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The common reactivity pattern (COREPA) approach is a 3-di-
mensional, quantitative structure activity relationship (3-D
QSAR) technique that permits identification and quantification of
specific global and local stereoelectronic characteristics associated
with a chemical’s biological activity. It goes beyond conventional
3-D QSAR approaches by incorporating dynamic chemical con-
formational flexibility in ligand-receptor interactions. The ap-
proach provides flexibility in screening chemical data sets in that
it helps establish criteria for identifying false positives and false
negatives, and is not dependent upon a predetermined and spec-
ified toxicophore or an alignment of conformers to a lead com-
pound. The algorithm was recently used to screen chemical data
sets for rat androgen receptor binding affinity. To further explore
the potential application of the algorithm in establishing reactivity
patterns for human estrogen receptor @ (hERa) binding affinity,
the stereoelectronic requirements associated with the binding af-
finity of 45 steroidal and nonsteroidal ligands to the receptor were
defined. Reactivity patterns for relative hER« binding affinity
(RBA; 17B-estradiol = 100%) were established based on global
nucleophilicity, interatomic distances between electronegative het-
eroatoms, and electron donor capability of heteroatoms. These
reactivity patterns were used to establish descriptor profiles for
identifying and ranking compounds with RBA of > 150%, 100-
10%, 10-1%, and 1-0.1%. Increasing specificity of reactivity pat-
terns was detected for ligand data sets with RBAs above 10%.
Using the results of this analysis, an exploratory expert system was
developed for use in ranking relative ER binding affinity potential
for large chemical data sets.

Key Words: structure activity relationships; expert systems; hu-
man estrogen relative binding affinity; estrogen receptor ligands.

Kavlock et al., 1996). Structure activity relationships (SARSs)
can serve as screening tools to help prioritize untested com-
pounds for more intensive and costly empirical evaluations
based onin vitro or in vivo bioassays (Ankleyet al,, 1997;
Bradburyet al,, 1998). In response to this need, a wide variety
of SARs have been developed to predict hormone receptor
binding affinity (see Bradburgt al., 1998, and references cited
therein), as a critical initial endpoint in problem formulation
and hazard identification stages of ecological and human health
risk assessments, respectively. However, developing SARs
suitable for screening large data sets of diverse chemical struc-
tures for toxicological activity in a mechanistically sound man-
ner is challenging. Models capable of identifying relevant
molecular characteristics that result in similar biological activ-
ity require a clear definition of the toxicological endpoint(s) of
concern as a basis for defining mechanistically sound assump-
tions regarding the xenaobiotic interaction(s) in question (Brad-
bury, 1994; Bradburet al, 1998).

Typical approaches to quantifying 3-D similarity in the
context of ligand-receptor interactions encompass pharma-
cophore (or toxicophore) search methods and receptor site
mapping. However, selecting appropriate molecular conforma-
tions and obtaining structural alignments can be quite challeng-
ing with these methods. The use of the lowest-energy conform-
ers to assess similarity in pharmacophore search and receptor-
mapping algorithms is common, but inappropriate, because in
complex systems such as biological tissues and fluids, chemi-
cals are likely to exist in a variety of conformational states. In
fact, the lowest-energy gas-phase conformations might be the
least likely to interact with macromolecules (Eliel, 1993), and

Recent reports that a wide variety of natural and synthegolvation and binding interactions could more than compensate
compounds are capable of acting as hormonal agonists dmdenergy differences among the conformers of a chemical
antagonists serve as timely examples of the need to adva(Beadburyet al, 1996, 1998; Mekenyaet al., 1994a, 1996a,b;
mechanistically based prioritization schemes to support humafiese and Brooks, 1994). In terms of appropriate chemical

health and ecological risk assessments (Anldéwal., 1997;

This paper has been reviewed according to EPA guidelines. Mention
modeling or modeling approaches does not indicate endorsement by the E

alignment, most modeling algorithms explore hundreds of
alfignments to reach an optimum outcome which, if not care-
ﬁﬂly evaluated in the context of a presumed mechanism of

To whom correspondence should be addressed. Fax: (218) 529-5df§€raction with the receptor, may be susceptible to violation of
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the criteria of Topliss and Edwards (1979) for causality in SAR
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models. Alignment errors also can lead to models that aPensequently, this compound was included in the data set twice, as compounds
incorrect or are poorly predictive. 8 and 21.
To address these issues, we recently described a technique E& ligand conformations. Conformer generation was based on a combi-

generalize the use of multiple conformers in an active ana|ogrﬁ?éorlal procedur_e that |_n|t|ates_ from mo_IecuIar topology and generates all
conformers consistent with steric constraints and expert rules (Ilvanal,

approach (Mekenyaﬂt al, 1997, 1999)' The common reac_1994). In generating conformers, the torsion resolution around “saturated”

tivity pattern (COREPA) approach circumvents the problemsgs_sp) bonds was 120°, using an initial torsion angle of 60° with respect to
of conformer alignment and selection, and initial assumptiof& plane of the preceding 3 atoms (Bradbatyal, 1996; Mekenyaret al.,
concerning specific atoms/fragments in a pharmacophore 4987, 1999). Distance between nonbonded atoms was set at 1.5 A, while a
not obligatory. In this respect, the method implicitly defines tH&"9¢ of 1.2 to 1.8 A was imposed for ring closure. Due to the rigidity of the

common reaciivit attern across alobal and local reactiViratural steroids and their derivatives, less restrictive geometric constraints for
yp 9 %g closures (1.0-2.5 A) were imposed to generate a sufficiently large number

descriptor(s) potentially aSSOCia}ted with the specific biologiCad conformations with the same stereospecificity as the natural enantiomers
endpoint under study. As described by Mekengéaal. (1997, (i.e., B/C trans and C/D trans ring fusion). Combinatorial problems were
1999), the 3 principal steps of the algorithm are: (1) definitiogncountered for chemicals 4, 7, 10, 12, 13, 36, and 43, due to the high degree
of a training set of chemicals; (2) evaluation of stereoelectrorﬁEﬂeXibi”W in their acyclic fragments. The number of conformers initially

. . . . nerated for those chemicals was reduced by not permitting rotation around
descrlptors hypOtheSIZEd to be associated with Compour?lﬁ&Z most peripheral C—C bonds. Up to 500 of the sterically most distinct

exerting similar piological activity; and (3) recognition of theints from the conformational space for each chemical were selected. Geo-
common reactivity pattern for those compounds. In the masgetric dissimilarity was assessed, based on Euclidean distances between the

recent version of the technique (COREPA-C), the commeatms of interatomic distances for the conformers.
reactivity patterns are described in terms of probabilistic funC_Each of the generated conformations was submitted to a strain minimization

. . . . technique (pseudo-molecular mechanics, PMM) based on a simple energy-like
tions (Mekenyamt al, 1999; Schmiedeet al, 2000)' This function, where only the electrostatic terms are omitted (lvastoal, 1994).

feature improves the means of quantifying chemical similarig,psequently, conformational degeneracy, due to molecular symmetry and
and expressing prediction uncertainties based on relative difometry convergence was detected within a 30° range of torsion angle
ferences in the measured biological activity, in this case reléfferences. Next, geometry optimization was achieved by employing MOPAC
tive binding affinity. 93 (Stewart, 1990, 1993), using the AM1 Hamiltc_)ni_an yvith the key words
“PRECISE” and “NOMM". As a result of the optimizations, some of the

To mltla”y deveIOp the COREPA algorlthms, Stereoelecc:_onformations guenched into the same energy minima, further reducing the

tronic requirements associated with the binding of 28 steroid@mber of conformers. Finally, conformers were screened to eliminate those
and nonsteroidal ligands to the androgen receptor (AR) wetBoseAH® was = 20 kcal/mol more than the conformer with the absolute

defined (Mekenyaet al, 1997, 1999)_ In the present study, thenergy minimum. This 20 kcal/mol threshold was based on experimental
COREPA algorithm was further evaluated by assessing Stergngence that the free energy of binding for steroid hormones is in the range of

electronic requirements for the binding of 45 diverse structurgs © ~20 keal/mol (Anstea al, 1989, 1997; Wiese and Brooks, 1994),
a 9 %ﬁich can provide the necessary energy to elevate conformers from the

to the human estrogen recepter(hERw). Specifically, the |ow(est) energy state during binding. As reported previously, conformers
algorithm was employed to establish reactivity patterns feglected within this range ofAH,° are energetically reasonable from a
ligand subsets derived from a training set of chemicals withermodynamic and kinetic perspective (Bradbatyal., 1998; lvanovet al,
relative binding affinities (RBAs) of>150%, 100—10%, 10— 1998: Mekenyaret al, 1997, 1999).

