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Abstract

A type of nonlinear expressions of Lucas sequences are established inspired by
Hsu [9]. Using the relationships between the Lucas sequence and other linear
recurring sequences satisfying the same recurrence relation of order 2, we may
transfer the identities of Lucas sequences to the latter.
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1 Introduction

Many number and polynomial sequences can be defined, characterized, evaluated,
and classified by linear recurrence relations with certain orders. A number sequence
{an} is called sequence of order 2 if it satisfies the linear recurrence relation of order
2

an = p1an−1 + p2an−2, n ≥ 2, (1)
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for some constants pj (j = 1, 2, . . . , r), p2 6= 0, with initial vector (a0, a1). Linear
recurrence relations with constant coefficients are important in subjects including
combinatorics, pseudo-random number generation, circuit design, and cryptography,
and they have been studied extensively. To construct an explicit formula of the
general term of a number sequence of order r, one may use generating functions,
characteristic equations, or matrix method (See Comtet [4], Hsu [8], Niven, Zuck-
erman, and Montgomery [11], Strang [12], Wilf [13], etc.) Recently, Shiue and the
author give a reduction order method in [6]. Let A2 be the set of all linear recurring
sequences defined by the homogeneous linear recurrence relation (1) with coefficient
set E2 = {p1, p2}. To study the structure of A2 with respect to E2, we make use of
the Lucas sequence F̃n and its conjugate L̃n in A2, which are particular sequences in
A2 with initials a0 = 0 and a1 = 1 and the initials a0 = 2 and a1 = p1.

In next section, we will give the generating function and the expression of the
Lucas sequences F̃n and L̃n and find out the relationships between them and the
sequences in the set A2 with the same E2. In Section 3, with using the symbolic
method shown in [9], we derive a type of identities of Lucas sequences in A2 including
a type of nonlinear expressions. The relationship between the Lucas sequences and
other linear recurring sequences in the same set is used to transfer the identities of
Lucas sequences to those of the linear recurring sequences in the same set.

2 Impulse response sequences

Among all the homogeneous linear recurring sequences satisfying second order homo-
geneous linear recurrence relation (1) with a nonzero p1 and arbitrary initials {a0, a1},
the Lucas sequence with respect to E2 = {p1, p2} is the sequence satisfying (1) with
initials a0 = 0 and a1 = 1 or the initial vector (a0, a1) = (0, 1). For instance, Fi-
bonacci sequence {Fn}n≥0 is the Lucas sequence with respect to {1, 1}, Pell number
sequence {Pn}n≥0 is the Lucas sequence with respect to {2, 1}, and Jacobathal num-
ber sequence {Jn}n≥0 is the Lucas sequence with respect to {1, 2}. For this reason,
we may consider an Lucas sequence with respect to E2 as an extension of Fibonacci
number sequence and denoted it by {F̃n}n≥0, namely, F̃n satisfies (1) with initials
F̃0 = 0 and F̃1 = 1.

In the following, we will present the structure of the linear recurring sequences de-
fined by (1) using their characteristic polynomial. Then, we may find the relationship
of those sequences with their corresponding Lucas sequences.
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Proposition 2.1 Let {an} ∈ A2, i.e., let {an} be the linear recurring sequence de-
fined by (1). Then its generating function P2(t) can be written as

Pr(t) =
a0 + (a1 − p1a0)t

1− p1t− p2t2
. (2)

Hence, the generating function for the Lucas sequence with respect to {p1, p2} is

P̃r(t) =
tr−1

1− p1t− p2t2
. (3)

Proof. (2) is easily to be checked by multiplying 1− p1t− p2t2 on its both sides and
noting

(1− p1t− p2t2)
∑
n≥0

ant
n =

∑
n≥0

ant
n −

∑
n≥1

p1an−1t
n −

∑
n≥2

an−2t
n

= a0 + a1t− p1a0t+
∑
n≥2

(an − p1an−1 − p2an−2)tn = a0 + (a1 − p1a0)t.

By substituting a0 = 0 and a1 = 1 into (2), we obtain (3).

We now give the explicit expression of F̃n in terms of the roots of the characteristic
polynomial of recurrence relation shown in (1) as well as the relationships between
the Lucas sequence and the recurring sequences in the set A2 with the same E2.

