
Iowa State University

From the SelectedWorks of Steven P. Bradbury

2000

A Computationally Based Identification
Algorithm for Estrogen Receptor Ligands: Part 1.
Predicting hERα Binding Affinity
Steven P. Bradbury
V. Kamenska
P. Schmieder
G. Ankley
O. Mekenyan

Available at: https://works.bepress.com/steven_bradbury/14/

http://www.iastate.edu
https://works.bepress.com/steven_bradbury/
https://works.bepress.com/steven_bradbury/14/


A Computationally Based Identification Algorithm for Estrogen
Receptor Ligands: Part 1. Predicting hERa Binding Affinity

S. Bradbury,*,1 V. Kamenska,† P. Schmieder,* G. Ankley,* and O. Mekenyan†

*U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division,
6201 Congdon Boulevard, Duluth, Minnesota 55804; and†Bourgas University “Prof. As. Zlatarov,” Laboratory of Mathematical Chemistry,

Department of Physical Chemistry, 118010 Bourgas, Bulgaria

Received April 17, 2000; accepted July 31, 2000

The common reactivity pattern (COREPA) approach is a 3-di-
mensional, quantitative structure activity relationship (3-D
QSAR) technique that permits identification and quantification of
specific global and local stereoelectronic characteristics associated
with a chemical’s biological activity. It goes beyond conventional
3-D QSAR approaches by incorporating dynamic chemical con-
formational flexibility in ligand-receptor interactions. The ap-
proach provides flexibility in screening chemical data sets in that
it helps establish criteria for identifying false positives and false
negatives, and is not dependent upon a predetermined and spec-
ified toxicophore or an alignment of conformers to a lead com-
pound. The algorithm was recently used to screen chemical data
sets for rat androgen receptor binding affinity. To further explore
the potential application of the algorithm in establishing reactivity
patterns for human estrogen receptor a (hERa) binding affinity,
the stereoelectronic requirements associated with the binding af-
finity of 45 steroidal and nonsteroidal ligands to the receptor were
defined. Reactivity patterns for relative hERa binding affinity
(RBA; 17b-estradiol 5 100%) were established based on global
nucleophilicity, interatomic distances between electronegative het-
eroatoms, and electron donor capability of heteroatoms. These
reactivity patterns were used to establish descriptor profiles for
identifying and ranking compounds with RBA of > 150%, 100–
10%, 10–1%, and 1–0.1%. Increasing specificity of reactivity pat-
terns was detected for ligand data sets with RBAs above 10%.
Using the results of this analysis, an exploratory expert system was
developed for use in ranking relative ER binding affinity potential
for large chemical data sets.

Key Words: structure activity relationships; expert systems; hu-
man estrogen relative binding affinity; estrogen receptor ligands.

Recent reports that a wide variety of natural and synthetic
compounds are capable of acting as hormonal agonists and
antagonists serve as timely examples of the need to advance
mechanistically based prioritization schemes to support human
health and ecological risk assessments (Ankleyet al., 1997;

Kavlock et al., 1996). Structure activity relationships (SARs)
can serve as screening tools to help prioritize untested com-
pounds for more intensive and costly empirical evaluations
based onin vitro or in vivo bioassays (Ankleyet al., 1997;
Bradburyet al., 1998). In response to this need, a wide variety
of SARs have been developed to predict hormone receptor
binding affinity (see Bradburyet al., 1998, and references cited
therein), as a critical initial endpoint in problem formulation
and hazard identification stages of ecological and human health
risk assessments, respectively. However, developing SARs
suitable for screening large data sets of diverse chemical struc-
tures for toxicological activity in a mechanistically sound man-
ner is challenging. Models capable of identifying relevant
molecular characteristics that result in similar biological activ-
ity require a clear definition of the toxicological endpoint(s) of
concern as a basis for defining mechanistically sound assump-
tions regarding the xenobiotic interaction(s) in question (Brad-
bury, 1994; Bradburyet al., 1998).

Typical approaches to quantifying 3-D similarity in the
context of ligand-receptor interactions encompass pharma-
cophore (or toxicophore) search methods and receptor site
mapping. However, selecting appropriate molecular conforma-
tions and obtaining structural alignments can be quite challeng-
ing with these methods. The use of the lowest-energy conform-
ers to assess similarity in pharmacophore search and receptor-
mapping algorithms is common, but inappropriate, because in
complex systems such as biological tissues and fluids, chemi-
cals are likely to exist in a variety of conformational states. In
fact, the lowest-energy gas-phase conformations might be the
least likely to interact with macromolecules (Eliel, 1993), and
solvation and binding interactions could more than compensate
for energy differences among the conformers of a chemical
(Bradburyet al., 1996, 1998; Mekenyanet al., 1994a, 1996a,b;
Wiese and Brooks, 1994). In terms of appropriate chemical
alignment, most modeling algorithms explore hundreds of
alignments to reach an optimum outcome which, if not care-
fully evaluated in the context of a presumed mechanism of
interaction with the receptor, may be susceptible to violation of
the criteria of Topliss and Edwards (1979) for causality in SAR
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models. Alignment errors also can lead to models that are
incorrect or are poorly predictive.

To address these issues, we recently described a technique to
generalize the use of multiple conformers in an active analogue
approach (Mekenyanet al., 1997, 1999). The common reac-
tivity pattern (COREPA) approach circumvents the problems
of conformer alignment and selection, and initial assumptions
concerning specific atoms/fragments in a pharmacophore are
not obligatory. In this respect, the method implicitly defines the
common reactivity pattern across global and local reactivity
descriptor(s) potentially associated with the specific biological
endpoint under study. As described by Mekenyanet al. (1997,
1999), the 3 principal steps of the algorithm are: (1) definition
of a training set of chemicals; (2) evaluation of stereoelectronic
descriptors hypothesized to be associated with compounds
exerting similar biological activity; and (3) recognition of the
common reactivity pattern for those compounds. In the most
recent version of the technique (COREPA-C), the common
reactivity patterns are described in terms of probabilistic func-
tions (Mekenyanet al., 1999; Schmiederet al., 2000). This
feature improves the means of quantifying chemical similarity
and expressing prediction uncertainties based on relative dif-
ferences in the measured biological activity, in this case rela-
tive binding affinity.

To initially develop the COREPA algorithms, stereoelec-
tronic requirements associated with the binding of 28 steroidal
and nonsteroidal ligands to the androgen receptor (AR) were
defined (Mekenyanet al., 1997, 1999). In the present study, the
COREPA algorithm was further evaluated by assessing stereo-
electronic requirements for the binding of 45 diverse structures
to the human estrogen receptora (hERa). Specifically, the
algorithm was employed to establish reactivity patterns for
ligand subsets derived from a training set of chemicals with
relative binding affinities (RBAs) of.150%, 100–10%, 10–
1%, and 1–0.1%. Based on the results of this analysis, an
exploratory expert system was developed for use in assigning
potential hERa RBA to chemicals for ranking and prioritizing
large chemical data sets for subsequent testing.

MATERIALS AND METHODS

ER ligands and binding affinity. The ER ligands examined in this study
consist of 26 steroids and 19 nonsteroids (Fig. 1). The RBAs of the ligands
were reported by Kuiperet al. (1997) and Bolgeret al. (1998) based on a
competitive binding assay using hERa protein. The RBA is calculated as the
ratio of the concentrations of 17b-estradiol (E2) and competitor required to
reduce the specific binding of radiolabeled E2 (Kuiper et al., 1997) or a
fluorescent nonsteroidal estrogen (Bolgeret al., 1998) by 50% (i.e., ratio of
IC50 values; Table 1).

The data set of Kuiperet al. (1997) consists of 37 chemicals, whereas that
of Bolger et al. (1998) is for 15 chemicals. Seven compounds were common
to both studies. For these compounds, the RBA values listed in Table 1 were
obtained by averaging values from both sources. In the case of estrone, the
reported RBA values from the 2 studies differed by more than an order of
magnitude, which, as noted below, affected the definitions of training sets.

Consequently, this compound was included in the data set twice, as compounds
8 and 21.