. . For a given compound, conformers within the specified 20 kcal/mol range of
0 —~0.10
1%, and 1-0.1%. Based on the results of this anaIySIS’ gEHﬁ often exhibited significant variation in potentially relevant electronic

exploratory expert system was developed for use in assign§criptors (Table 1). For example, conformergefearalanol (chemical 13)
potential hER: RBA to chemicals for ranking and prioritizing had a range 0.449 eV for the energy of lowest unoccupied molecular orbital
large chemical data sets for subsequent testing. (ELumo), 0.189eV for energy of highest occupied molecular orbitalo(g),
0.425 eV for Eomorumo, @and 3.89 D for dipole momengj. Similar variations
were observed for other nonsteroidal compounds. Descriptor ranges for the
steroids, while smaller, are also noteworthy. For example, conformers of
MATERIALS AND METHODS moxestrol (compound 11) had a range of 0.460 eV foy.& 0.470 eV for
Evomo, 0.648 eV for Eowo.rumo, @and 0.92 D foru. The observation that

ER ligands and binding affinity. The ER ligands examined in this study relatively small energy differences between conformers can result in signifi-

consist of 26 steroids and 19 nonsteroids (Fig. 1). The RBAS of the Iiganﬁ@m variations in electronic structure highlights the necessity of including all
were reported by Kuipeet al. (1997) and Bolgeet al. (1998) based on a energetically reasonable conformers when defining common reactivity pat-

competitive binding assay using hkRrotein. The RBA is calculated as the tems.

ratio of the concentrations of Bestradiol (E) and competitor required to To a_|d in Lnterpretatll?n of conformational f|EXIbI|I%/ for this data set, Table f
reduce the specific binding of radiolabeled Euiper et al, 1997) or a 1 provides the range of root mean square (RMS) differences between atoms o

fluorescent nonsteroidal estrogen (Bolgéral, 1998) by 50% (i.e., ratio of th_e conformers for each compound, bgsed on comp‘arisons of_e_agh conformer

IC4 values; Table L with the lowest-energy st_ructure_. Con5|s_tent v_wth_thelr greatgr rigidity, small_er
The data set of Kuipeet al. (1997) consists of 37 chemicals, whereas thaI[?MS ranges were associated with steroid derivatives than with the nonsteroids.
d:rpr example, RMS ranges of 2.423 t0 8.641, 0.152 to 0.564, and 0.318 to 0.577

of Bolgeret al. (1998) is for 15 chemicals. Seven compounds were comm . ) -
were derived for hexestrol (1), estrone (8), and estriol (14), respectively.

to both studies. For these compounds, the RBA values listed in Table 1 w
obtained by averaging values from both sources. In the case of estrone, thilolecular descriptors. The global and local electronic descriptor pool
reported RBA values from the 2 studies differed by more than an order w$ed in this study was restricted to those hypothesized to be associated with ER
magnitude, which, as noted below, affected the definitions of training seksnding affinity, based on previous studies with a variety of model receptors
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FIG. 1. Chemical names, structures, and hERIlative binding affinities (RBA; %) for compounds used to establish training and validation sets.

(e.g., Bradbunet al, 1996; Mekenyaret al,, 1997, 1999; VanderKuwet al.,  al., 1993; Lewiset al, 1995; Walleret al,, 1995, 1996a; Wurtet al, 1996).
1993; Walleret al, 1995, 1996a,b; Wiese and Brooks, 1994; Wuwetzal,  Finally, volume polarizability, defined as a sum of atomic self-polarizabilities,
1996). Stereoelectronic descriptors were calculated with MOPAC 93, augnd thus, the averaged ability of a compound to change electron density at its
mented by a computing module that provides additional reactivity descriptet®ms during chemical interactions (Lewis, 1989; Srman, 1990), was also
(Mekenyaret al,, 1994b), using the AML1 all-valence electron, semi-empiricaémployed. The use of volume polarizability was based on previous observa-

Hamiltonian. Electronegativity, dipole moment, energy of frontier orbitals, angbns suggesting that more polarizable conformers generally had greater ER
the electronic gap were used as global electronic descriptors; whereas atqijlgiing affinities (Bradbunet al., 1996).
charges, donor and acceptor superdelocalizability indices, and atomic self-

polarizabilities were calculated as local electronic indices. In the present stud The COREPA-C method. A brief summary of the COREPA method is

atomic reactivity indices were not restricted to specific rings in steroidal 8f0Vided below. The conceptual basis and detailed mathematical formulations,
nonsteroidal derivatives when searching common patterns based upon I§4@rithm, and illustrations of the method are reported elsewhere (Meketyan
descriptor distributions. al., 1997, 1999; Schmiedest al, 2000).

Conformer structures were also assessed based on steric descriptors, inclub® employ the COREPA method, an exhaustive conformer generation
ing the sum of geometric distances (Mekenyemnal, 1986), the greatest routine (described previously) is used to establish conformers of each chemical
interatomic distance, steric distance between atoms, and planarity (the norréfhin a certain energy range of the lowest energy structure. In the present
ized sum of torsion angles in a molecule; Mekenwral, 1996b). These study, it was assumed that conformers of each chemical could be considered as
descriptors were selected because hydrophobicity, steric bulk, and size costatistical ensemble, based on the Boltzman'’s statistics. As described previ-
straints also have been reported as important in predicting and interpretingly, the electronic and steric attributes of the conformers then are assessed
ligand binding for nuclear receptors (e.g., Bradbatyal, 1998; Goldsteiret using a predetermined set of global and local molecular descriptors. All
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TABLE 1

Estrogen Receptor Ligands, Observed Relative Binding Affinities (RBA) for hER«, Number of Conformers Generated (N),
and Ranges for Some Significant Stereoelectronic Descriptors (see Appendix)

z
©

Ligand

RBA (%)

Ref.

N

Fomo(eV)

ELumo (eV)

Ecap (€V)

w (D)

AAHE? (kcal/mol)

RMS

CO~NOOUORAWNR

Hexestrol
Diethylstilbestrol
Dienestrol
4-OH-Tamoxifen
E2

Coumestrol
ICI-164,384
Estrone
17a—Estradiol
Nafoxidine
Moxestrol
Clomifene
pB—Zearalanol
Estriol
4-OH-Estradiol
2—-OH- Estradiol
5-Androstenediol
Tamoxifen
Genistein
3B-Androstanediol
Estrone

HPTE
Estrone—-3-sulfate
Norethynodrel
4—Androstenediol
0,0-DDT
4—Nonylphenol
4—t-Octylphenol
Kepone
Norethindrone
3a—Androstanediol
p,p-DDT
Bisphenol A

Dehydroepiandrosterone
5a—Dihydrotestosterone

BBP

Methoxychlor
4—Androstenedione
58—Androstanedione
Testosterone
Sx—Androstanedione
19-Nortestosterone
Dieldrin

B-Sitosterol
Corticosterone
Progesterone

302
294
223
178
100
94
85
60
58
a4
43
25
16
14
13
7
6
5.1
5
3
2.1
1.7
1
0.7
0.5
0.4
0.3
0.2
0.2
0.07
0.07
0.06
0.045
0.04
0.03
0.015
0.012
0.01
0.01
0.01
0.01
0.01
0.003
0.001
0.001
0.001
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—8.8437 to —8.8093
—8.8624 to —8.6576
—-8.5153 to —8.4897
—8.8412 to —8.4253
—8.8578 to —8.8205
—9.2505 to —9.1203
—8.8722t0-8.7077
—8.9227 to —-8.8932
—8.8686 to —8.8392
—8.3715t0 -8.0751
—9.1350 to —8.6652
—9.0695 to —8.5537
—9.4623 t0 —9.2738
—8.9236 to —8.8598
—8.7643 to -8.7578
—8.6400 to —8.6187
—9.3863 to —9.2248
—9.1227 to —8.4268
—9.0673 to —8.9987
—10.3538 to —10.3427
—8.9227 to —8.8932
—9.1103 to —9.1082
—9.4472 t0 —9.2501
—9.3442 10 —9.2786
—9.5801 to —9.4047
—9.6365 to —9.4485
—8.9090 to —8.8433
—8.8563 to —8.8436
—-10.9158
—10.0310 to —9.9034
-10.3513 t0 -10.3410
—9.6414 to —9.5429
—8.8280 to —-8.8277
—9.5002 to —9.2931
—10.2655 to —10.2510
—9.7360 to —9.2760
—9.0840 to —-8.9372
—10.1009 to —-10.0417
—10.1810 to —10.0949
—10.0267 to —9.9249
—-10.1720t0o -10.1677
—10.0353 to —9.9107
—9.6308 to —9.6305
—9.3560 to —9.2532
—-10.1670 to -9.9727
—10.0473 to —9.9135

0.3590 to 0.4287
0.1396 to 0.3232
0.122310 0.1396
—0.1057 to 0.2634
0.3658 t0 0.3841
—0.3162 to —0.2201
0.3273 to 0.4869
0.3032t0 0.3271
0.3576 t0 0.3752
—0.4468 to —0.0239
0.2926 to 0.7526
—-0.3317 to -0.0726
—0.4605 to -0.0112
0.3050 to 0.3657
0.2665 to 0.2809
0.3085 t0 0.3239
1.1200 to 1.2422
—0.1369 to 0.3952
—0.4102 to -0.3829
3.0560 to 3.0658
0.3032 10 0.3271
—0.2878 to —0.2786
—0.9899 to —0.8709
0.7497 t0 0.7763
1.1006 to 1.1157
—0.4841 to —0.4045
0.4262 t0 0.4613
0.4595 t0 0.4741
—0.6736
—0.0506 to 0.0036
3.0608 to 3.0800
—0.5314 to —0.4893
0.4235t0 0.4262
0.9397 to 1.0095
0.9054 t0 0.9191
—0.8517 to —0.6068
—0.2849 to —0.2156
—0.0917 to -0.0614
0.8633t0 0.8873
—0.0423 to 0.0468
0.8631 to 0.8754
—0.0466 to 0.0380
—0.3160 to -0.3156
1.1276t0 1.2315
—0.1727 t0 0.0264
—0.0822 to 0.0527