Proposition 2.2 Let A2 be the set of all linear recurring sequences defined by the
homogeneous linear recurrence relation (1) with coefficient set E2 = {p1, p2}, and let
{F̃n} be the Lucas sequence of A2. Suppose α and β are two roots of the characteristic
polynomial of A2, which do not need to be distinct. Then

F̃n =

{ αn−βn

α−β , if α 6= β;

nαn−1, if α = β.
(4)

In addition, every {an} ∈ A2 can be written as

an = a1F̃n − αβa0F̃n−1, (5)

and an reduces to a1F̃n − α2a0F̃n−1 when α = β.
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Conversely, there holds a expression of F̃n in terms of {an} as

F̃n = c1an+1 + c2an−1, (6)

where

c1 =
a1 − a0p1

p1(a21 − a0a1p1 − a20p2)
, c2 = − a1p2

p1(a21 − a0a1p1 − a20p2)
, (7)

provided that p1 6= 0, and a21 − a0a1p1 − a20p2 6= 0.

Proof. Recall that [6] presented the following result in its Proposition 2.1:

an =

{ (
a1−βa0
α−β

)
αn −

(
a1−αa0
α−β

)
βn, if α 6= β;

na1α
n−1 − (n− 1)a0α

n, if α = β,
(8)

for every {an} ⊂ A2. By substituting a0 = 0 and a1 = 1 into (8), one may obtain (4).
Denote by L : Z× Z 7→ Z the operator L(an−1, an−2) := p1an−1 + p2an−2 = an. It

is obvious that L is linear, and the sequence {an} is uniquely determined by L from a
given initial vector (a0, a1). Define a−1 = (a1 − p1a0)/p2, then (a−1, a0) is the initial
vector that generates {an−1}n≥0 by L. Similarly, the vector (a1, p1a1+p2a0) generates
sequence {an+1}n≥ by using L. Note the initial vectors of F̃n is (0, 1). Thus (6) holds
if and only if the initial vectors on the two sides are equal:

(0, 1) = c1(a1, p1a1 + p2a0) + c2

(
a1 − p1a0

p2
, a0

)
, (9)

which yields the solutions (7) for c1 and c2 and completes the proof of the corollary.

Proposition 2.2 presents the interrelationship between a linear recurring sequence
with respect to E2 = {p1, p2) and its Lucas sequence, which can be used to establish
the identities of one sequence from the identities of other sequences in the same set.

Example 2.1 Let us consider A2, the set of all linear recurring sequences defined
by the homogeneous linear recurrence relation (1) with coefficient set E2 = {p1, p2}.
If E2 = {1, 1}, then the corresponding characteristic polynomial has roots α = (1 +√

5)/2 and β = (1 −
√

5)/2, and (6) gives the expression of the ISR of A2, which is
Fibonacci sequence {Fn}:
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Fn =
1√
5

{(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n}
.

The sequence in A2 with the initial vector (2, 1) is Lucas sequence {Ln}. From (5)
and (6) and noting αβ = −1, we have the well-known formulas (see, for example,
[10]):

Ln = Fn + 2Fn−1 = Fn+1 + Fn−1, Fn =
1

5
Ln+1 +

1

5
Ln−1. (10)

By using the above formulas, one may transfer identities of Fibonacci number se-
quence to those of Lucas number sequence and vice verse. For instance, the above
relationship can be used to prove that the following two identities are equivalent:

Fn+1Fn+2 − Fn−1Fn = F2n+1

L2
n+1 + L2

n = L2n + L2n+2.

It is clear that both of the identities are equivalent to the Carlitz identity, Fn+1Ln+2−
Fn+2Ln = F2n+1, shown in [3].

Example 2.2 Let us consider A2, the set of all linear recurring sequences defined by
the homogeneous linear recurrence relation (1) with coefficient set E2 = {p1 = p, p2 =
1}. Then (8) tell us that {an} ∈ A2 satisfies

an =
2a1 − (p−

√
4 + p2)a0

2
√

4 + p2
αn − 2a1 − (p+

√
4 + p2)a0

2
√

4 + p2

(
− 1

α

)n
, (11)

where α is defined by

α =
p+

√
4 + p2

2
and β = − 1

α
=
p−

√
4 + p2

2
. (12)