ER ligand conformations. Conformer generation was based on a combi-
natorial procedure that initiates from molecular topology and generates all
conformers consistent with steric constraints and expert rules (Ivanovet al.,
1994). In generating conformers, the torsion resolution around “saturated”
(sp3-sp3) bonds was 120°, using an initial torsion angle of 60° with respect to
the plane of the preceding 3 atoms (Bradburyet al., 1996; Mekenyanet al.,
1997, 1999). Distance between nonbonded atoms was set at 1.5 Å, while a
range of 1.2 to 1.8 Å was imposed for ring closure. Due to the rigidity of the
natural steroids and their derivatives, less restrictive geometric constraints for
ring closures (1.0–2.5 Å) were imposed to generate a sufficiently large number
of conformations with the same stereospecificity as the natural enantiomers
(i.e., B/C trans and C/D trans ring fusion). Combinatorial problems were
encountered for chemicals 4, 7, 10, 12, 13, 36, and 43, due to the high degree
of flexibility in their acyclic fragments. The number of conformers initially
generated for those chemicals was reduced by not permitting rotation around
the 2 most peripheral C–C bonds. Up to 500 of the sterically most distinct
points from the conformational space for each chemical were selected. Geo-
metric dissimilarity was assessed, based on Euclidean distances between the
sums of interatomic distances for the conformers.

Each of the generated conformations was submitted to a strain minimization
technique (pseudo-molecular mechanics, PMM) based on a simple energy-like
function, where only the electrostatic terms are omitted (Ivanovet al., 1994).
Subsequently, conformational degeneracy, due to molecular symmetry and
geometry convergence was detected within a 30° range of torsion angle
differences. Next, geometry optimization was achieved by employing MOPAC
93 (Stewart, 1990, 1993), using the AM1 Hamiltonian with the key words
“PRECISE” and “NOMM”. As a result of the optimizations, some of the
conformations quenched into the same energy minima, further reducing the
number of conformers. Finally, conformers were screened to eliminate those
whoseDHf° was $ 20 kcal/mol more than the conformer with the absolute
energy minimum. This 20 kcal/mol threshold was based on experimental
evidence that the free energy of binding for steroid hormones is in the range of
–10 to –20 kcal/mol (Ansteadet al., 1989, 1997; Wiese and Brooks, 1994),
which can provide the necessary energy to elevate conformers from the
low(est) energy state during binding. As reported previously, conformers
selected within this range ofDDHf° are energetically reasonable from a
thermodynamic and kinetic perspective (Bradburyet al., 1998; Ivanovet al.,
1998; Mekenyanet al., 1997, 1999).

For a given compound, conformers within the specified 20 kcal/mol range of
DDHf° often exhibited significant variation in potentially relevant electronic
descriptors (Table 1). For example, conformers ofb-zearalanol (chemical 13)
had a range 0.449 eV for the energy of lowest unoccupied molecular orbital
(ELUMO), 0.189eV for energy of highest occupied molecular orbital (EHOMO),
0.425 eV for EHOMO-LUMO, and 3.89 D for dipole moment (m). Similar variations
were observed for other nonsteroidal compounds. Descriptor ranges for the
steroids, while smaller, are also noteworthy. For example, conformers of
moxestrol (compound 11) had a range of 0.460 eV for ELUMO, 0.470 eV for
EHOMO, 0.648 eV for EHOMO-LUMO, and 0.92 D form. The observation that
relatively small energy differences between conformers can result in signifi-
cant variations in electronic structure highlights the necessity of including all
energetically reasonable conformers when defining common reactivity pat-
terns.

To aid in interpretation of conformational flexibility for this data set, Table
1 provides the range of root mean square (RMS) differences between atoms of
the conformers for each compound, based on comparisons of each conformer
with the lowest-energy structure. Consistent with their greater rigidity, smaller
RMS ranges were associated with steroid derivatives than with the nonsteroids.
For example, RMS ranges of 2.423 to 8.641, 0.152 to 0.564, and 0.318 to 0.577
were derived for hexestrol (1), estrone (8), and estriol (14), respectively.

Molecular descriptors. The global and local electronic descriptor pool
used in this study was restricted to those hypothesized to be associated with ER
binding affinity, based on previous studies with a variety of model receptors
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(e.g., Bradburyet al., 1996; Mekenyanet al., 1997, 1999; VanderKuuret al.,
1993; Walleret al., 1995, 1996a,b; Wiese and Brooks, 1994; Wurtzet al.,
1996). Stereoelectronic descriptors were calculated with MOPAC 93, aug-
mented by a computing module that provides additional reactivity descriptors
(Mekenyanet al., 1994b), using the AM1 all-valence electron, semi-empirical
Hamiltonian. Electronegativity, dipole moment, energy of frontier orbitals, and
the electronic gap were used as global electronic descriptors; whereas atomic
charges, donor and acceptor superdelocalizability indices, and atomic self-
polarizabilities were calculated as local electronic indices. In the present study,
atomic reactivity indices were not restricted to specific rings in steroidal or
nonsteroidal derivatives when searching common patterns based upon local
descriptor distributions.

Conformer structures were also assessed based on steric descriptors, includ-
ing the sum of geometric distances (Mekenyanet al., 1986), the greatest
interatomic distance, steric distance between atoms, and planarity (the normal-
ized sum of torsion angles in a molecule; Mekenyanet al., 1996b). These
descriptors were selected because hydrophobicity, steric bulk, and size con-
straints also have been reported as important in predicting and interpreting
ligand binding for nuclear receptors (e.g., Bradburyet al., 1998; Goldsteinet

al., 1993; Lewiset al., 1995; Walleret al., 1995, 1996a; Wurtzet al., 1996).
Finally, volume polarizability, defined as a sum of atomic self-polarizabilities,
and thus, the averaged ability of a compound to change electron density at its
atoms during chemical interactions (Lewis, 1989; Schu¨ürman, 1990), was also
employed. The use of volume polarizability was based on previous observa-
tions suggesting that more polarizable conformers generally had greater ER
binding affinities (Bradburyet al., 1996).

The COREPA-C method. A brief summary of the COREPA method is
provided below. The conceptual basis and detailed mathematical formulations,
algorithm, and illustrations of the method are reported elsewhere (Mekenyanet
al., 1997, 1999; Schmiederet al., 2000).

To employ the COREPA method, an exhaustive conformer generation
routine (described previously) is used to establish conformers of each chemical
within a certain energy range of the lowest energy structure. In the present
study, it was assumed that conformers of each chemical could be considered as
a statistical ensemble, based on the Boltzman’s statistics. As described previ-
ously, the electronic and steric attributes of the conformers then are assessed
using a predetermined set of global and local molecular descriptors. All

FIG. 1. Chemical names, structures, and hERa relative binding affinities (RBA; %) for compounds used to establish training and validation sets.
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conformers of a given chemical are plotted across a molecular descriptor axis,
thus forming a discrete distribution for the chemical relative to the selected
descriptor. For the global molecular descriptors, each conformer is represented
by single point value, whereas for atomic descriptors, several values for each
conformer are allocated across the descriptor axis. These values are associated
with various local sites (atoms) of the conformer. These descriptor point
estimates are considered to be midpoints of a continuous (gamma) distribution
that approximates the discrete distribution. Subsequently, a conformer distri-
bution of a chemical is represented by a continuous function obtained by
summing all gamma distributions corresponding to conformers of the specified
chemical. Conformer distributions of a chemical are normalized by dividing
the total distribution area by the number of conformers (i.e., normalizing the
distribution area to unity for each chemical), thus providing a probabilistic
characterization of the distributions.