9.1779 10 9.2673
8.7972 10 9.1856
8.6211 to 8.6522
8.3762 to 8.9907
9.1927 t0 9.2419
8.8611 to 8.9900
9.1912 t0 9.2364
9.1964 t0 9.2434
9.1967 t0 9.2438
7.7615t0 8.2998
9.1244 10 9.7722
8.3257 t0 8.9785
8.8738 10 9.2990
9.1975 10 9.2442
9.0308 t0 9.0400
8.9272 t0 8.9639
10.4670 to 10.5062
8.3564 t0 9.3397
8.5885 to 8.6823
13.3995t0 13.4174
9.1964 t0 9.2434
8.8226 to 8.8296
8.3480 t0 8.5541
10.0469 to 10.1125
10.5102 to 10.6807
8.9743 10 9.1926
9.3017 t0 9.3425
9.3158 10 9.3177
10.2423
9.9070 to 10.0032
13.4018 to 13.4313
9.0536 t0 9.1237
9.2515 10 9.2539
10.3027 to 10.4400
11.1584t011.1821
8.5428 t0 9.0296
8.7143 t0 8.8202
9.9803 to 10.0103
10.9608 to 11.0616
9.9337 t0 10.0735
11.0351 to 11.0450
9.9112 to 10.0240
9.3145 t0 9.3152
10.4731 to 10.5097
9.9749 to 10.0668
9.9315t0 10.0877

0.0745t0 2.2581
0.3224 t0 2.2524
1.3996 to 2.3618
0.5881 to 3.5145
0.4245 to 1.4682
2.3950 to 2.9649
2.8307 to 3.9659
1.61851t0 1.6617
0.4257 t0 0.7296
1.0278 to 3.6806
1.5500 to 2.4746
1.0463 to 2.8148
0.8722t0 4.7633
1.3697 t0 2.0776
1.2013 to 1.5457
0.8646 to 1.0037
0.3037 to 1.5500
0.9061 to 2.6028
1.6339to 3.7822
1.1000 to 1.7852
1.6185101.6617
2.2772 t0 2.4602
0.6285 to 3.8948
2.1164 t0 2.8173
0.3828 t0 0.4736
1.8880 to 2.8927
1.2421 to 1.4087
1.3207 to 1.3853
1.0214
3.3012 to0 3.7926
1.2052 to 1.9015
0.9793 t0 1.1487
1.7223 t0 1.7509
1.2516 to 2.5177
2.0342 t0 2.6688
1.4469 to 6.5925
0.9810t0 4.1578
2.5531 10 3.5163
1.3669 to 4.5516
2.6602 to 4.0441
2.0771to 2.8417
3.0115to0 3.6615
1.6775 to 1.6800
1.3765 t0 1.9632
0.7706 to 5.1227
1.8217 to 5.2240

—70.5100 to —60.7920
—47.5190 to —45.0619
—20.5471 to —20.4045
3.8088 to 8.5407
—107.6159 to —96.8975
—129.2098 to —110.0525
—217.1750 to —202.5838
—87.0704 to —77.0100
—107.8579 to —97.6046
6.7683 t0 19.9743
67.5834 to 83.6861
43.8285 to 48.4708
—247.8439 to —235.4246
—152.4492 to -141.5218
—150.9908 to —140.3515
—-151.5650 to —140.9350
—136.9920 to —132.5624
48.6071 to 56.0690
—148.1643 to —146.9973
—163.9969 to —151.6313
—87.0704 to —77.0100
—-56.7081 to —-56.7009
—207.2948 to —204.0818
—54.1622 to —42.7666
—135.5870 to —130.8778
21.0963 to 32.7428
—83.0323 to —78.3822
—54.1565 to -53.4612
18.3543
—52.0198 to —43.5817
—163.5126 to —153.1779
18.8319 to 20.4237
—48.3145 to —48.2939
—116.4078 to —111.9875
—143.5292 to —134.0742
—127.9410t0 -117.1117
—43.4469 to —39.5937
—97.2669 to —93.9401
—121.9455 to -114.8201
—115.2860 to —104.9688
—122.8986 to —113.9359
—118.9736 to —110.5364
224.2979 to 224.5710
—141.9888 to —128.8104
—193.4743 to —175.3467
—105.6481 to —88.6579

2.4234 10 8.6410
0.4577 to 7.9498
2.7467 t0 6.6118
1.0723to 7.5811
0.3343 10 0.8533
0.0667 to 5.3936
1.3514 to 20.9967
0.1520 to 0.5643
0.2646 t0 0.5818
1.0717 to 8.1075
0.5914 to 1.6961
0.7899 to 7.4314
1.1712 to 4.5059
0.3175t00.5773
0.2064 to 0.4481
0.2805 t0 0.5710
0.3646 to 0.5040
0.9294 to 14.9980
1.3756 to 7.0188
0.3975 t0 0.6857
0.1520 to 0.5643
3.0428 t0 3.0428
0.1223t0 1.1860
0.1350 t0 0.7622
0.4571 t0 0.5244
1.9169to0 7.3511
0.8358 t0 11.7658
3.3483t0 7.3376

0.0000 to 0.0000

0.3341 to 0.8900
0.4067 to 0.7326
1.3120 to 6.7854
3.9247 to 3.9247
0.3429 t0 0.5017
0.2358 t0 0.4780
2.0314 10 9.7750
2.2637 t0 6.1257
0.3922 10 0.5518
0.1622 t0 2.0415
0.4094 t0 1.6236
0.228210 0.4743
0.2366 t0 0.7519
6.6002 to 6.6002
0.4640 t0 9.5201
0.3557 t0 1.4333
0.3760 to 1.9107

Note.K = Kuiper et al. (1997); B= Bolgeret al. (1998); A = data from both sources are averaged.
*Chemical in more than one RBA range.

conformers of a given chemical are plotted across a molecular descriptor a&isd NAT patterns (denoted as HAP [high activity pattern] and NAP [non-
thus forming a discrete distribution for the chemical relative to the selectedtive pattern, i.e., the reactivity pattern based on the learning set of non-active
descriptor. For the global molecular descriptors, each conformer is represergleemicals], respectively) (Step 2). The descriptors are evaluated based on the
by single point value, whereas for atomic descriptors, several values for eacnmalized sum of dynamic similarity indices, S(AP/NAP), the portion of the
conformer are allocated across the descriptor axis. These values are assocmireactive pattern exceeded by the maximum of the active pattern (3-D
with various local sites (atoms) of the conformer. These descriptor poisitnilarity measure between reactivity patterns of active between each pair of
estimates are considered to be midpoints of a continuous (gamma) distributioolecules in the training set (Mekenyanal,, 1999). The cutoffs, i.e., the part
that approximates the discrete distribution. Subsequently, a conformer distfithe non-active area in common with the active pattern maximum (Cutoff-
bution of a chemical is represented by a continuous function obtained @YP/NAP)), can also be used as a measure of similarity. We assume the
summing all gamma distributions corresponding to conformers of the specifig@reoelectronic descriptors that provide the maximal measure of similarity
chemical. Conformer distributions of a chemical are normalized by dividirgmong chemicals in the training sets, and have least overlap between HAP and
the total distribution area by the number of conformers (i.e., normalizing tidAP (i.e., most distinct HAP and NAP), to be related to biological activity.
distribution area to unity for each chemical), thus providing a probabilisti€inally, common reactivity patterns for biologically similar molecules (e.g.,
chemicals within a defined range of RBA values) are obtained as products of
The COREPA algorithm consists of 3 steps: First, two subsets of chemictlie probabilistic distributions for specific stereoelectronic descriptors associ-
are selected as training sets (Step 1). The first subset consists of chemiatdd with chemicals in training sets of the active and non-active chemicals
having activity (here, in terms of RBA) above a user-defined high activit{Step 3). Well defined, or distinct, patterns for descriptors are observed when
threshold (HAT). The second subset includes chemicals having activity beltlve conformer distributions for the chemicals from the same training set are in
a predetermined non-active threshold (NAT). Next, a set of descriptors aspbase.
ciated with the biological activity of interest are established by evaluating theThe dissimilarity between overall patterns of active and non-active chemi-
degree of overlap (in %) between the distributions associated with the HAdls, as well as between overall patterns and chemical-specific distributions,

characterization of the distributions.
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can be evaluated by Euclidean distance based on the squared differebdéy of P% around the pattern maximum. This simplified version provides a
between distribution densities over the entire range of the descriptor variatidiscrimination of chemicals as being active or non-active. Thus, chemicals
The Euclidean distance metric can also be used to compare distributiavith similar hERx affinity (within an RBA range) have at least one conformer
derived from different chemical training sets or for training sets derived frothat meets all the specified parameter ranges, whereas those from the other
different weighting schemes (e.g., differelAH,° thresholds for conformer RBA ranges should have no conformers that meet all the multiparameter
selection). The Euclidean metric distance can be used to ascertain the extef@yirements simultaneously.