Similarly, let E2 = {1, q}. Then

an =

{
2a1−(1−

√
1+4q)a0

2
√
1+4q

αn1 −
2a1−(1+

√
1+4q)a0

2
√
1+4q

αn2 , if q 6= −1
4
;

1
2n

(2na1 − (n− 1)a0), if q = −1
4
,

where α = 1
2
(1+
√

1 + 4q) and β = 1
2
(1−
√

1 + 4q) are solutions of equation x2−x−q =
0. The first special case (11) was studied by Falbo in [5]. If p = 1, the sequence is
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clearly the Fibonacci sequence. If p = 2 (q = 1), the corresponding sequence is the
sequence of numerators (when two initial conditions are 1 and 3) or denominators
(when two initial conditions are 1 and 2) of the convergent of a continued fraction to√

2: {1
1
, 3

2
, 7

5
, 17

12
, 41
29
. . .}, called the closest rational approximation sequence to

√
2.

The second special case is for the case of q = 2 (p = 1), the resulting {an} is the
Jacobsthal type sequences (See Bergum, Bennett, Horadam, and Moore [2]).

From Proposition 2.2, for E2 = {p, 1}, the Lucas sequence of A2 with respect to
E2 is

F̃n =
1√

4 + p4

{(
p+

√
4 + p2

2

)n

−

(
p−

√
4 + p2

2

)n}
.

In particular, the Lucas sequence for E2 = {2, 1} is the well-known Pell number
sequence {Pn} = {0, 1, 2, 5, 12, 29, . . .} with the expression

Pn =
1

2
√

2

{
(1 +

√
2)n − (1−

√
2)n
}
.

The Pell-Lucas number sequence, denoted by {qn}n≥0, is the sequence in A2 with
respect to E2 = {2, 1} and initial vector (q0, q1) = (2, 1), which has the first few
elements as {2, 1, 4, 9, 22, . . .}. From (6) and (7), we obtain

Pn =
3

14
qn+1 +

1

14
qn−1, n ≥ 1. (13)

Similarly, for E2 = {1, q}, the Lucas sequence of A2 with respect to E2 is

F̃n =
1√

1 + 4q

{(
1 +
√

1 + 4q

2

)n
−
(

1−
√

1 + 4q

2

)n}
.

In particular, the ISR for E2 = {1, 2} is the well-known Jacobsthal number sequence
{Jn} = {0, 1, 1, 3, 5, 11, 21, . . .} with the expression

Jn =
1

3
(2n − (−1)n) .

The Jacobsthal-Lucas number {jn} in A2 with respect to E2 = {1, 2} satisfying j0 = 2
and j1 = 1 has the first few elements as {2, 1, 5, 7, 17, 31, . . .}. From (5), one may have

jn = Jn + 4Jn−1 = 2n + (−1)n.
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In addition, the above formula can transform all identities of Jacobsthal-Lucas number
sequence to those of Jacobsthal number sequence. For example, we have

J2
n + 4Jn−1Jn = J2n,

JmJn−1 − JnJm−1 = (−1)n2n−1Jm−n,

JmJn + 2JmJn−1 + 2JnJm−1 = Jm+n

from

jnJn = J2n,

Jmjn − Jnjm = (−1)n2n+1Jm−n,

Jmjn − Jnjm = 2Jm+n,

respectively. Similarly, we can show that the following two identities are equivalent:

jn = Jn+1 + 2Jn−1, Jn+1 = Jn + 2Jn−1.

Furthermore, using (6) and (7), one may has

Jn =
1

9
jn+1 +

2

9
jn−1, n ≥ 1, (14)

which can be used to transform all identities of Jacobsthal number sequence to those
of Jacobsthal-Lucas number sequence.

Remark 2.1 Proposition 2.2 can be extended to the linear nonhomogeneous recur-
rence relations of order 2 with the form: an = pan−1 + qan−2 + ` for p+ q 6= 1. It can
be seen that the above recurrence relation is equivalent to the homogeneous form (1)
bn = pbn−1 + qbn−2, where bn = an − k and k = `

1−p−q . More details can be found in

[6].