The COREPA algorithm consists of 3 steps: First, two subsets of chemicals
are selected as training sets (Step 1). The first subset consists of chemicals
having activity (here, in terms of RBA) above a user-defined high activity
threshold (HAT). The second subset includes chemicals having activity below
a predetermined non-active threshold (NAT). Next, a set of descriptors asso-
ciated with the biological activity of interest are established by evaluating the
degree of overlap (in %) between the distributions associated with the HAT

and NAT patterns (denoted as HAP [high activity pattern] and NAP [non-
active pattern, i.e., the reactivity pattern based on the learning set of non-active
chemicals], respectively) (Step 2). The descriptors are evaluated based on the
normalized sum of dynamic similarity indices, S(AP/NAP), the portion of the
non-active pattern exceeded by the maximum of the active pattern (3-D
similarity measure between reactivity patterns of active between each pair of
molecules in the training set (Mekenyanet al., 1999). The cutoffs, i.e., the part
of the non-active area in common with the active pattern maximum (Cutoff-
(AP/NAP)), can also be used as a measure of similarity. We assume the
stereoelectronic descriptors that provide the maximal measure of similarity
among chemicals in the training sets, and have least overlap between HAP and
NAP (i.e., most distinct HAP and NAP), to be related to biological activity.
Finally, common reactivity patterns for biologically similar molecules (e.g.,
chemicals within a defined range of RBA values) are obtained as products of
the probabilistic distributions for specific stereoelectronic descriptors associ-
ated with chemicals in training sets of the active and non-active chemicals
(Step 3). Well defined, or distinct, patterns for descriptors are observed when
the conformer distributions for the chemicals from the same training set are in
phase.

The dissimilarity between overall patterns of active and non-active chemi-
cals, as well as between overall patterns and chemical-specific distributions,

TABLE 1
Estrogen Receptor Ligands, Observed Relative Binding Affinities (RBA) for hERa, Number of Conformers Generated (N),

and Ranges for Some Significant Stereoelectronic Descriptors (see Appendix)

No. Ligand RBA (%) Ref. N EHOMO(eV) ELUMO (eV) EGAP (eV) m (D) DDHE°f (kcal/mol) RMS

1 Hexestrol 302 K 6 –8.8437 to –8.8093 0.3590 to 0.4287 9.1779 to 9.2673 0.0745 to 2.2581 –70.5100 to –60.7920 2.4234 to 8.6410
2 Diethylstilbestrol 294 A 21 –8.8624 to –8.6576 0.1396 to 0.3232 8.7972 to 9.1856 0.3224 to 2.2524 –47.5190 to –45.0619 0.4577 to 7.9498
3 Dienestrol 223 K 5 –8.5153 to –8.4897 0.1223 to 0.1396 8.6211 to 8.6522 1.3996 to 2.3618 –20.5471 to –20.4045 2.7467 to 6.6118
4 4–OH–Tamoxifen 178 K 64 –8.8412 to –8.4253 –0.1057 to 0.2634 8.3762 to 8.9907 0.5881 to 3.5145 3.8088 to 8.5407 1.0723 to 7.5811
5 E2 100 K 4 –8.8578 to –8.8205 0.3658 to 0.3841 9.1927 to 9.2419 0.4245 to 1.4682 –107.6159 to –96.8975 0.3343 to 0.8533
6 Coumestrol 94 K 11 –9.2505 to –9.1203 –0.3162 to –0.2201 8.8611 to 8.9900 2.3950 to 2.9649 –129.2098 to –110.0525 0.0667 to 5.3936
7 ICI–164,384 85 K 102 –8.8722 to –8.7077 0.3273 to 0.4869 9.1912 to 9.2364 2.8307 to 3.9659 –217.1750 to –202.5838 1.3514 to 20.9967
8 Estrone 60 K* 4 –8.9227 to –8.8932 0.3032 to 0.3271 9.1964 to 9.2434 1.6185 to 1.6617 –87.0704 to –77.0100 0.1520 to 0.5643
9 17a–Estradiol 58 K 3 –8.8686 to –8.8392 0.3576 to 0.3752 9.1967 to 9.2438 0.4257 to 0.7296 –107.8579 to –97.6046 0.2646 to 0.5818

10 Nafoxidine 44 K 27 –8.3715 to –8.0751 –0.4468 to –0.0239 7.7615 to 8.2998 1.0278 to 3.6806 6.7683 to 19.9743 1.0717 to 8.1075
11 Moxestrol 43 K 5 –9.1350 to –8.6652 0.2926 to 0.7526 9.1244 to 9.7722 1.5500 to 2.4746 67.5834 to 83.6861 0.5914 to 1.6961
12 Clomifene 25 K 74 –9.0695 to –8.5537 –0.3317 to –0.0726 8.3257 to 8.9785 1.0463 to 2.8148 43.8285 to 48.4708 0.7899 to 7.4314
13 b–Zearalanol 16 K 49 –9.4623 to –9.2738 –0.4605 to –0.0112 8.8738 to 9.2990 0.8722 to 4.7633 –247.8439 to –235.4246 1.1712 to 4.5059
14 Estriol 14 K 3 –8.9236 to –8.8598 0.3050 to 0.3657 9.1975 to 9.2442 1.3697 to 2.0776 –152.4492 to –141.5218 0.3175 to 0.5773
15 4–OH–Estradiol 13 K 3 –8.7643 to –8.7578 0.2665 to 0.2809 9.0308 to 9.0400 1.2013 to 1.5457 –150.9908 to –140.3515 0.2064 to 0.4481
16 2–OH– Estradiol 7 K 3 –8.6400 to –8.6187 0.3085 to 0.3239 8.9272 to 8.9639 0.8646 to 1.0037 –151.5650 to –140.9350 0.2805 to 0.5710
17 5–Androstenediol 6 K 4 –9.3863 to –9.2248 1.1200 to 1.2422 10.4670 to 10.5062 0.3037 to 1.5500 –136.9920 to –132.5624 0.3646 to 0.5040
18 Tamoxifen 5.1 A 149 –9.1227 to –8.4268 –0.1369 to 0.3952 8.3564 to 9.3397 0.9061 to 2.6028 48.6071 to 56.0690 0.9294 to 14.9980
19 Genistein 5 K 8 –9.0673 to –8.9987 –0.4102 to –0.3829 8.5885 to 8.6823 1.6339 to 3.7822 –148.1643 to –146.9973 1.3756 to 7.0188
20 3b–Androstanediol 3 K 3 –10.3538 to –10.3427 3.0560 to 3.0658 13.3995 to 13.4174 1.1000 to 1.7852 –163.9969 to –151.6313 0.3975 to 0.6857
21 Estrone 2.1 B* 4 –8.9227 to –8.8932 0.3032 to 0.3271 9.1964 to 9.2434 1.6185 to 1.6617 –87.0704 to –77.0100 0.1520 to 0.5643
22 HPTE 1.7 B 2 –9.1103 to –9.1082 –0.2878 to –0.2786 8.8226 to 8.8296 2.2772 to 2.4602 –56.7081 to –56.7009 3.0428 to 3.0428
23 Estrone–3–sulfate 1 K 22 –9.4472 to –9.2501 –0.9899 to –0.8709 8.3480 to 8.5541 0.6285 to 3.8948 –207.2948 to –204.0818 0.1223 to 1.1860
24 Norethynodrel 0.7 K 8 –9.3442 to –9.2786 0.7497 to 0.7763 10.0469 to 10.1125 2.1164 to 2.8173 –54.1622 to –42.7666 0.1350 to 0.7622
25 4–Androstenediol 0.5 K 3 –9.5801 to –9.4047 1.1006 to 1.1157 10.5102 to 10.6807 0.3828 to 0.4736 –135.5870 to –130.8778 0.4571 to 0.5244
26 o,p9–DDT 0.4 B 14 –9.6365 to –9.4485 –0.4841 to –0.4045 8.9743 to 9.1926 1.8880 to 2.8927 21.0963 to 32.7428 1.9169 to 7.3511
27 4–Nonylphenol 0.3 B 196 –8.9090 to –8.8433 0.4262 to 0.4613 9.3017 to 9.3425 1.2421 to 1.4087 –83.0323 to –78.3822 0.8358 to 11.7658
28 4–t–Octylphenol 0.2 B 3 –8.8563 to –8.8436 0.4595 to 0.4741 9.3158 to 9.3177 1.3207 to 1.3853 –54.1565 to –53.4612 3.3483 to 7.3376
29 Kepone 0.2 B 1 –10.9158 –0.6736 10.2423 1.0214 18.3543 0.0000 to 0.0000
30 Norethindrone 0.07 K 4 –10.0310 to –9.9034 –0.0506 to 0.0036 9.9070 to 10.0032 3.3012 to 3.7926 –52.0198 to –43.5817 0.3341 to 0.8900
31 3a–Androstanediol 0.07 K 3 –10.3513 to –10.3410 3.0608 to 3.0800 13.4018 to 13.4313 1.2052 to 1.9015 –163.5126 to –153.1779 0.4067 to 0.7326
32 p,p9–DDT 0.06 B 5 –9.6414 to –9.5429 –0.5314 to –0.4893 9.0536 to 9.1237 0.9793 to 1.1487 18.8319 to 20.4237 1.3120 to 6.7854
33 Bisphenol A 0.045 A 2 –8.8280 to –8.8277 0.4235 to 0.4262 9.2515 to 9.2539 1.7223 to 1.7509 –48.3145 to –48.2939 3.9247 to 3.9247
34 Dehydroepiandrosterone 0.04 K 3 –9.5002 to –9.2931 0.9397 to 1.0095 10.3027 to 10.4400 1.2516 to 2.5177 –116.4078 to –111.9875 0.3429 to 0.5017
35 5a–Dihydrotestosterone 0.03 A 5 –10.2655 to –10.2510 0.9054 to 0.9191 11.1584 to 11.1821 2.0342 to 2.6688 –143.5292 to –134.0742 0.2358 to 0.4780
36 BBP 0.015 B 64 –9.7360 to –9.2760 –0.8517 to –0.6068 8.5428 to 9.0296 1.4469 to 6.5925 –127.9410 to –117.1117 2.0314 to 9.7750
37 Methoxychlor 0.012 A 20 –9.0840 to –8.9372 –0.2849 to –0.2156 8.7143 to 8.8202 0.9810 to 4.1578 –43.4469 to –39.5937 2.2637 to 6.1257
38 4–Androstenedione 0.01 K 3 –10.1009 to –10.0417 –0.0917 to –0.0614 9.9803 to 10.0103 2.5531 to 3.5163 –97.2669 to –93.9401 0.3922 to 0.5518
39 5b–Androstanedione 0.01 K 9 –10.1810 to –10.0949 0.8633 to 0.8873 10.9608 to 11.0616 1.3669 to 4.5516 –121.9455 to –114.8201 0.1622 to 2.0415
40 Testosterone 0.01 K 6 –10.0267 to –9.9249 –0.0423 to 0.0468 9.9337 to 10.0735 2.6602 to 4.0441 –115.2860 to –104.9688 0.4094 to 1.6236
41 5a–Androstanedione 0.01 K 3 –10.1720 to –10.1677 0.8631 to 0.8754 11.0351 to 11.0450 2.0771 to 2.8417 –122.8986 to –113.9359 0.2282 to 0.4743
42 19–Nortestosterone 0.01 K 5 –10.0353 to –9.9107 –0.0466 to 0.0380 9.9112 to 10.0240 3.0115 to 3.6615 –118.9736 to –110.5364 0.2366 to 0.7519
43 Dieldrin 0.003 B 2 –9.6308 to –9.6305 –0.3160 to –0.3156 9.3145 to 9.3152 1.6775 to 1.6800 224.2979 to 224.5710 6.6002 to 6.6002
44 b–Sitosterol 0.001 K 25 –9.3560 to –9.2532 1.1276 to 1.2315 10.4731 to 10.5097 1.3765 to 1.9632 –141.9888 to –128.8104 0.4640 to 9.5201
45 Corticosterone 0.001 K 18 –10.1670 to –9.9727 –0.1727 to 0.0264 9.9749 to 10.0668 0.7706 to 5.1227 –193.4743 to –175.3467 0.3557 to 1.4333
46 Progesterone 0.001 K 22 –10.0473 to –9.9135 –0.0822 to 0.0527 9.9315 to 10.0877 1.8217 to 5.2240 –105.6481 to –88.6579 0.3760 to 1.9107