which an overall conformer distribution of active or non-active chemicals is
influenced by a specific chemical(s). In this respect, the “stability” of a pattern
can be assessed by a “leave-one-out” procedure. The metric is used to itera-
tively assess differences between patterns derived for n vs. n-1 chemicals in the . .
training subsets. Variation of similarity indices, cutoffs between HAP angOREPA Algorlthm for hER ngands

NAP, and descriptor ranges can also be quantified. More stable patterns ar%tep 1. Definition of the training set of chemicalé'raining
associated with smaller Euclidean distances, reduced variations in similarit ) :

indices, and equivalent smaller descriptor ranges. sétfs were e_stablisi\ed_by _select_ing subsets of active and non-
The common reactivity patterns are described in terms of molecular desc@tive chemicals differing in their RBA by one order of mag-
tor ranges around the probability maxima of the distributions. The width &iitude. The following RBA ranges were associated with active
these ranges depends on valued oivhich is related to the half-width of the ligands: greater than 150% (denoted as HARL1), from 100 to
gamma function, and confidence limits chosen around the probability maxina)o, (HAR2), from 10 to 1% (HAR3), and from 1 to 0.1%
Based on our previous study (Mekenyetnal., 1999), defaulf” values of 0.1 éHAR4)' Two ranges were associated with non-active Iigands:

to 0.125 of the variation range for global descriptors, and 0.01 or 0.05 of t 0 0
variation for local indices were used. Ultimately, a common reactivity patterr'?om 0.1 t0 0.01% (NAR1) and from 0.01 to 0.00% (NAR?2).

is a collection of the specified ranges of each molecular descriptor determinecﬁlthouqh user-defined, the ablllty of different RBA ranges
to be associated with the biological activity of concern. to discriminate active and non-active chemicals can be as-
In the present study, atomic sites with differing levels of generality wergessed by estimating similarity between the respective reactiv-
used in establishing reactivity patterns. Wild-card heteroatoms are denoteqtlgypattems defined in Steps 2 and 3. Lower similarity between
R, where R stands for all (or a specified subset) of the heteroatoms in {pg patterns associated with HAP and NAP indicates a low

molecules. In subsequent analyses, R was assumed to represent the fono\ﬁilr@oability of incorrectly assigning a conformer to an RBA
3 groups of atoms: O; O, N; and O, N, CI, F. range

Rule interpreter. To facilitate screening of large chemical data sets, com- Step 2. Identificati f st lect ic d int .
mon reactivity patterns were coded into a decision tree (Schmiedaf., €p <. ldentincation ot stereoelectronic descriptors assocl-

2000). The decision tree consists of multiple hierarchically ordered rules tt@€d with biologically similar compounds.As discussed pre-
capture specific stereoelectronic descriptors that comprise common reactivitpusly, Step 2 of the algorithm consists of evaluating normal-
patterns. Each energetically reasonable conformer of a chemical is procesget] pairwise similarity (S(AP/NAP)) between chemicals in the
through the decision tree by making use of an interpreter that is based onfifferent RBA ranges across the steric and electronic indices.
extended SMILES notation that permits the use of stereoelectronic structufehe calculated indices are listed in Table 2. Average similarity

based rules. Boolean logic operators are used to establish “rules” in (X)) amond the chemicals within the training sets (Within
decision tree. In the context of this study, a rule statement results in the¥? g g

assignment of the likelihood of binding to the hERvhich is the probability 9roup similarity) are also presented in Table 2.

of having a RBA value equal to or greater than a predetermined threshold. If The global indices of Fowo, Ecap, @and EN showed the
the value of a parameter calculated for a conformer falls in a range of tgeeatest $(x), but also the largest distinction (lowest similar
molecular descriptor defined by a confidence limit with a probability of P%ty) between HAPs and NAPs and the HAP/NAP combina-
around the pattern maximum, then it is assumed that the conformer meetsﬂ%s_ The similarity between HAPs and NAPs for these global

specific requirement with a probability (100-P)%. If a chemical has t.o.meeﬁﬁglces gradually increases with an increase in the biological
successive stereoelectronic reqUIrementS to equal or exceed an aCt|V|ty thres -

old (with probabilities R and n, respectively), the total probability of meeting sflm”a”ty between chemicals ("e" smaller RBA rangg separa-
both requirements (P, 5) is obtained as a product of the probabilities oftioN). Thus, the lowest S(AP/NAP) values were obtained be-

meeting the two requirements separately, i.e.,.R & = nNa.ne. The total tween HAR1 and NAR2, with a S(HAP1/NAP2) of 0.02 and
probability (P o s) of meeting either one of the requirements, in case of “or0.1% for E,ouo and EN, respectively. Consistent with this, the
binary logic, is obtained as,f o = Na + N — M.Ne. If the value of the - greatest similarity between patterns was observed for the most
descriptor calculated for a conformer falls outside of at least one of ”Pﬁologically similar ranges: for HAP4 and NAR2. an S(HAP4/

parameter ranges, then the overall probability of having an RBA above tiﬁ}A o
threshold is 0. As seen, the approach offers flexibility in establishing hazar P2) of 1.0 and 2.5% for fewo and EN were observed,

ranking protocols for unknown compounds based on choices of RBA thredigspectively. ' _

olds and confidence limits around pattern maxima. It must be stressed that théAmong the local electronic descriptors, charges (Q(R)) and
probability outcomes from the decision tree should not be viewed in absoldenor-delocalizabilities (SE(R)) of heteroatoms had lowest
terms. Rather, the output from the algorithm permits a relative ranking bfetween-group similarities for a wide range of HAR/NAR
unknown chemicals in terms of their likelihood to have an RBA above éomparisons. Consistency between RBA and pattern similari-

ser-defined threshold. . Lo .
! Hines . . . . ties was also observed for local electronic indices. Again, the
To simplify presentation of the rule interpreter, a binary version of th

decision tree was employed in the present study. In the binary version, a V'flggve.St between-grc_)up Slmllam'e?’ for Q(R) and SE(R) We.re
of 100% is assigned to a chemical if at least one conformer falls within t@0tained for the training sets derived from the largest activity
range of the molecular descriptor defined by a confidence limit with a probtaireshold separations (e.g., S(HAP1/NAR2)3.2 and 4.2%

RESULTS AND DISCUSSION
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TABLE 2
Averaged “Within Group” Similarity (%) between Chemicals Included within Different RBA Ranges; “Between Group” Similarity
(%) between Patterns Associated with Active (HAR) and Non-Active (NAR) Chemicals

Within group similarity (%) Between group similarity (%)

Descriptors r HAR1 HAR2 HAR3 HAR4 NAR1 NAR2 HAR1/NAR2 HAR2/NAR2 HAR3/NAR2 HAR4/NAR2
Eromo (V) 0.55 78.2 71.1 53.9 51.9 47.1 71.0 0.015 0.001 0.06 1.0
ELumo (V) 0.55 77.6 66.4 38.6 40.7 345 55.8 29.6 24.8 47.3 18.3
Egap (eV) 0.93 75.8 74.8 38.6 53.1 40.8 64.9 0.71 0.32 1.3 28.4
Max distance (A) 2.67 64.0 60.3 71.1 53.9 79.0 59.7 17.1 56.8 86.2 72.7
GW (A) 5517 60.5 57.4 69.7 79.6 79.7 63.8 67.4 85.9 85.1 55.1
EN (eV) 0.37 90.4 70.3 50.9 43.1 41.9 60.5 0.1 0.03 0.6 25
w (D) 0.88 79.0 55.6 60.0 54.2 52.7 60.0 255 8.9 6.2 5.0
Q(O) (a.u.) 0.05 91.2 70.0 7.5 39.6 60.3 69.5 2.8 2.1 18.9 32.3
Q(R) (a.u.) 0.05 95.4 72.0 56.1 29.3 48.7 67.2 3.2 3.1 21.7 30.5
SE(O) ((a.ujyeV) 0.05 96.5 92.0 91.6 80.5 75.4 78.4 6.3 6.5 7.4 12.8
SE(R) ((a.u3eV) 005 925 89.3 82.4 62.6 61.7 76.1 4.2 4.6 5.6 30.4
d(0_0) (A) 2.21 65.1 60.6 5.2 8.6 60.2 78.1 45.2 75.7 4.7 71.8
d(R_R) (A) 2.47 72.8 64.6 54.8 49.1 55.3 67.5 31.8 90.5 64.3 58.0

Note.RBA ranges for HAR1, HAR2, HAR3, HAR4, NAR1, and NAR2 are 150, 10-100, 1-10, 0.1-1, 0.01-0.1, and 0.001-0.01%, respectively.