Example 2.3 An obvious example of Remark 2.1 is the Mersenne number Mn =
2n − 1 (n ≥ 0), which satisfies the linear recurrence relation of order 2: Mn =
3Mn−1 − 2Mn−2 ( with M0 = 0 and M1 = 1) and the non-homogeneous recurrence
relation of order 1: Mn = 2Mn−1 + 1 (with M0 = 0). It is easy to check that sequence
Mn = (kn− 1)/(k− 1) satisfies both the homogeneous recurrence relation of order 2,
Mn = (k + 1)Mn−1 − kMn−2, and the non-homogeneous recurrence relation of order
1, Mn = kMn−1 + 1, where M0 = 0 and M1 = 1. Here, Mn is the Lucas sequence
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with respect to E2 = {3,−2}. Another example is Pell number sequence that satisfies
both homogeneous recurrence relation Pn = 2Pn−1 + Pn−2 and the non-homogeneous
relation P̄n = 2P̄n−1 + P̄n−2 + 1, where Pn = P̄n + 1/2.

Remark 2.2 In [11], Niven, Zuckerman, and Montgomery studied some properties of
{Gn}n≥0 and {Hn}n≥0 defined respectively by the linear recurrence relations of order
2:

Gn = pGn−1 + qGn−2 and Hn = pHn−1 + qHn−2

with initial conditions G0 = 0 and G1 = 1 and H0 = 2 and H1 = p, respectively.
Clearly, Gn = F̃n, the Lucas sequence of A2 with respect to E2 = {p1 = p, p2 = q}.
Using Proposition 2.2, we may rebuild the relationship between the sequences {Gn}
and {Hn}:

Hn = pGn + 2qGn−1,

Gn =
q

p2 + 4q
Hn−1 +

1

p2 + 4q
Hn+1.

3 A type of Identities of Lucas sequence in A2

Let A2 be the set of all linear recurring sequences defined by the homogeneous linear
recurrence relation (1) with coefficient set E2 = {p1 = p, p2 = q}, and let F̃ be the
Lucas sequence of A2. Inspired by [9], we give a nonlinear combinatorial expression
involving F̃ and a numerous identities based on the expression. Using the interre-
lationship between the Lucas sequence and a linear recurring sequence in A2, one
may obtain many identities involving sequences in A2. More precisely, let us consider
the following extension of the results in [9] for the Fibonacci numbers to the general
number sequences in A2. Suppose {an}n∈N be a nonzero sequence defined by the
recurrence relation

an = p1an−1 + p2an−2, n ≥ 2, p1, p2 6= 0, (15)

with the initial conditions a0 = 0 and any nonzero a1. Here, a1 must be nonzero,
otherwise an ≡ 0. Hence, we may normalize a1 to be a1 = 1 by define a new sequence
gn = an/a1 satisfying the same recurrence relation (15). Thus, under the assumption,
our sequence {an} is the Lucas sequence {F̃n} of A2 with respect to E2 = {p1, p2}. We
now give a nonlinear combinatorial expression involving F̃n. Our result will extend
to the case of a0 6= 0 and a1 = p1a0 later. In addition, sequence {F̃n}n∈N can be
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extended to the the case of {F̃r}r∈Z by using the same recurrence relation for r ≥ 1
and F̃r+1 = p1F̃r + p2F̃r−1 while r ≤ −3.

Lemma 3.1 For any m ∈ N and r ∈ Z there holds

F̃m+r = F̃mF̃r+1 + p2F̃m−1F̃r. (16)

Proof. For an arbitrarily r ∈ Z, we have

F̃r+1 = F̃1F̃r+1 + p2F̃0F̃r

because F̃0 = 0 and F̃1 = 1. Assume (16) is true for n ∈ N, n ≥ 1, and an arbitrary
r ∈ Z, namely,

F̃r+n = F̃nF̃r+1 + p2F̃n−1F̃r, r ∈ Z.

Then,

F̃r+n+1 = F̃nF̃r+2 + p2F̃n−1F̃r+1.

On the hand,

F̃n+1F̃r+1 + p2F̃nF̃r = (p1F̃n + p2F̃n−1)F̃r+1 + p2F̃nF̃r

= F̃nF̃r+2 + p2F̃n−1F̃r+1,

which implies

F̃r+n+1 = F̃n+1F̃r+1 + p2F̃nF̃r

and completes the proof with the mathematical indiction.

A direct proof of (16) can also be given. Actually, every F̃mF̃r+1 + p2F̃m−1F̃r can
be reduced to F̃1F̃r+m + p2F̃0F̃r = F̃r+m by using the recurrence relation (15).