Note.K 5 Kuiper et al. (1997); B5 Bolger et al. (1998); A 5 data from both sources are averaged.
*Chemical in more than one RBA range.
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can be evaluated by Euclidean distance based on the squared differences
between distribution densities over the entire range of the descriptor variation.
The Euclidean distance metric can also be used to compare distributions
derived from different chemical training sets or for training sets derived from
different weighting schemes (e.g., differentDDHf° thresholds for conformer
selection). The Euclidean metric distance can be used to ascertain the extent to
which an overall conformer distribution of active or non-active chemicals is
influenced by a specific chemical(s). In this respect, the “stability” of a pattern
can be assessed by a “leave-one-out” procedure. The metric is used to itera-
tively assess differences between patterns derived for n vs. n-1 chemicals in the
training subsets. Variation of similarity indices, cutoffs between HAP and
NAP, and descriptor ranges can also be quantified. More stable patterns are
associated with smaller Euclidean distances, reduced variations in similarity
indices, and equivalent smaller descriptor ranges.

The common reactivity patterns are described in terms of molecular descrip-
tor ranges around the probability maxima of the distributions. The width of
these ranges depends on values ofG, which is related to the half-width of the
gamma function, and confidence limits chosen around the probability maxima.
Based on our previous study (Mekenyanet al., 1999), defaultG values of 0.1
to 0.125 of the variation range for global descriptors, and 0.01 or 0.05 of the
variation for local indices were used. Ultimately, a common reactivity pattern
is a collection of the specified ranges of each molecular descriptor determined
to be associated with the biological activity of concern.

In the present study, atomic sites with differing levels of generality were
used in establishing reactivity patterns. Wild-card heteroatoms are denoted by
R, where R stands for all (or a specified subset) of the heteroatoms in the
molecules. In subsequent analyses, R was assumed to represent the following
3 groups of atoms: O; O, N; and O, N, Cl, F.

Rule interpreter. To facilitate screening of large chemical data sets, com-
mon reactivity patterns were coded into a decision tree (Schmiederet al.,
2000). The decision tree consists of multiple hierarchically ordered rules that
capture specific stereoelectronic descriptors that comprise common reactivity
patterns. Each energetically reasonable conformer of a chemical is processed
through the decision tree by making use of an interpreter that is based on an
extended SMILES notation that permits the use of stereoelectronic structure-
based rules. Boolean logic operators are used to establish “rules” in the
decision tree. In the context of this study, a rule statement results in the
assignment of the likelihood of binding to the hERa which is the probability
of having a RBA value equal to or greater than a predetermined threshold. If
the value of a parameter calculated for a conformer falls in a range of the
molecular descriptor defined by a confidence limit with a probability of P%,
around the pattern maximum, then it is assumed that the conformer meets the
specific requirement with a probability (100-P)%. If a chemical has to meet 2
successive stereoelectronic requirements to equal or exceed an activity thresh-
old (with probabilities nA and nB, respectively), the total probability of meeting
both requirements (PA and B) is obtained as a product of the probabilities of
meeting the two requirements separately, i.e., PA and B 5 nA.nB. The total
probability (PA or B) of meeting either one of the requirements, in case of “or”
binary logic, is obtained as PA or B 5 nA 1 nB – nA.nB. If the value of the
descriptor calculated for a conformer falls outside of at least one of the
parameter ranges, then the overall probability of having an RBA above that
threshold is 0. As seen, the approach offers flexibility in establishing hazard
ranking protocols for unknown compounds based on choices of RBA thresh-
olds and confidence limits around pattern maxima. It must be stressed that the
probability outcomes from the decision tree should not be viewed in absolute
terms. Rather, the output from the algorithm permits a relative ranking of
unknown chemicals in terms of their likelihood to have an RBA above a
user-defined threshold.

To simplify presentation of the rule interpreter, a binary version of the
decision tree was employed in the present study. In the binary version, a value
of 100% is assigned to a chemical if at least one conformer falls within the
range of the molecular descriptor defined by a confidence limit with a proba-

bility of P% around the pattern maximum. This simplified version provides a
discrimination of chemicals as being active or non-active. Thus, chemicals
with similar hERa affinity (within an RBA range) have at least one conformer
that meets all the specified parameter ranges, whereas those from the other
RBA ranges should have no conformers that meet all the multiparameter
requirements simultaneously.

