Skip to main content
Article
Ab Initio Study of Molecular Interactions in Cellulose Iα
Journal of Physical Chemistry B
  • Ajitha Devarajan, Iowa State University
  • Sergiy Markutsya, Iowa State University
  • Monica H. Lamm, Iowa State University
  • Xiaolin Cheng, Oak Ridge National Laboratory
  • Jeremy C. Smith, Oak Ridge National Laboratory
  • John Ysrael Baluyut, Iowa State University
  • Yana Kholod, Iowa State University
  • Mark S. Gordon, Iowa State University
  • Theresa Lynn Windus, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
8-1-2013
DOI
10.1021/jp406266u
Abstract

Biomass recalcitrance, the resistance of cellulosic biomass to degradation, is due in part to the stability of the hydrogen bond network and stacking forces between the polysaccharide chains in cellulose microfibers. The fragment molecular orbital (FMO) method at the correlated Møller–Plesset second order perturbation level of theory was used on a model of the crystalline cellulose Iα core with a total of 144 glucose units. These computations show that the intersheet chain interactions are stronger than the intrasheet chain interactions for the crystalline structure, while they are more similar to each other for a relaxed structure. An FMO chain pair interaction energy decomposition analysis for both the crystal and relaxed structures reveals an intricate interplay between electrostatic, dispersion, charge transfer, and exchange repulsion effects. The role of the primary alcohol groups in stabilizing the interchain hydrogen bond network in the inner sheet of the crystal and relaxed structures of cellulose Iα, where edge effects are absent, was analyzed. The maximum attractive intrasheet interaction is observed for the GT-TG residue pair with one intrasheet hydrogen bond, suggesting that the relative orientation of the residues is as important as the hydrogen bond network in strengthening the interaction between the residues.

Comments

Reprinted (adapted) with permission from Journal of Physical Chemistry B 117 (2013): 10430, doi:10.1021/jp406266u.

Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Language
en
File Format
application/pdf
Citation Information
Ajitha Devarajan, Sergiy Markutsya, Monica H. Lamm, Xiaolin Cheng, et al.. "Ab Initio Study of Molecular Interactions in Cellulose Iα" Journal of Physical Chemistry B Vol. 117 Iss. 36 (2013) p. 10430 - 10443
Available at: http://works.bepress.com/theresa-windus/8/