Theorem 3.2 For any given m,n ∈ N0 and r ∈ Z there holds

F̃r+mn =
n∑
j=0

(
n

j

)
(F̃m)j(p2F̃m−1)

n−jF̃r+j. (17)
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Proof. Let F (t) = F̃r+mt. Then from Lemma 3.1

∆F (t) = F (t+ 1)− F (t) = F̃r+mt+m − F̃r+mt
= F̃mF̃r+mt+1 + (p2F̃m−1 − 1)F̃r+mt.

Thus, there holds symbolically

(∆− (p2F̃m−1 − 1)I)F̃r+mt = F̃mF̃r+mt+1.

Using the operator ∆− (p2F̃m−1 − 1)I defined above j times, we find

(∆− (p2F̃m−1 − 1)I)jF̃r+mt = (F̃m)jF̃r+mt+j, j ∈ N.

Furthermore, noting the symbolic relation E = I + ∆ and the last symbolical expres-
sion, one may find

F (n) = F̃r+mn = EnF̃r+mt

∣∣∣
t=0

= (I + ∆)nF̃r+mt

∣∣∣
t=0

= (p2F̃m−1I + (∆− (p2F̃m−1 − 1)I)nF̃r+mt

∣∣∣
t=0

=
n∑
j=0

(
n

j

)
(p2F̃m−1)

n−j(∆− (p2F̃m−1 − 1)I)jF̃r+mt

∣∣∣∣∣
t=0

=
n∑
j=0

(
n

j

)
(p2F̃m−1)

n−j(F̃m)jF̃r+j

completing the proof of the theorem.

Remark 3.1 The nonlinear expression for the case of {an} with a0 = 0 and a1 6= 0
can be specialized to the case a0 6= 0 and a1 = p1a0. We may normalize a0 = 1 and
define a−1 = 0 from the recurrence relation a1 = p1a0 + p2a−1. Hence, the sequence
{F̂n = an−1} satisfies recurrence relation (15) for n ≥ 1 with the initials F̂0 = 0 and
F̂1 = 1. Hence, from (17) we have the nonlinear expression for F̂n as

F̂r+mn =
n∑
j=0

(
n

j

)
F̂ k
m−1(qF̂m−2)

n−jF̂r+k
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for m ≥ 1 and r ≥ 0.
Similar to the last section and Remark 3.1, we may use the extension technique

to define F̃n for negative integer index n. For example, substituting n = 1 into (15)
yields F̃1 = p1F̃0 + p2F̃−1, which defines F̃−1 = 1/q. With r = −mn − 1, r = −mn,
and r = −mn + 1 in (17), a class of identities for F̃n with negative indices can be
obtained as follows.

Corollary 3.3 For m ≥ 1 and n ≥ 0 there hold the identities

n∑
j=0

pn−j+1
2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn−1 = 1,

n∑
j=0

pn−j2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn = 0,

n∑
j=0

pn−j2

(
n

j

)
(F̃m)j(F̃m−1)

n−jF̃j−mn+1 = 1. (18)

Similarly, substituting m = 2, 3, and 4 into (17) and noting F̃2 = p, F̃3 = p2 + q,
and F̃4 = p(p2 + 2q), we have

Corollary 3.4 For n ≥ 0, there hold identities

n∑
j=0

pj1p
n−j
2

(
n

j

)
F̃r+j = F̃r+2n,

n∑
j=0

(p21 + p2)
j(p1p2)

n−j
(
n

j

)
F̃r+j = F̃r+3n,

n∑
j=0

pj1p
n−j
2 (p21 + 2p2)

j(p21 + p2)
n−j
(
n

j

)
F̃r+j = F̃r+4n. (19)