RESULTS AND DISCUSSION

COREPA Algorithm for hERa Ligands

Step 1. Definition of the training set of chemicals.Training
sets were established by selecting subsets of active and non-
active chemicals differing in their RBA by one order of mag-
nitude. The following RBA ranges were associated with active
ligands: greater than 150% (denoted as HAR1), from 100 to
10% (HAR2), from 10 to 1% (HAR3), and from 1 to 0.1%
(HAR4). Two ranges were associated with non-active ligands:
from 0.1 to 0.01% (NAR1) and from 0.01 to 0.00% (NAR2).

Although user-defined, the ability of different RBA ranges
to discriminate active and non-active chemicals can be as-
sessed by estimating similarity between the respective reactiv-
ity patterns defined in Steps 2 and 3. Lower similarity between
the patterns associated with HAP and NAP indicates a low
probability of incorrectly assigning a conformer to an RBA
range.

Step 2. Identification of stereoelectronic descriptors associ-
ated with biologically similar compounds.As discussed pre-
viously, Step 2 of the algorithm consists of evaluating normal-
ized pairwise similarity (S(AP/NAP)) between chemicals in the
different RBA ranges across the steric and electronic indices.
The calculated indices are listed in Table 2. Average similarity
(Syz(x)) among the chemicals within the training sets (within-
group similarity) are also presented in Table 2.

The global indices of EHOMO, EGAP, and EN showed the
greatest Syz(x), but also the largest distinction (lowest similar-
ity) between HAPs and NAPs and the HAP/NAP combina-
tions. The similarity between HAPs and NAPs for these global
indices gradually increases with an increase in the biological
similarity between chemicals (i.e., smaller RBA range separa-
tion). Thus, the lowest S(AP/NAP) values were obtained be-
tween HAR1 and NAR2, with a S(HAP1/NAP2) of 0.02 and
0.1% for EHOMO and EN, respectively. Consistent with this, the
greatest similarity between patterns was observed for the most
biologically similar ranges: for HAP4 and NAR2, an S(HAP4/
NAP2) of 1.0 and 2.5% for EHOMO and EN were observed,
respectively.

Among the local electronic descriptors, charges (Q(R)) and
donor-delocalizabilities (SE(R)) of heteroatoms had lowest
between-group similarities for a wide range of HAR/NAR
comparisons. Consistency between RBA and pattern similari-
ties was also observed for local electronic indices. Again, the
lowest between-group similarities for Q(R) and SE(R) were
obtained for the training sets derived from the largest activity
threshold separations (e.g., S(HAP1/NAP2)5 3.2 and 4.2%
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for Q(R: O, N, Cl, F, S) and SE(R: O, N, Cl, F, S), respec-
tively). Alternatively, the largest between-group similarity was
obtained for training sets with greatest biological similarity
(e.g., S(HAP4/NAP2)5 30.5 and 30.4% for Q(R: O, N, Cl, F,
S) and SE(R: O, N, Cl, F, S), respectively). No significant
differences were found in similarity assessments based on
Q(R) and SE(R) for the different types of R.

Among the steric descriptors, distances between hetero-
atoms, d(R_R), were found to provide the lowest between-
group similarity, which was observed for the training sets
derived from the largest RBA separations (i.e., S(HAP1/
NAP1) 5 20.4% (data not shown) and S(HAP1/NAP2)5
31.8%). Moreover, between-group similarity assessments were
found to depend on the types of heteroatoms included in
d(R_R). Thus, the highest discrimination ability between HAPs
and NAPs was for R: O, N, Cl, F, S, with the lowest discrim-
ination when R was restricted to O only.

Based on these results, EHOMO was employed as the global
descriptor in the COREPA analyses. In addition, the local
electronic descriptors Q(R) or SE(R) where used, as well as the
distances between heteroatoms, as a local steric descriptor.
COREPA analysis of similarity within and between a variety of
pairings of HAPs and NAPs, with respect to EHOMO, Q( R),
SE(R), and d(R_R) suggested that the greatest discrimination
between patterns was associated with largest RBA range sep-
aration, i.e., between HAR1 or HAR2, and NAR2 (Table 2).

A leave-one-out analysis based on the above parameters also
indicated that patterns derived from training sets with the
highest RBA ranges (HAR1 or HAR2) were more “stable” than
those obtained for the lower RBA ranges of HAR3 and HAR4.
For example, with HAR1, the 10% confidence limit for d(R_R)
was 11.74 to 11.91 Å (G 5 2.47). The mean distance range

from the leave-one-out analysis was 11.75 (11.59–11.91) Å to
11.91 (11.81–12.10) Å. The 10% confidence limit d(R_R) with
HAR4 was 10.46 to 10.72 Å, while the associated mean-
distance range from the leave-one-out analysis was 10.13
(2.86–10.70) to 10.40 (3.27–10.90) Å. The stability of patterns
also can be assessed in terms of Euclidean distance. The mean
Euclidean-distance values for active patterns derived from
leave-one-out analyses for HAR1, compared to the pattern for
the intact training set, were 0.019 and 0.0027, respectively, for
EHOMO (G 5 0.55) and d(R_R) (G 5 2.47). The same analysis,
based on chemicals in HAR4, resulted in mean Euclidean
distance values of 0.032 and 0.0074 for EHOMO and d(R_R),
respectively. Thus, the COREPA analysis supports the biolog-
ically reasonable hypothesis that ligands with higher RBA
values are associated with more specific receptor interactions.
Consequently, these ligands are associated with more stable
reactivity patterns and are more reliable in determining hERa
ligand binding affinity for this data set.

Step 3. Recognition of the common reactivity pattern based
on relevant molecular descriptors.The variation of parame-
ter ranges of the relevant molecular descriptors are given in
Table 3, parts a–d, for the 4 different HARs, respectively. A
collection of these ranges forms the reactivity patterns that
were used to define rules in the hERa ligand decision tree.
Patterns based on the global electronic descriptors were de-
rived for different RBA ranges at a constantGvalue of 1 eV or
3 eV. To increase the specificity of d(R_R)-based patterns, the
latter were analyzed within smaller descriptor distances from 9
to 10 Å, 9 to 10.5 Å, 10.0 to 11.5 Å, 10.3 to 10.7 Å, or 11.5 to
13 Å. Following is a detailed discussion of the reactivity
patterns associated with each molecular descriptor.

TABLE 2
Averaged “Within Group” Similarity (%) between Chemicals Included within Different RBA Ranges; “Between Group” Similarity

(%) between Patterns Associated with Active (HAR) and Non–Active (NAR) Chemicals

Descriptors

Within group similarity (%) Between group similarity (%)

G HAR1 HAR2 HAR3 HAR4 NAR1 NAR2 HAR1/NAR2 HAR2/NAR2 HAR3/NAR2 HAR4/NAR2

EHOMO (eV) 0.55 78.2 71.1 53.9 51.9 47.1 71.0 0.015 0.001 0.06 1.0
ELUMO (eV) 0.55 77.6 66.4 38.6 40.7 34.5 55.8 29.6 24.8 47.3 18.3
Egap (eV) 0.93 75.8 74.8 38.6 53.1 40.8 64.9 0.71 0.32 1.3 28.4
Max distance (Å) 2.67 64.0 60.3 71.1 53.9 79.0 59.7 17.1 56.8 86.2 72.7
GW (Å) 5517 60.5 57.4 69.7 79.6 79.7 63.8 67.4 85.9 85.1 55.1
EN (eV) 0.37 90.4 70.3 50.9 43.1 41.9 60.5 0.1 0.03 0.6 2.5
m (D) 0.88 79.0 55.6 60.0 54.2 52.7 60.0 25.5 8.9 6.2 5.0
Q(O) (a.u.) 0.05 91.2 70.0 7.5 39.6 60.3 69.5 2.8 2.1 18.9 32.3
Q(R) (a.u.) 0.05 95.4 72.0 56.1 29.3 48.7 67.2 3.2 3.1 21.7 30.5
SE(O) ((a.u.)2/eV) 0.05 96.5 92.0 91.6 80.5 75.4 78.4 6.3 6.5 7.4 12.8
SE(R) ((a.u.)2/eV) 0.05 92.5 89.3 82.4 62.6 61.7 76.1 4.2 4.6 5.6 30.4
d(O_O) (Å) 2.21 65.1 60.6 5.2 8.6 60.2 78.1 45.2 75.7 4.7 71.8
d(R_R) (Å) 2.47 72.8 64.6 54.8 49.1 55.3 67.5 31.8 90.5 64.3 58.0