for Q(R: O, N, CI, F, S) and SE(R: O, N, CI, F, S), respedrom the leave-one-out analysis was 11.75 (11.59-11.91) A to
tively). Alternatively, the largest between-group similarity wag1.91 (11.81-12.10) A. The 10% confidence limit d(R_R) with
obtained for training sets with greatest biological similarittH{AR4 was 10.46 to 10.72 A, while the associated mean-
(e.g., S(HAP4/NAP2)= 30.5 and 30.4% for Q(R: O, N, CI, F, distance range from the leave-one-out analysis was 10.13
S) and SE(R: O, N, CI, F, S), respectively). No significan2.86-10.70) to 10.40 (3.27—-10.90) A.The stability of patterns
differences were found in similarity assessments based g8o can be assessed in terms of Euclidean distance. The mean
Q(R) and SE(R) for the different types of R. Euclidean-distance values for active patterns derived from
Among the steric descriptors, distances between hetel@ave-one-out analyses for HAR1, compared to the pattern for
atoms, d(R_R), were found to provide the lowest betweefke intact training set, were 0.019 and 0.0027, respectively, for
group similarity, which was observed for the training sets, . (I = 0.55) and d(R_R)I{ = 2.47). The same analysis,
derived from the largest RBA separations (i.e., S(HAPHased on chemicals in HARA4, resulted in mean Euclidean
NAP1) = 20.4% (data not shown) and S(HAP1/NAP2) (istance values of 0.032 and 0.0074 foif and d(R_R),
31.8%). Moreover, between-group similarity assesgments WeE8pectively. Thus, the COREPA analysis supports the biolog-
found to depend on the types of heteroatoms included jiy|ly reasonable hypothesis that ligands with higher RBA
d(R_R). Thus, the highest discrimination ability between HARS, 65 are associated with more specific receptor interactions.
and NAPs was for R: O, N, CI, F, S, with the lowest discrimeongequently, these ligands are associated with more stable

ination when R was restricted to O only. reactivity patterns and are more reliable in determining RER
Based on these results,dmo was employed as the globalli?and binding affinity for this data set.
a

descriptor in the COREPA analyses. In addition, the loc N o
electronic descriptors Q(R) or SE(R) where used, as well as the>tep 3. Recognition of the common reactivity pattern based
distances between heteroatoms, as a local steric descrig®yrelevant molecular descriptors.The variation of parame-
COREPA analysis of similarity within and between a variety der ranges of the relevant molecular descriptors are given in
pairings of HAPs and NAPs, with respect to.dso, Q( R), Table 3, parts a—d, for the 4 different HARs, respectively. A
SE(R), and d(R_R) suggested that the greatest discriminatfstlection of these ranges forms the reactivity patterns that
between patterns was associated with largest RBA range segre used to define rules in the hizRigand decision tree.
aration, i.e., between HAR1 or HAR2, and NAR2 (Table 2)Patterns based on the global electronic descriptors were de-

A leave-one-out analysis based on the above parameters éiged for different RBA ranges at a constdntalue of 1 eV or
indicated that patterns derived from training sets with th@eV. To increase the specificity of d(R_R)-based patterns, the
highest RBA ranges (HAR1 or HAR2) were more “stable” thafatter were analyzed within smaller descriptor distances from 9
those obtained for the lower RBA ranges of HAR3 and HAR40 10 A, 9t0 10.5 A, 10.0to 11.5 A, 10.3t0 10.7 A, or 11.5to
For example, with HAR1, the 10% confidence limit for d(R_R13 A. Following is a detailed discussion of the reactivity
was 11.74 to 11.91 AI{ = 2.47). The mean distance ranggatterns associated with each molecular descriptor.
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The Variation of Parameter Ranges for the Relevant Molecular Descriptors with Confidence Limits (CL) around the Maximum
Probability Values for (a) RBA > 150%, (b) 10 < RBA < 100%, (c) 1 < RBA < 10%, and (d) 0.1 < RBA < 1%

CL Eromo Eromo Q(R) SE(R) SE(R) d(R_R) d(R_R) d(R_R)
(%) TI'=1leVv =3eV I =0.05au. I =(0.05aujev I =(0.01a.ujeVv [ values (A) are specified in footnotes]
a 10 -8.69t0-8.64 -8.72t0-8.60 -0.254t0-0.251 0.246 to 0.249 R 11.98t0 12.01 -
30 -8.75t0-8.58 -8.85t0-8.47 -0.2561t0—0.248 0.2441t00.251 - 11.95t0 12.04 - -
50 -8.81t0-8.52 -8.99t0-8.37 -0.260t0-0.245 0.240t0 0.254 - 11.91t0 12.08 - -
70 -8.89t0-8.44 —9.15t0-8.17 -0.264t0-0.241 0.236 t0 0.259 - 11.86t012.13 - -
90 -9.04t0-8.29 -9.54t0-8.08 -0.272t0-0.233 0.229 t0 0.260 - 11.77t0 12.22 - -
b 10 -8.90t0-8.87 -8.92t0-8.83 -0.254t0-0.252 0.255t0 0.257 - 10.44 16 10854 to 11.5% 10.79to 10.81
30 -8.94t0-8.83 -9.01t0-8.75 -0.256to—-0.250 0.253t0 0.259 - 10.43t010.46 11.53t011.56 10.77 to 10.83
50 -8.98t0-8.79 -9.11t0-8.65 -0.259t0-0.248 0.251t0 0.261 - 10.43t010.46 11.52t011.57 10.74t010.86
70 -9.03t0-8.74 -9.23t0-8.53 -0.262t0-0.245 0.248t0 0.264 - 10.41t010.48 11.50t011.59 10.71to010.89
90 -9.11t0-8.65 -9.44t0-8.32 -0.268t0-0.239 0.244t0 0.269 - 10.38t010.51 11.50t011.80 10.62to 10.95
c 10 -9.04t0-8.99 -9.16t0-9.04 -0.265t0-0.261 0.254 t0 0.256 - 9.64 t0 9.68.08 to 10.12 10.88 to 10.93
30 -9.09t0-8.94 -9.28t0-8.92 -0.269 to—-0.257 0.251to 0.258 - 9.60t09.72 10.02t0 10.17 10.83t0 10.97
50 -9.14t0-8.88 -9.41t0-8.79 -0.273t0-0.252 0.249t0 0.260 - 9.55t09.77 9.96t010.23 10.78t0 11.02
70 -9.22t0-8.81 -9.59t0-8.61 -0.280to0-0.246 0.2451t0 0.264 - 9.49109.83 9.87t010.31 10.71to011.09
90 -9.35t0-8.68 —-9.87t0-8.32 -0.292t0-0.233 0.240to0 0.269 - 9.38109.93 9.75t010.44 10.56t011.28
d 10 -9.36t0-9.31 -9.45t0-9.33 -0.270to—-0.266 0.263t0 0.264 0.245t0 0.250 - - -
30 -9.41t0-9.25 -9.57t0-9.21 -0.275t0-0.262 0.262t0 0.265 0.239t0 0.260 - - -
50 -9.47t0-9.19 -9.72t0-9.07 -0.280t0-0.257 0.260to 0.267 0.2391t0 0.263 - - -
70 -955t0-9.11 -9.90t0-8.89 -0.287to-0.250 0.257 t0 0.270 0.239t0 0.265 - - -
90 -9.69t0-8.97 -10.21t0-8.57 -0.298to—-0.233 0.2481t0 0.279 0.239t0 0.269 - - -

Estimate not performed.

' = 05A, 115 to 13 A.
T =0.1A, 10.3 to 10.7 A.
=014 115 to 13 A.
T =0.5A,10.0 to 11.5A.
T =05A, 9.0 to 10.0 A.
T =0.5A, 9.0 to 10.5A.
T =05A 10.0 to 11.5 A.

Reactivity Pattern Based on,Eyo

Reactivity Pattern Based on Donor Delocalizabilities and
Charges

The reactivity patterns of training sets based on HAR1,
HAR2, HAR3, and HAR4 as compared with the pattern of The comparison between activity patterns based on donor de-
non-active ligands (NAR2) are illustrated in Figure 2. Thécalizability, SE(R: O, N, Cl, F), for different HARs and NAR2
Ewomo ranges (in eV), obtained as a function of the confidenég illustrated in Figures 3a—d, fdf = 0.05 (a.ujeV (also see

limit (%) around the Eovo probability maximum (Table 3, Table 3, parts a—c). The discrimination ability of the SE patterns
parts a—d, Fig. 2), clearly show a shift in thedk, pattern decreases with a decrease in RBA values (e.g., S(HAR1/
toward higher global nucleophilicity with increasing RBA vallNAR2) = 4.2%, whereas S(HAP4/NAP2) 30.4%). An analysis
ues. This result is consistent with the hypothesis that maoé the HAPs indicate this pattern is predominantly due to R
active ER ligands have higher nucleophilicity (Bradbetyal, attached to a phenyl moiety. If a low&r (0.01 (a.ujeV) is
1998; Walleret al, 1996a). employed on a restricted SE(R) range, additional probability max-
The discrimination ability of Foyo tended to decrease withima were detected (Figs. 4, Table 3d). This analysis indicates that
decreasing separation between RBA ranges. For example, vifit probabilistic distribution maximum with the lowest SE(R)
I' = 1 eV, S(AR/NAR), values of 0.41, 0.1, 1.5, and 7.9%, fovalue (around 0.247 (a.tigV) is associated with an electron-
HAR1/NAR2, HAR2/NAR2, HAR3/NAR2, and HAR4/ withdrawing R attached to aromatic fragments. The maximum
NAR2, respectively, were observed (data not shown). Witkith an SE(R) value of about 0.26 (aie) is associated with an
I' = 0.55 eV, S(AR/NAR) values of 0.015, 0.001, 0.06, an® attached to non-aromatic rings, while the highest SE(R) maxi-
1.0%, respectively, were noted (Table 2). mum of about 0.30 (a.li/kV (identified in the SE(R) range of 0.3
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to 0.4 (a.uyeV; data not shown) is associated with halogea) occurred at 12 A (over the distance of 11.5-13 A). There

heteroatoms (ligands included in HAR4).

