B̃n(x) into (72) and (73) and ap-
plying (75) and (76) yield the following Euler-Maclaurin type formula.

Proposition 5.2 Let B̃n(x) be defined as before. Then for any analytic
function F (x) defined on [a, b] there holds

∫ b

a

F (x)dx

= (b− a)
F (1) + F (0)

2
+

n∑
k=2

(−1)k−1

k!
B̃k(a)

(
F (k−1)(b)− F (k−1)(a)

)
+

(−1)n

n!

∫ b

a

B̃n(x)F (n)(x)dx (81)

for all n ≥ 2.

Proof. Denote g(x) = F (a + x(b − a). Then from (71) and noting
g(k)(x) = (b − a)kF (k)(a + x(b − a)) and B̃k(a) = B̃k(b) for n ≥ 2, we
have
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∫ b

a

F (x)dx = (b− a)

∫ 1

0

g(x)dx

= (b− a)

[
g(1) + g(0)

2
+

n∑
k=2

(−1)k−1

k!
Bk(0)

(
g(k−1)(1)− g(k−1)(0)

)
+

(−1)n

n!

∫ 1

0

Bn(x)g(n)(x)dx

]
= (b− a)

F (b) + F (a)

2
+

n∑
k=2

(−1)k−1

k!
B̃k(a)

(
F (k−1)(b)− F (k−1)(a)

)
+(b− a)n+1 (−1)n

n!

∫ 1

0

Bn(x)F (n)(a+ x(b− a))dx,

which implies (81).

Proposition 5.3 Let B̃n(x) be defined as before. Denote the remain-
der of Euler-Maclaurin formula (81) by Rn(F ), i.e.,

Rn(F ) :=
(−1)n

n!

∫ b

a

B̃n(x)F (n)(x)dx.

Then for any analytic function F (x) defined on [a, b] with L2([a, b])

norm ‖F (n)(x)‖2 :=
(∫ b

a

∣∣F (n)(x)
∣∣2 dx)1/2 =: Mn, Euler-Maclaurin for-

mula (81) has error bound

|Rn(F )| ≤Mn(b− a)n

√
(b− a)(−1)n−1B2n

(2n)!
, (82)

where B2n is the 2nth Bernoulli number.

Proof. Using the Cauchy-Schwarz’s inequality and formula (see [7])∫ 1

0

Bn(x)Bm(x)dx = (−1)n−1
m!n!

(m+ n)!
Bn+m,

we have
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|Rn(F )| ≤ 1

n!

∫ b

a

∣∣∣B̃n(x)F (n)(x)
∣∣∣ dx

=
Mn

n!

(∫ b

a

(b− a)2n
∣∣∣∣Bn

(
x− a
b− a

)∣∣∣∣2 dx
)1/2

=
Mn

n!

(∫ 1

0

(b− a)2n+1 |Bn (x)|2 dx
)1/2

=
Mn

√
b− a
n!

(b− a)n
(

(n!)2

(2n)!
(−1)n−1B2n

)1/2

,

which implies (82). Here, (−1)n−1B2n > 0 for n = 1, 2, . . ..
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