Note.RBA ranges for HAR1, HAR2, HAR3, HAR4, NAR1, and NAR2 are. 150, 10–100, 1–10, 0.1–1, 0.01–0.1, and 0.001–0.01%, respectively.
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Reactivity Pattern Based on EHOMO

The reactivity patterns of training sets based on HAR1,
HAR2, HAR3, and HAR4 as compared with the pattern of
non-active ligands (NAR2) are illustrated in Figure 2. The
EHOMO ranges (in eV), obtained as a function of the confidence
limit (%) around the EHOMO probability maximum (Table 3,
parts a–d, Fig. 2), clearly show a shift in the EHOMO pattern
toward higher global nucleophilicity with increasing RBA val-
ues. This result is consistent with the hypothesis that more
active ER ligands have higher nucleophilicity (Bradburyet al.,
1998; Walleret al., 1996a).

The discrimination ability of EHOMO tended to decrease with
decreasing separation between RBA ranges. For example, with
G 5 1 eV, S(AR/NAR), values of 0.41, 0.1, 1.5, and 7.9%, for
HAR1/NAR2, HAR2/NAR2, HAR3/NAR2, and HAR4/
NAR2, respectively, were observed (data not shown). With
G 5 0.55 eV, S(AR/NAR) values of 0.015, 0.001, 0.06, and
1.0%, respectively, were noted (Table 2).

Reactivity Pattern Based on Donor Delocalizabilities and
Charges

The comparison between activity patterns based on donor de-
localizability, SE(R: O, N, Cl, F), for different HARs and NAR2
is illustrated in Figures 3a–d, forG 5 0.05 (a.u.)2/eV (also see
Table 3, parts a–c). The discrimination ability of the SE patterns
decreases with a decrease in RBA values (e.g., S(HAR1/
NAR2) 5 4.2%, whereas S(HAP4/NAP2)5 30.4%). An analysis
of the HAPs indicate this pattern is predominantly due to R
attached to a phenyl moiety. If a lowerG (0.01 (a.u.)2/eV) is
employed on a restricted SE(R) range, additional probability max-
ima were detected (Figs. 4, Table 3d). This analysis indicates that
the probabilistic distribution maximum with the lowest SE(R)
value (around 0.247 (a.u.)2/eV) is associated with an electron-
withdrawing R attached to aromatic fragments. The maximum
with an SE(R) value of about 0.26 (a.u.)2/eV is associated with an
R attached to non-aromatic rings, while the highest SE(R) maxi-
mum of about 0.30 (a.u.)2/eV (identified in the SE(R) range of 0.3

TABLE 3
The Variation of Parameter Ranges for the Relevant Molecular Descriptors with Confidence Limits (CL) around the Maximum

Probability Values for (a) RBA > 150%, (b) 10 < RBA < 100%, (c) 1 < RBA < 10%, and (d) 0.1 < RBA < 1%

CL
(%)

EHOMO

G 5 1 eV
EHOMO

G 5 3 eV
Q(R)

G 5 0.05 a.u.
SE(R)

G 5 (0.05 a.u.)2/eV
SE(R)

G 5 (0.01 a.u.)2/eV

d(R_R) d(R_R) d(R_R)

[G values (Å) are specified in footnotes]

a 10 –8.69 to –8.64 –8.72 to –8.60 –0.254 to –0.251 0.246 to 0.249 –a 11.98 to 12.01b – –
30 –8.75 to –8.58 –8.85 to –8.47 –0.256 to –0.248 0.244 to 0.251 – 11.95 to 12.04 – –
50 –8.81 to –8.52 –8.99 to –8.37 –0.260 to –0.245 0.240 to 0.254 – 11.91 to 12.08 – –
70 –8.89 to –8.44 –9.15 to –8.17 –0.264 to –0.241 0.236 to 0.259 – 11.86 to 12.13 – –
90 –9.04 to –8.29 –9.54 to –8.08 –0.272 to –0.233 0.229 to 0.260 – 11.77 to 12.22 – –

b 10 –8.90 to –8.87 –8.92 to –8.83 –0.254 to –0.252 0.255 to 0.257 – 10.44 to 10.45c 11.54 to 11.55d 10.79 to 10.81e

30 –8.94 to –8.83 –9.01 to –8.75 –0.256 to –0.250 0.253 to 0.259 – 10.43 to 10.46 11.53 to 11.56 10.77 to 10.83
50 –8.98 to –8.79 –9.11 to –8.65 –0.259 to –0.248 0.251 to 0.261 – 10.43 to 10.46 11.52 to 11.57 10.74 to 10.86
70 –9.03 to –8.74 –9.23 to –8.53 –0.262 to –0.245 0.248 to 0.264 – 10.41 to 10.48 11.50 to 11.59 10.71 to 10.89
90 –9.11 to –8.65 –9.44 to –8.32 –0.268 to –0.239 0.244 to 0.269 – 10.38 to 10.51 11.50 to 11.80 10.62 to 10.95

c 10 –9.04 to –8.99 –9.16 to –9.04 –0.265 to –0.261 0.254 to 0.256 – 9.64 to 9.68f 10.08 to 10.12g 10.88 to 10.93h

30 –9.09 to –8.94 –9.28 to –8.92 –0.269 to –0.257 0.251 to 0.258 – 9.60 to 9.72 10.02 to 10.17 10.83 to 10.97
50 –9.14 to –8.88 –9.41 to –8.79 –0.273 to –0.252 0.249 to 0.260 – 9.55 to 9.77 9.96 to 10.23 10.78 to 11.02
70 –9.22 to –8.81 –9.59 to –8.61 –0.280 to –0.246 0.245 to 0.264 – 9.49 to 9.83 9.87 to 10.31 10.71 to 11.09
90 –9.35 to –8.68 –9.87 to –8.32 –0.292 to –0.233 0.240 to 0.269 – 9.38 to 9.93 9.75 to 10.44 10.56 to 11.28

d 10 –9.36 to –9.31 –9.45 to –9.33 –0.270 to –0.266 0.263 to 0.264 0.245 to 0.250 – – –
30 –9.41 to –9.25 –9.57 to –9.21 –0.275 to –0.262 0.262 to 0.265 0.239 to 0.260 – – –
50 –9.47 to –9.19 –9.72 to –9.07 –0.280 to –0.257 0.260 to 0.267 0.239 to 0.263 – – –
70 –9.55 to –9.11 –9.90 to –8.89 –0.287 to –0.250 0.257 to 0.270 0.239 to 0.265 – – –
90 –9.69 to –8.97 –10.21 to –8.57 –0.298 to –0.233 0.248 to 0.279 0.239 to 0.269 – – –

aEstimate not performed.
bG 5 0.5 Å, 11.5 to 13 Å.
cG 5 0.1 Å, 10.3 to 10.7 Å.
dG 5 0.1 Å, 11.5 to 13 Å.
eG 5 0.5 Å, 10.0 to 11.5 Å.
fG 5 0.5 Å, 9.0 to 10.0 Å.
gG 5 0.5 Å, 9.0 to 10.5 Å.
hG 5 0.5 Å, 10.0 to 11.5 Å.
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to 0.4 (a.u.)2/eV; data not shown) is associated with halogen
heteroatoms (ligands included in HAR4).