was a 6.9% overlap between this pattern and that associated

The charge-based pattern (analyzed for negative charge wgith NAR2. The activity pattern obtained for HAR2 had a
ues only) is consistent with that observed for delocalizabilitynaximum probability at about 10.8 A (Fig. 6b, Table 3, part b)
as illustrated in Figure 5 and summarized in Table 3, for R over the distance of 10.0 to 11.5 A. This distance pattern had
O, N, Cl, F, S, andl’ = 0.01 a.u. The difference betweera 12.9% overlap with the pattern for NAR2. Over the same
Q(R)-based HAPs and NAPs was mainly associated with elefistance, from 10.0 to 11.5 A, a multiplicity of maxima were
tronic charges (i.e., electron donor properties) of an R attachsiskerved for the HAR3 pattern, as well as an increase in the
to an aromatic fragment. The lower donor delocalizability ajverlap with the non-active range (25.1%). A maximum-dis-
the electronegative sites associated with ligands in HARsnhce value of about 10.9 A was observed between 10.0 and
(Figs. 3 and 4) is consistent with the more positive charge .5 A (Fig. 6c, Table 3, part c), with another maximum at
located at those sites. Apparently, higher binding affinity remout 9.6 A noted between 9.0 and 10.0 A (Fig. 6d). However,
quires specific, but not extreme, ranges of charge and/or doggs similarity between this active pattern and the non-active
delocalizability. In this data set, non-active ligands have largggttern reached 40.6%. Finally, the activity pattern associated
negative charges and donor delocalizabilities distinct frofith HAR4 had multiple maxima for distance ranges of 10.0 to
parameter ranges associated with active ligands. 11.5 A and 9.0 to 10.0 A, (Fig. 6e and f, respectively). The
intensity of those maxima were lower than those associated
With HAR1-HAR3. In summary, maximum probability values
were shifted to lower distances with decreasing RBA values.

The reactivity patterns of active (HAR1-HAR4) and nonThus, the largest maximum probability distance of 12 A was
active (NAR2) ligands based on interatomic distances, d(R_RJjsociated with HAR1, whereas for HAR3 and HAR4, the
forR= 0, N, Cl, F, S (i.e., all heteroatoms) at a valudof maximum distances ranged from 9 to 10 A.

0.1 A are illustrated in Figures 6a—6d, respectively. The max-The donor delocalizability, charge, and distance-based pat-
imum probability of d(R_R) for HAR1 (Fig. 6a, Table 3, partterns are consistent with previous studies (e.g., Anst¢ad,

Reactivity Pattern Based on Interatomic Distances betwee
Electronegative Sites
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1997; Wurtzet al, 1996). These studies reported that ERata set (HARL1) in a single descriptor screen of —8.72 to —8.60
ligands should possess 2 electronegative sites, capable of foevi(I" = 3.0 eV; 10% confidence limit; see Table 3a), all of the
ing donor and acceptor H-bonds in the ER ligand-bindingpnformers of ligands 1 and 3 were incorrectly identified as
domain, and of being separated by about 10.9 A. As sumnfaving an RBA< 100%. Consequently, larger confidence
rized above, 10.9 A coincides with the distance ranges reportgfits were required to establish patterns that would include
in the present work for ligands with RBA ranges of 1 to 10%onformers for all of the ligands included in HAR1. Thus, if
(HAR3) and 10 to 100% (HAR2). the 50% confidence limit of —8.99 to —8.37 eV [at 3.0 eV)
is used, all conformers of the 4 ligands in HAR1 were screened
correctly, except for one conformer of ligand 3. The similarity
Mekenyanet al. (1999) reported previously that distribu-between a ligand distribution for all conformers of one chem-
tions based on largdt values, or larger confidence limits, will ical and the Eoyo reactivity pattern for all chemicals in HAR1
lead to wider ranges in Euo, d(R_R) and Q(O) (or SE(R)) (S(k/AP) ranged from 70.2% for ligand 1 to 76.2% for ligand
maximum probability values. In general, larger descriptdt- This single descriptor screen, however, does lead to false
ranges are associated with a greater likelihood that ligands wifisitive classifications (i.e., prediction of RBA 150%) for
be incorrectly identified as having an RBA value within théess active chemicals: HAR 2 ligands 5, 7-12, 14, and 15; HAR
specified HAR (i.e., an increasing rate of false positive ided-ligands 16, 18, and 21; HAR 4 ligands 27 and 28; and NAR1
tifications). Conversely, smaller descriptor ranges increase tiggnds 33 and 37, respectively. For these compounds, the
rate of false negative identifications. It is important to note thatmilarity in ligand distributions for Eouo with the corre
due to the probabilistic nature of the algorithm, it is possibleponding activity pattern ranged from 69.1% for ligand 11 to
that the choice of an active pattern based on a siiadr 78.8% for ligand 12.
confidence limit can lead to incorrect classifications of con- Similarly, if a d(R_R) range of 11.98t0 12.01 K& 0.5 A;
formers from an active ligand. For example, when using &% CL; see Table 3, part a) derived for HARL is used as a
E.omo profile derived for the most potent heRigands in this single descriptor screen, all of the conformers of ligands 1-3

Derivation of hER Ligand Reactivity Patterns
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were incorrectly identified as having an RBA 100%. How- d(R_R), correctly discriminated chemicals 1—-4 from chemicals
ever, after using the 90% confidence limit of 11.77 to 12.22 B-46.

(atT" = 0.5 A), conformers of chemicals 1-4 were correctly The above classification of an “unknown” ligand was based
identified. The similarity between ligand distributions and thisn whether or not one or more conformers for the compound
reactivity pattern ranged from 47.1% for ligand 4 to 68.0% fdell within any of the Eowo, d(R_R), and Q(R) activity pat
ligand 1. The larger descriptor screen, however, resultedtarns. Alternatively, values of Euclidean distance or S(k/AP)
false positive classifications of ligands 7, 10, 19, 23, 45, affior comparisons of distributions of unknown compounds to an
46, respectively. The similarity between individual ligand disHAR could be used to screen ligands. For the,g-based
tributions and the d(R_R)-based activity pattern ranged fropattern, Euclidean distance and S(k/AP) values for ligands
41.5% for ligand 10 to 67.0% for ligand 19. included in HARL1 varied from 0.18 to 0.21 and from 72.5 to
The selection of specifiE and/or confidence limit values for 77.2%, respectively. For d(R_R), Euclidean distance and S(k/
deriving HAR1 screening rules was based on a strategy to fifgP) values varied from 0.58 to 0.91 and 47.1 to 68.0%,
minimize the probability of false negative identifications, whileespectively, whereas for Q(R), the Euclidean distance and
secondarily minimizing the number of false positive identifiS(k/AP) values ranged from 3.04 to 3.56 and from 45.9 to
cations. Ultimately, a 3-descriptor screen based qpuf 54.2%. Based on S(k/AP), thresholds of 72.5%, 47.1%, and
d(R_R) and Q(R) (or SE(R)) was used to minimize the rate 46.9% for Ewo, d(R_R), and Q(R), respectively, could be
false negative identifications, while maintaining a low rate afsed in a 3-parameter screen. Employing this as a screen,
false positive identifications. For a ligand to be classified ahemicals 5—46 were also correctly classified as having RBA
active within a specified RBA range, at least one conformgalues< 150%. Using Euclidean distance or S(k/AP) to assess
was required to fall within all 3 of the descriptor ranges. Farnknown ligands facilitates a more quantifiable approach for
HAR1, a screening pattern with, 5, of a —8.99 to —8.37 determining similarity in reactivity patterns. The use of these
eV = 3.0 eV; 50% confidence limit, Table 3, part a) comsimilarity metrics also permits the sensitivity of different
bined with the least conservative d(R_R) range of 11.77 thresholds to be readily evaluated in terms of potential rates of
12.22 A (confidence limit= 90%) and a Q(R) range of —0.272false negative and positive classifications of unknown ligands.
to —0.233 a.u.I{ = 0.05 a.u; 90% confidence limit, Table 3, A 3-descriptor screen also was developed for HAR2 based
part a), imposed on both electronegative sites forming t@ E,owo, d(R_R), and Q(R). An Fwo pattern of —9.44 to
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—-8.32 eV [ = 3.0 eV; 90% confidence limit, Table 3, part b}ance screens) identified 16 (2-hydroxy-estradiol), which lies
combined with d(R_R) ranges of 10.62 to 10.95IA« 0.5 A, on the boundary between training sets HAR2 and HAR3
confidence limit= 90%), and the requirement that at least on@RBA = 7%) and 21 (estrone), which was also included in
of these heteroatoms meets the least conservative Q(R) scidAiR2 as chemical 8, due to the discrepancy in reported RBA
of —0.273 to —0.236 a.ul'(= 0.05 a.u; 95% confidence limit values. No ligands with RBA< 1% were identified as having
[not shown]), successfully discriminated nine out of 11 ligandm RBA value between 10 and 100%.
from the training set (chemicals 5-15) as having RBA values The COREPA associated with HAR3 was based ong&
between 10 and 100%. The threshold values for Euclideeange of —9.87 to —8.32 e\I'(= 3.0 eV; 90% confidence limit,
distance and S(k/AP) associated withyk, d(R_R), and Q(R) Table 3, part ¢), combined with distance screens of 9.38 to 9.93
reactivity patterns in the HAR2, were: 0.34 and 58.0%, 1.58 or 10.56 to 11.28 A, observed within windows of 9.0 to 10.0
and 22.7%, and 5.56 and 18.4%, respectively. The conformérsand 10.0 to 11.5 A, respectively (Table 3, part c, for
of chemical 10 (nafoxidine) had higher,&o values (from confidence limit= 90%). The Eono and d(R_R) screens were
—8.37 eV to —8.08 eV), whereas conformers of chemical @mbined with a SE(R) pattern of 0.237 to 0.273 (dley
(17a-estradiol) had d(R_R) distances shorter than 10.62 A (tt@5% confidence limit, data not shown), imposed on at least
lower boundary of the least restrictive distance screen in tbae of the electronegative sites. This reactivity pattern cor-
range of 10-11.5 A). If the distance screens of 10.38 to 10.Edctly identified 5 out of 7 chemicals from the training set. It
Aor11.50t0 11.80 A, obtained with a more precise continuoskiould be noted that a d(R_R) of 9.75 to 10.44 A in the range
approximation [ = 0.1 A, 90% CL) using windows of 10.3 to of 9.5 to 10.5 A could also be included in one of the other
10.7 A and 11.5 and 13 A, respectively, were additionallgistance ranges to attain 5 out of 7 correct predictions. Chem-
included in the reactivity pattern, then d-estradiol (9) was ical 18 (tamoxifen) was not identified as active in this RBA
correctly identified as having an RBA between 10 and 100%ange because d(R_R) for the 2 electronegative sites was not
Conformers of ligands 1—4 were not identified by this HARRrger than 5 A, while chemical 20 gandrostanediol) had an
reactivity pattern. For ligands in the lower activity ranges, thextremely low global electron donor ability with a&,o range
HAR reactivity pattern (even after inclusion of additional disef —10.35 to —10.34 eV. The HAR3 pattern also identified 11
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FIG. 6. The reactivity patterns
based on d(R_R); = 0.1 A, for: (a)
RBA > 150%, in the range of 11.5
to 13.0 A; (b) 10< RBA < 100%,
in the range of 10.5 to 11.5 A; (c)
1 < RBA < 10%, in the range of
105 to 115 A; (d) 1< RBA <
10%, in the range of 9.0 to 10.0 A;
(e) 0.1< RBA < 1%, in the range of
105 to 11.5 A; and () 0.1<
RBA < 1%, in the range of 9.0 to
10.0 A.