With an application of Proposition 2.2, one may transfer the nonlinear expres-
sion (17) and its consequent identities shown in corollaries 3.3 and 3.4 to any linear
recurring sequence defined by (1). For instance, from Corollary 3.4, we immediately
have
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Corollary 3.5 Let us consider A2, the set of all linear recurring sequences defined by
the homogeneous linear recurrence relation (1) with coefficient set E2 = {p, q}. Then,
for any {an} ∈ A2, there hold

n∑
j=0

pj1p
n−j
2

(
n

j

)
(car+j−1 + dar+j−2) = car+2n−1 + dar+2n−2,

n∑
j=0

(p21 + p2)
j(p1p2)

n−j
(
n

j

)
(car+j−1 + dar+j−2) = car+3n−1 + dar+3n−2,

n∑
j=0

pj1p
n−j
2 (p21 + 2p2)

j(p21 + p2)
n−j
(
n

j

)
×(car+j−1 + dar+j−2) = car+4n−1 + dar+4n−2,

for n ≥ 0, where c and d are given by

c =
a1 − a0p1

p1(F̃1 − a0a1p1 − F̃0p2)
, d = − a1p2

p1(F̃1 − a0a1p1 − F̃0p2)
,

provided that p1 6= 0, and F̃1 − a0a1p1 − F̃0p2 6= 0.

The nonlinear expression (17) can be used to obtain a congruence relations in-
volving products of the Lucas sequences as modules.

Corollary 3.6 For r ∈ Z, m ≥ 1, and n ≥ 0, there holds a congruence relation of
the form

F̃mn+r ≡ (p2F̃m−1)
nF̃r + (F̃m)nF̃n+r (mod F̃m−1F̃m). (20)

In particular, for r = 0 and gcd (F̃m, F̃n) = 1,

F̃mn ≡ 0 (mod F̃mF̃n). (21)

In general, if F̃m1, F̃m2 , . . ., F̃ms be relatively prime to each other with each mk ≥ 1
(k = 1, 2, . . . , s), then there holds

F̃m1m2···ms ≡ 0 (mod F̃m1F̃m2 · · · F̃ms). (22)
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Proof. (20) comes from (17) straightforward. By setting r = 0, we have

F̃mn ≡ (F̃m)nF̃n (mod F̃m−1F̃m) ≡ 0 (mod F̃m).

Similarly,

F̃mn ≡ 0 (mod F̃n).

Thus, if gcd(F̃m, F̃n) = 1, i.e., F̃m and F̃n are relatively prime, then we obtain (21),
which implies (22).

Example 3.1 For E2 = {1, 1}, {1, 2}, and{2, 1}, formula (17) in Theorem 3.2 leads
the following three non-linear identities for Fibonacci, Pell, and Jacobsthal number
sequences, respectively:

Fmn+r =
n∑
j=0

(
n

j

)
F j
mF

n−j
m−1Fr+j,

Pmn+r =
n∑
j=0

(
n

j

)
P j
mP

n−j
m−1Pr+j,

Jmn+r =
n∑
j=0

(
n

j

)
J jm(2Jm−1)

n−jJr+j,

where the first one is given in the main theorem of [9].

Example 3.2 As what we have presented, one may extend Fibonacci, Pell, and
Jacobsthal numbers to negative indices as {Fn}n∈Z = {. . . , 2,−1, 1, 0, 1, 1, 2, 3, 5, . . .},
{Pn}n∈Z = {. . . , 5,−2, 1, 0, 1, 2, 5, 12, 29, . . .}, and {Jn}n∈Z = {. . . , 3/8,−1/4.1/2, 0, 1,
1, 3, 5, 11, . . .} by using the corresponding linear recurrence relation with respect to
E2 = {1, 1, }, {2, 1}, and {1, 2}, respectively. Thus, from the first formula of (18) in
Corollary 3.3, there hold
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n∑
j=0

(
n

j

)
F j
mF

n−j
m−1Fj−mn−1 = 1,

n∑
j=0

(
n

j

)
P j
mP

n−j
m−1Pj−mn−1 = 1,

n∑
j=0

2n−j+1

(
n

j

)
J jmJ

n−j
m−1Jj−mn−1 = 1.

The identities generated by using the other formulas in (18) and the formulas in
Corollaries 3.4-3.6 can be written similarly, which are omitted here.