The charge-based pattern (analyzed for negative charge val-
ues only) is consistent with that observed for delocalizability,
as illustrated in Figure 5 and summarized in Table 3, for R5
O, N, Cl, F, S, andG 5 0.01 a.u. The difference between
Q(R)-based HAPs and NAPs was mainly associated with elec-
tronic charges (i.e., electron donor properties) of an R attached
to an aromatic fragment. The lower donor delocalizability of
the electronegative sites associated with ligands in HARs
(Figs. 3 and 4) is consistent with the more positive charge
located at those sites. Apparently, higher binding affinity re-
quires specific, but not extreme, ranges of charge and/or donor
delocalizability. In this data set, non-active ligands have larger
negative charges and donor delocalizabilities distinct from
parameter ranges associated with active ligands.

Reactivity Pattern Based on Interatomic Distances between
Electronegative Sites

The reactivity patterns of active (HAR1–HAR4) and non-
active (NAR2) ligands based on interatomic distances, d(R_R),
for R 5 O, N, Cl, F, S (i.e., all heteroatoms) at a value ofG 5
0.1 Å are illustrated in Figures 6a–6d, respectively. The max-
imum probability of d(R_R) for HAR1 (Fig. 6a, Table 3, part

a) occurred at 12 Å (over the distance of 11.5–13 Å). There
was a 6.9% overlap between this pattern and that associated
with NAR2. The activity pattern obtained for HAR2 had a
maximum probability at about 10.8 Å (Fig. 6b, Table 3, part b)
over the distance of 10.0 to 11.5 Å. This distance pattern had
a 12.9% overlap with the pattern for NAR2. Over the same
distance, from 10.0 to 11.5 Å, a multiplicity of maxima were
observed for the HAR3 pattern, as well as an increase in the
overlap with the non-active range (25.1%). A maximum-dis-
tance value of about 10.9 Å was observed between 10.0 and
11.5 Å (Fig. 6c, Table 3, part c), with another maximum at
about 9.6 Å noted between 9.0 and 10.0 Å (Fig. 6d). However,
the similarity between this active pattern and the non-active
pattern reached 40.6%. Finally, the activity pattern associated
with HAR4 had multiple maxima for distance ranges of 10.0 to
11.5 Å and 9.0 to 10.0 Å, (Fig. 6e and f, respectively). The
intensity of those maxima were lower than those associated
with HAR1–HAR3. In summary, maximum probability values
were shifted to lower distances with decreasing RBA values.
Thus, the largest maximum probability distance of 12 Å was
associated with HAR1, whereas for HAR3 and HAR4, the
maximum distances ranged from 9 to 10 Å.

The donor delocalizability, charge, and distance-based pat-
terns are consistent with previous studies (e.g., Ansteadet al.,

FIG. 2. The reactivity patterns
based on EHOMO, at G 5 1.0 eV, for:
(a) RBA . 150%, (b) 10, RBA ,
100%, (c) 1, RBA , 10%, and (d)
0.1 , RBA , 1%; in this and other
figures the integral reactivity pattern
of active ligands is gray, whereas the
pattern of non-active ligands in
white.

260 BRADBURY ET AL.



1997; Wurtz et al., 1996). These studies reported that ER
ligands should possess 2 electronegative sites, capable of form-
ing donor and acceptor H-bonds in the ER ligand-binding
domain, and of being separated by about 10.9 Å. As summa-
rized above, 10.9 Å coincides with the distance ranges reported
in the present work for ligands with RBA ranges of 1 to 10%
(HAR3) and 10 to 100% (HAR2).

Derivation of hERa Ligand Reactivity Patterns

Mekenyanet al. (1999) reported previously that distribu-
tions based on largerG values, or larger confidence limits, will
lead to wider ranges in EHOMO, d(R_R) and Q(O) (or SE(R))
maximum probability values. In general, larger descriptor
ranges are associated with a greater likelihood that ligands will
be incorrectly identified as having an RBA value within the
specified HAR (i.e., an increasing rate of false positive iden-
tifications). Conversely, smaller descriptor ranges increase the
rate of false negative identifications. It is important to note that
due to the probabilistic nature of the algorithm, it is possible
that the choice of an active pattern based on a smallG or
confidence limit can lead to incorrect classifications of con-
formers from an active ligand. For example, when using an
EHOMO profile derived for the most potent hERa ligands in this

data set (HAR1) in a single descriptor screen of –8.72 to –8.60
eV (G 5 3.0 eV; 10% confidence limit; see Table 3a), all of the
conformers of ligands 1 and 3 were incorrectly identified as
having an RBA, 100%. Consequently, larger confidence
limits were required to establish patterns that would include
conformers for all of the ligands included in HAR1. Thus, if
the 50% confidence limit of –8.99 to –8.37 eV (atG 5 3.0 eV)
is used, all conformers of the 4 ligands in HAR1 were screened
correctly, except for one conformer of ligand 3. The similarity
between a ligand distribution for all conformers of one chem-
ical and the EHOMO reactivity pattern for all chemicals in HAR1
(S(k/AP) ranged from 70.2% for ligand 1 to 76.2% for ligand
4. This single descriptor screen, however, does lead to false
positive classifications (i.e., prediction of RBA. 150%) for
less active chemicals: HAR 2 ligands 5, 7–12, 14, and 15; HAR
3 ligands 16, 18, and 21; HAR 4 ligands 27 and 28; and NAR1
ligands 33 and 37, respectively. For these compounds, the
similarity in ligand distributions for EHOMO with the corre-
sponding activity pattern ranged from 69.1% for ligand 11 to
78.8% for ligand 12.

Similarly, if a d(R_R) range of 11.98 to 12.01 Å (G 5 0.5 Å;
10% CL; see Table 3, part a) derived for HAR1 is used as a
single descriptor screen, all of the conformers of ligands 1–3

FIG. 3. The reactivity patterns
based on SE(R: O, N, Cl, F, S), at
G 5 0.05 (a.u.)2/eV, for: (a) RBA.
150%, (b) 10, RBA , 100%, (c)
1 , RBA , 10%, and (d) 0.1,
RBA , 1%.
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were incorrectly identified as having an RBA, 100%. How-
ever, after using the 90% confidence limit of 11.77 to 12.22 Å
(at G 5 0.5 Å), conformers of chemicals 1–4 were correctly
identified. The similarity between ligand distributions and this
reactivity pattern ranged from 47.1% for ligand 4 to 68.0% for
ligand 1. The larger descriptor screen, however, resulted in
false positive classifications of ligands 7, 10, 19, 23, 45, and
46, respectively. The similarity between individual ligand dis-
tributions and the d(R_R)-based activity pattern ranged from
41.5% for ligand 10 to 67.0% for ligand 19.

The selection of specificG and/or confidence limit values for
deriving HAR1 screening rules was based on a strategy to first
minimize the probability of false negative identifications, while
secondarily minimizing the number of false positive identifi-
cations. Ultimately, a 3-descriptor screen based on EHOMO,
d(R_R) and Q(R) (or SE(R)) was used to minimize the rate of
false negative identifications, while maintaining a low rate of
false positive identifications. For a ligand to be classified as
active within a specified RBA range, at least one conformer
was required to fall within all 3 of the descriptor ranges. For
HAR1, a screening pattern with EHOMO of a –8.99 to –8.37
eV(G 5 3.0 eV; 50% confidence limit, Table 3, part a) com-
bined with the least conservative d(R_R) range of 11.77 to
12.22 Å (confidence limit5 90%) and a Q(R) range of –0.272
to –0.233 a.u. (G 5 0.05 a.u; 90% confidence limit, Table 3,
part a), imposed on both electronegative sites forming the

d(R_R), correctly discriminated chemicals 1–4 from chemicals
5–46.

The above classification of an “unknown” ligand was based
on whether or not one or more conformers for the compound
fell within any of the EHOMO, d(R_R), and Q(R) activity pat-
terns. Alternatively, values of Euclidean distance or S(k/AP)
for comparisons of distributions of unknown compounds to an
HAR could be used to screen ligands. For the EHOMO-based
pattern, Euclidean distance and S(k/AP) values for ligands
included in HAR1 varied from 0.18 to 0.21 and from 72.5 to
77.2%, respectively. For d(R_R), Euclidean distance and S(k/
AP) values varied from 0.58 to 0.91 and 47.1 to 68.0%,
respectively, whereas for Q(R), the Euclidean distance and
S(k/AP) values ranged from 3.04 to 3.56 and from 45.9 to
54.2%. Based on S(k/AP), thresholds of 72.5%, 47.1%, and
45.9% for EHOMO, d(R_R), and Q(R), respectively, could be
used in a 3-parameter screen. Employing this as a screen,
chemicals 5–46 were also correctly classified as having RBA
values, 150%. Using Euclidean distance or S(k/AP) to assess
unknown ligands facilitates a more quantifiable approach for
determining similarity in reactivity patterns. The use of these
similarity metrics also permits the sensitivity of different
thresholds to be readily evaluated in terms of potential rates of
false negative and positive classifications of unknown ligands.