more active chemicals (4—8, 10-15) and 5 less active cherBjoo/SE(R) pattern correctly identified 5 out of 7 chemicals in

cals (23-25, 34, 37). As mentioned previously, as RBA valuése training set. Ligand 29 (kepone; having a single conformer)

decreased, the specificity and stability of reactivity pattermgas not identified as active due to adko value of —10.92 eV

also decreased, which is consistent with an increasing rateaofd 26(0,p-DDT) was not identified due to an SE(R) range of

false positive and negative assignments. Use of patterns ba8&20 to 0.330 (a.ueV. The specified pattern does, however,

on more precise approximations of conformer distributions d@pture basic electronic requirements for eliciting laBsnd-

not change the rate of false positive or negative identificatiomsy affinity, as it successfully identified almost all of the

(data not shown). chemicals in HAR1-HAR3. Of the compounds with measured
The reactivity pattern associated with HAR4 had the loweRBAs between 0.1 and 0.01%, 4 of 8 chemicals were selected,

specificity. The Fowo range of —=9.95to0 —8.73 eV(= 1.0 eV; while 2 of the 9 compounds between 0.01 and 0.00% were

99% confidence limit, data not shown) was combined witbelected.

SE(R) patterns of 0.239 to 0.269 (a%e) or 0.248 to 0.279

(a.u.Y/eV, defined within the window of 0.2 t0 0.3 (@U8V  pecision Tree for Identification of hERLigands

(for I' = 0.05 a.u. and confidence limit 90%; Table 3, part

d). No distance screen was included in the HAR4 pattern, dueThe stereoelectronic requirements of the reactivity pattern

to its limited ability to discriminate ligands. The combinedssociated with each RBA range were organized in a hierar-
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FIG. 7. A decision tree for identification of estrogen ligands with RBA values greater than 0.1%. The decision tree is based on a pre-screen followed b
a sequence of rules based on reactivity patterns derived from ligands with RBA valli®8%, between 10 and 100%, between 1 and 10%, and between 0.1
and 1%.

chical decision tree, whose output was an estimated probabilitith androgen ligands, an atomic charge requirement of
that a conformer would bind to the heRwithin a given RBA —0.322 to —0.300 a.u. was determined (Mekengial, 1997,
range. The initial part of the tree consists of absolute screeth899), which indicates that active ER ligands in this training
i.e., the necessary structural requirements for eliciting minimsét have significantly less negative atomic sites than androgen
ER binding affinity, i.e., RBA= 0.1%. For example, enanti- receptor ligands.

omers of steroids were required to have trans-trans (B/C tran<onformers which had Eyo values of less than —9.95 eV,
and C/D trans) ring fusion as an absolute steriochemistelectronegative sites not meeting the specified donor delocal-
screen. Global nucleophilicity was also assumed an absoli#ability, or steroids not conforming to stereochemical require-
electronic requirement, and andso of —9.95 eV was selected ments of the natural enantiomer, were assigned a 0% proba-
as the necessary nucleophilicity threshold. This value is equbility to bind to hERx with a RBA > 0.1% (Fig. 7).
alent to the left side boundary of theo range for the 99% Conformers that passed these absolute requirements were then
confidence limit of the pattern associated with the least acticempared to the k.o, interatomic distance and charge or
training subset (HAR4). The presence of negatively chargdélocalizability screens associated with HAR1. Using the sim-
(i.e., potential electron donors) atomic sites was also employglified binary screening approach described in the Methods, the
as a basic requirement for a ligand to have an RBA.1%. identification of a ligand with a binding affinity within a RBA
This requirement was specified as any hetero-atomic site (Rrange requires that at least one conformer meets all three
O, N, Cl, F, S, etc.) with a donor-delocalizability (i.e., atomispecified parameter ranges. If a compound was not identified as
nucleophilicity) in the range of 0.239 to 0.279 (a’le). This having an RBA> 150%, it was then screened to determine if
range was based on a delocalizability screen derived from théad an RBA between 10 and 100% (HAR2) and so on (Fig.
90% confidence distribution for the active ligands in HARZ). Thus, the decision reflected a sequential ordering of the
acrossI” values of 0.05 and 0.01 (a.t/§V. Alternatively, a reactivity patterns derived from HAR1, HAR2, HAR3, and
charge requirement defined as —0.298 to —0.233 a.u. (based#R4.

the 90% confidence limit ranges in Table 3) could be used aswith the goal of minimizing the number of false negative
an absolute electronic site requirement. In our previous stuidentifications, the Fwo rules used for the different RBA
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TABLE 4
Predicted RBA Ranges Based on the Decision Tree Described in the Text

Predicted RBA ranges (%)

No. Ligand Measured RBA (%)  >150 100> RBA > 10 10> RBA>1 1>RBA>0.1 RBA < 0.1
1 Hexestrol >150 X
2 Diethylstilbestrol >150 X
3 Dienestrol >150 X
4 4—-0OH-Tamoxifen >150 X
5 E2 100> RBA > 10 X
6 Coumestrol 100> RBA > 10 X
7 IC1-164,384 100> RBA > 10 X
8 Estrone 100> RBA > 10 X
9 17a—Estradiol 100> RBA > 10 [x X°
10 Nafoxidine 100> RBA > 10 X
11 Moxestrol 100> RBA > 10 X
12 Clomifene 100> RBA > 10 X
13 B—Zearalanol 100> RBA > 10 X
14 Estriol 100> RBA > 10 X
15 4—OH-Estradiol 100- RBA > 10 X
16 2—OH-Estradiol 10>- RBA > 1 X
17 5—Androstenediol 16- RBA > 1 X
18 Tamoxifen 10> RBA > 1 X
19 Genistein 10> RBA > 1 X
20 3B8-Androstanediol 100 RBA>1 X
21 Estrone 10> RBA > 1 X
22 HPTE 10> RBA > 1 X
23 Estrone—3—sulfate + RBA > 0.1 X
24 Norethynodrel > RBA > 0.1 X
25 4—Androstenediol > RBA > 0.1 X
26 o,0-DDT 1> RBA>0.1 [x i
27 4—nonylphenol > RBA > 0.1 X
28 4—t—octylphenol > RBA > 0.1 X
29 Kepone 1> RBA > 0.1 X
30 Norethindrone 0. RBA > 0.01 X
31 3a—Androstanediol 0.> RBA > 0.01 X
32 p,p-DDT 0.1> RBA > 0.01 X
33 Bisphenol A 0.1> RBA > 0.01 X
34 Dehydroepiandrosterone 01 RBA > 0.01 X
35 5a—Dihydrotestosterone 0.: RBA > 0.01 X
36 BBP 0.1> RBA > 0.01 X
37 Methoxychlor 0.I> RBA > 0.01 X
38 4—Androstenedione 0.0%2 RBA > 0.00 X
39 53—Androstanedione 0.0 RBA > 0.00 X
40 Testosterone 0.0 RBA > 0.00 X
41 Ba—Androstanedione 0.0 RBA > 0.00 X
42 19-Nortestosterone 0.04 RBA > 0.00 X
43 Dieldrin 0.01> RBA > 0.00 X
44 B-Sitosterol 0.0> RBA > 0.00 X
45 Corticosterone 0.0+ RBA > 0.00 X
46 Progesterone 0.0 RBA > 0.00 X

Note.Chemicals are assigned to the highest RBA range predicted and not further evaluated by patterns associated with lower RBA ranges.