Example 3.3 By using the transformation formulas (10), (13), and (14), we may
transform the nonlinear expressions shown in Examples 3.1 and 3.2 to those of the
sequences in their sets with the same E2 and initial vector (a0, a1) = (2, 1), respec-
tively. For instance, from Example 3.1, there hold

Lmn+r+1 + Lmn+r−1

=
1

5n

n∑
j=0

(
n

j

)
(Lm+1 + Lm−1)

j(Lm + Lm−2)
n−j(Lr+j+1 + Lr+j−1),

qmn+r+1 + qmn+r−1

=
1

14n

n∑
j=0

(
n

j

)
(3qm+1 + qm−1)

j(3qm + qm−2)
n−j(3qr+j+1 + qr+j−1),

jmn+r+1 + jmn+r−1

=

(
2

9

)n n∑
j=0

(
n

j

)
1

2j
(jm+1 + 2jm−1)

j(jm + 2jm−2)
n−j(jr+j+1 + 2jr+j−1).

Similarly, from Example 3.2, we have
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1

5n+1

n∑
j=0

(
n

j

)
(Lm+1 + Lm−1)

j(Lm + Lm−2)
n−j

×(Lj−mn + Lj−mn−2) = 1

1

14n+1

n∑
j=0

(
n

j

)
(3qm+1 + qm−1)

j(3qm + qm−2)
n−j

×(3qj−mn + qj−mn−2) = 1

1

9n+1

n∑
j=0

2n−j+1

(
n

j

)
(jm+1 + 2jm−1)

j(jm + 2jm−2)
n−j

×(jj−mn + 2jj−mn−2) = 1

At the end of this section, we will mentioned a relationship, established in [7]
(inspired by Aharonov, Beardon, and Driver[1]) by Shiue, Weng and the author, be-
tween the recurring numbers defined by (1) and the values of the Gegenbauer-Humbert
polynomials including the Chebyshev polynomials of the second kind, Un(x), and the
Fibonacci polynomials, F̄n(x). From Corollary 2.2 of [7], we have the relationships

F̃n =
(√
−p2

)n−1
Un−1

(
p1

2
√
−p2

)
,

F̃n = (
√
p2)

n−1 F̄n

(
p1√
p2

)
,

F̃n =
(
−
√
−p2

)n−1
Un−1

(
−p1

2
√
−p2

)
,

F̃n = (−√p2)n−1 F̄n
(
−p1√
p2

)
.

In particular, for E2(1, 1), the above relationships present the expressions of Fibonacci
numbers in term of the values of the Chebyshev polynomials of the second kind and
the Fibonacci polynomials as follows:
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Fn = in−1Un−1

(
− i

2

)
,

Fn = F̄n (1) ,

Fn = (−i)n−1 Un−1
(
i

2

)
,

Fn = (−1)n−1 F̄n (−1) ,

where the first formula can be seen in [1]. Similarly, for E2 = (2, 1), we have

Pn = in−1Un−1 (−i) ,
Pn = F̄n (2) ,

Pn = (−i)n−1 Un−1 (i) ,

Pn = (−1)n−1 F̄n (−2) .

If E2 = (1, 2), then the relationships between the Jacobsthal numbers and the values
of the Chebyshev polynomials of the second kind and the Fibonacci polynomials are

Jn =
(√

2i
)n−1

Un−1

(
− i

2
√

2

)
,

Jn = 2(n−1)/2F̄n

(
1√
2

)
,

Jn =
(
−
√

2i
)n−1

Un−1

(
i

2
√

2

)
,

Jn =
(
−
√

2
)n−1

F̄n

(
−1√

2

)
.

Example 3.4 Using the above relationships, we may change the non-linear expres-
sions of F̃n to the non-linear expressions for the values of the Chebyshev polynomials
of the second kind and the Fibonacci polynomials, respectively. For instance, from
Example 3.1, there hold
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Umn+r−1

(
− i

2

)
=

n∑
j=0

(
n

j

)
i−2(n−j)Um−1

(
− i

2

)j
Um−2

(
− i

2

)n−j
Ur+j−1

(
− i

2

)

Umn+r−1(−i) =
n∑
j=0

(
n

j

)
i−2(n−j)Um−1 (−i)j Um−2 (−i)n−j Ur+j−1 (−i)

Umn+r−1

(
− i

2
√

2

)
=

n∑
j=0

(
n

j

)
(i)−2(n−j)Um−1

(
− i

2
√

2

)j
Um−2

(
− i

2
√

2

)n−j
Ur+j−1

(
− i

2
√

2

)
.

Other nonlinear expressions of the values of the Chebyshev polynomials of the second
kind and the Fibonacci polynomials can be constructed similarly from Examples 3.1
and 3.2, which we omitted here.
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