Derived from decision tree described in Figure 7, where the highest predicted range is based on at least one conformer meeting albigQB¥ SE(R),
and d(R_R) screens. Patterns are described in the text section “Derivation aflhg#hd Reactivity Patterns.”

®Using the rules described in Figure 7, compound 9 is predicted to have an RBA of 1 to 0.1%. If additional d(R_R) screens of 10.38 to 10.51 A and 11.5
to 11.80 A are employed (see section “Derivation of hERgand Reactivity Patterns”), the predicted RBA value for compound 9 is between 100 and 10%.

Using the rules described in Figure 7, compound 26 is predicted to have an<RBA%. If an additional SE(R) screen of 0.300 to 0.330 a.u.{&/)
employed (see section “Derivation of hkR.igand Reactivity Patterns”), the predicted RBA value for compound 26 is between 0.1 and 1%.
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ranges were based on the minimal electron donating abilitgactivity patterns decreases as RBA values fall below 10% of
noted for each binding affinity range. Thus,J&o rules were E,, which is consistent with expectations; i.e., as compounds
“one-sided” and required that a minimal electron donatingecome less similar to BEn terms of binding affinity, one
capability be met (i.e., —8.99 e¥ E,owo, for HARL; —9.44 would expect a decreased basis for establishing chemical sim-
eV < Eyomo, for HAR2; —9.87 eV< Eyomo, for HAR3, and ilarity to the natural ligand. Several chemicals with low bind-
—9.95 eV< E,omo, for HAR4). ing affinity are of concern, however, due to their ubiquity. To

The distance patterns require that at least one of the hetesioceurately predict activity for these types of chemicals requires
atoms meet a previously specified charge or donor-delocaldevelopment of models based on a restricted congeneric series.
ability requirement. The distance and delocalizability/chargéhe COREPA approach, in fact, has been used successfully to
requirements of the pattern are described in terms of the lepstdict the estrogenicity of alkylphenolic chemicals, a group of
restrictive screens based on confidence lirait®0% around relatively weak, but important, environmental estrogens
the most probable values determined in the respective dis{chmiederet al, 2000).
butions.

Application of the decision tree to the data set used in thigospectus

study IS s_ummanzed n Table_4. In general, most predICtlonSDevelopment of quantitative chemical similarity and struc-
were within an order of magnitude of observed RBA value

Ture-activity models requires well defined biological and/or

Consistent with the conservative bias in selection of reactivi Xxicological effect data from chemicals representative of the
patterns, the majority of predictions that were not within any

. . .diversity of structures for which predictions are to be made.
o.rde.r of magm.tude of the observed RBA values over-predict e data used in the current study are all based on RBA values
binding potential.

For the 15 chemicals within observed RBA valuesl0% of hER« derived from 2 laboratories using similar experimen-

only 17a-estradiol (9) was incorrectly predicted to have &1 tal techniques (Bolgeet al, 1998; Kuiperet al, 1997). As

) . .. oted previously, only estrone RBA values differed signifi-
RBA < 1%. However, this was corrected if additional d(R—Rgantly between the 2 studies. While these RBA values repre-

screens of 10.38 to 10.51 A and 11.5t0 11.80 A are used. T I
. ; ) sent a broad range of structures, additional data from a more
chemicals, 2-OH-estradiol (16; RBA 7%), and potentially g

) diverse set of structures would improve the basis for evaluatin
estrone (8 and 21; RBA= 60 or 2.1%) were incorrectly P 9

. . the reactivity patterns and the prioritization scheme for the
0,

prledlcted as havmg' an RBA 10/0 Thus, of those .cpmpour?d.sranges of RBA values modeled in the present investigation. Of
with the greatest binding affinity and most specific reactivit

. . articular concern is whether the reactivity patterns, and asso-
patterns there was only one false negative, while two (pot

Uated decision tree, have been over-specified to the training

tially only one) additional chemicals were falsely predicted tget To the extent this may be the case, the results of this study
have RBA> 10%. : ’

. need to be interpreted with caution in terms of immediate use
For compounds with observed RBA values between 1 ag_$ P

10%, the false negative predictions were for tamoxifen (18; hazard identification.
' X ' In our companion paper (Mekenyam al., 2000), the accu-
RBA = 5.1%) predicted to have an RBA between 0.1 and 19 P paper ( y )

@cy of the reactivity patterns for ER binding affinity are
and 3PB-androstanediol (20; RBA= 3%) predicted to have : :
RBA values less than 0.1%. False positive identifications fexplored by comparing predicted values to observed RBAS

%in receptors obtained from rodents and MCF7 cells. Use of
the RBA range between 1 and 10% included estrone—3—su|f%t§tagfrom zutside the hERtraining set allows a more com-

(23), norethynodrel (24), 4-androstenediol .(25)’ dehydroe%l—ete evaluation of the reactivity patterns and decision tree in
androsterone (34), and methoxychlor (037)’ with m_easured R erms of the its applicability to a more diverse chemical struc-
values of 1, 07 0.5,_0.04,0and 0.012%, respectively. . ture space. Inclusion of this additional data “enriches” the
. Ke'p.one. (29’ RBA= 0.2%) was the only false negative hemical structure space for defining chemical similarity in
identification in the range of 0.1 to 1%, whereas 4 compoungaeciﬁed RBA ranges, while seemingly providing minimal
were false positive identifications for binding affinity, in this 0Ss-species variabilit)’/ that could confound the interpretation
range, having measured RBA values of 0.045 (33), 0.015 (3 e companion paper also discusses how a “mammalian” EI.R
0.003 (43), and< 0.001% (44). binding affinity chemical prioritization scheme, based on the

As depicted in Table 4, the accuracy of predictions w OREPA-C algorithm, could be applied to chemical data sets

. o ; .
great.est for .RBA values. .e>.<ceed|ng 10%. T his Obser.v‘?‘t'onrgﬂecting existing inventories in the United States and Europe.
consistent with the specificity of the associated reactivity pat-

terns and the high degree of biological similarity, in terms of
RBA values, for the compounds in this portion of the data set.
Thus, the exploratory prioritization scheme, based on the CUHOREPA-C Parameters

rent knowledge base, appears to provide a reasonably robust

means to identify hER ligands whose binding affinities are at Cutoff(AP/NAP): The portion of the non-active pattern ex-
least 10% of E Within the current data set, the specificity oteeded by the maximum of the active pattern (3-D similarity

APPENDIX
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measure between reactivity patterns of active and non-activeE, ,yo: Energy of lowest unoccupied molecular orbital (eV)

chemicals) EN: Electronegativity
I' (gamma): Corresponds to the half-width of a gamma GW: Sum of geometric distances
function w: Dipole moment (D)
HAP: High activity pattern, i.e., the reactivity pattern based Max distance: The greatest interatomic distance
on the learning set of active chemicals Planarity: The normalized sum of torsion angles in a mole-
HAR: High activity range cule
HAT: High activity threshold, used to define the “learning” Q(O): Charges of oxygen atoms (a.u.)
set of active chemicals Q(R): Charges of all heteroatoms (a.u.)

MaxP¢(x): Value of parametex with the maximum proba RBA: Relative binding affinity to human ER(hERx) ex-
bility of occurrence based on the distribution of the training setessed as percent relative togt@stradiol= 100%
of active chemicals RMS: Root mean square

MaxP” (x): Value of parameter x with the maximum prob SE(O): Donor delocalizabilities of oxygen atoms
ability of occurrence based on the distribution of the traininga.u.y/eV)

set of non-active chemicals SE(R): Donor delocalizabilities of all heteroatoms
NAP: Non-active pattern, i.e., the reactivity pattern based ¢¢a.u.Y/eV)

the learning set of non-active chemicals SN(O): Acceptor delocalizabilities of oxygen atoms
NAR: Non-active range SN(R): Acceptor delocalizabilities of all heteroatoms
NAT: Non-active threshold, used to define the “learning” set
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