A 3-descriptor screen also was developed for HAR2 based
on EHOMO, d(R_R), and Q(R). An EHOMO pattern of –9.44 to

FIG. 4. The reactivity patterns
based on SE(R: O, N,Cl, F, S), atG 5
0.01 (a.u.)2/eV, derived within the
range of 0.2 to 0.3 (a.u.)2/eV, for:
(a) RBA . 150%, (b) 10, RBA ,
100%, (c) 1, RBA , 10%, and (d)
0.1 , RBA , 1%.
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–8.32 eV (G 5 3.0 eV; 90% confidence limit, Table 3, part b)
combined with d(R_R) ranges of 10.62 to 10.95 Å (G 5 0.5 Å,
confidence limit5 90%), and the requirement that at least one
of these heteroatoms meets the least conservative Q(R) screen
of –0.273 to –0.236 a.u. (G 5 0.05 a.u; 95% confidence limit
[not shown]), successfully discriminated nine out of 11 ligands
from the training set (chemicals 5–15) as having RBA values
between 10 and 100%. The threshold values for Euclidean
distance and S(k/AP) associated with EHOMO, d(R_R), and Q(R)
reactivity patterns in the HAR2, were: 0.34 and 58.0%, 1.51
and 22.7%, and 5.56 and 18.4%, respectively. The conformers
of chemical 10 (nafoxidine) had higher EHOMO values (from
–8.37 eV to –8.08 eV), whereas conformers of chemical 9
(17a-estradiol) had d(R_R) distances shorter than 10.62 Å (the
lower boundary of the least restrictive distance screen in the
range of 10–11.5 Å). If the distance screens of 10.38 to 10.51
Å or 11.50 to 11.80 Å, obtained with a more precise continuous
approximation (G 5 0.1 Å, 90% CL) using windows of 10.3 to
10.7 Å and 11.5 and 13 Å, respectively, were additionally
included in the reactivity pattern, then 17a-estradiol (9) was
correctly identified as having an RBA between 10 and 100%.

Conformers of ligands 1–4 were not identified by this HAR2
reactivity pattern. For ligands in the lower activity ranges, the
HAR reactivity pattern (even after inclusion of additional dis-

tance screens) identified 16 (2-hydroxy-estradiol), which lies
on the boundary between training sets HAR2 and HAR3
(RBA 5 7%) and 21 (estrone), which was also included in
HAR2 as chemical 8, due to the discrepancy in reported RBA
values. No ligands with RBA, 1% were identified as having
an RBA value between 10 and 100%.

The COREPA associated with HAR3 was based on a EHOMO

range of –9.87 to –8.32 eV (G 5 3.0 eV; 90% confidence limit,
Table 3, part c), combined with distance screens of 9.38 to 9.93
Å or 10.56 to 11.28 Å, observed within windows of 9.0 to 10.0
Å and 10.0 to 11.5 Å, respectively (Table 3, part c, for
confidence limit5 90%). The EHOMO and d(R_R) screens were
combined with a SE(R) pattern of 0.237 to 0.273 (a.u.)2/eV
(95% confidence limit, data not shown), imposed on at least
one of the electronegative sites. This reactivity pattern cor-
rectly identified 5 out of 7 chemicals from the training set. It
should be noted that a d(R_R) of 9.75 to 10.44 Å in the range
of 9.5 to 10.5 Å could also be included in one of the other
distance ranges to attain 5 out of 7 correct predictions. Chem-
ical 18 (tamoxifen) was not identified as active in this RBA
range because d(R_R) for the 2 electronegative sites was not
larger than 5 Å, while chemical 20 (3b-androstanediol) had an
extremely low global electron donor ability with a EHOMO range
of –10.35 to –10.34 eV. The HAR3 pattern also identified 11

FIG. 5. The reactivity patterns
based on Q(R: O, N, Cl, F, S), atG 5
0.05 a.u., for: (a) RBA. 150%, (b)
10 , RBA , 100%, (c) 1, RBA ,
10%, and (d) 0.1, RBA , 1%.
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more active chemicals (4–8, 10–15) and 5 less active chemi-
cals (23–25, 34, 37). As mentioned previously, as RBA values
decreased, the specificity and stability of reactivity patterns
also decreased, which is consistent with an increasing rate of
false positive and negative assignments. Use of patterns based
on more precise approximations of conformer distributions did
not change the rate of false positive or negative identifications
(data not shown).

The reactivity pattern associated with HAR4 had the lowest
specificity. The EHOMO range of –9.95 to –8.73 eV(G 5 1.0 eV;
99% confidence limit, data not shown) was combined with
SE(R) patterns of 0.239 to 0.269 (a.u.)2/eV or 0.248 to 0.279
(a.u.)2/eV, defined within the window of 0.2 to 0.3 (a.u.)2/eV
(for G 5 0.05 a.u. and confidence limit5 90%; Table 3, part
d). No distance screen was included in the HAR4 pattern, due
to its limited ability to discriminate ligands. The combined

EHOMO/SE(R) pattern correctly identified 5 out of 7 chemicals in
the training set. Ligand 29 (kepone; having a single conformer)
was not identified as active due to a EHOMO value of –10.92 eV
and 26(o,p9-DDT) was not identified due to an SE(R) range of
0.320 to 0.330 (a.u.)2/eV. The specified pattern does, however,
capture basic electronic requirements for eliciting hERa bind-
ing affinity, as it successfully identified almost all of the
chemicals in HAR1–HAR3. Of the compounds with measured
RBAs between 0.1 and 0.01%, 4 of 8 chemicals were selected,
while 2 of the 9 compounds between 0.01 and 0.00% were
selected.

Decision Tree for Identification of hERa Ligands

The stereoelectronic requirements of the reactivity pattern
associated with each RBA range were organized in a hierar-

FIG. 6. The reactivity patterns
based on d(R_R);G 5 0.1 Å, for: (a)
RBA . 150%, in the range of 11.5
to 13.0 Å; (b) 10, RBA , 100%,
in the range of 10.5 to 11.5 Å; (c)
1 , RBA , 10%, in the range of
10.5 to 11.5 Å; (d) 1, RBA ,
10%, in the range of 9.0 to 10.0 Å;
(e) 0.1, RBA , 1%, in the range of
10.5 to 11.5 Å; and (f) 0.1,
RBA , 1%, in the range of 9.0 to
10.0 Å.
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chical decision tree, whose output was an estimated probability
that a conformer would bind to the hERa within a given RBA
range. The initial part of the tree consists of absolute screens,
i.e., the necessary structural requirements for eliciting minimal
ER binding affinity, i.e., RBA$ 0.1%. For example, enanti-
omers of steroids were required to have trans-trans (B/C trans
and C/D trans) ring fusion as an absolute steriochemistry
screen. Global nucleophilicity was also assumed an absolute
electronic requirement, and an EHOMO of –9.95 eV was selected
as the necessary nucleophilicity threshold. This value is equiv-
alent to the left side boundary of the EHOMO range for the 99%
confidence limit of the pattern associated with the least active
training subset (HAR4). The presence of negatively charged
(i.e., potential electron donors) atomic sites was also employed
as a basic requirement for a ligand to have an RBA$ 0.1%.
This requirement was specified as any hetero-atomic site (R5
O, N, Cl, F, S, etc.) with a donor-delocalizability (i.e., atomic
nucleophilicity) in the range of 0.239 to 0.279 (a.u.)2/eV. This
range was based on a delocalizability screen derived from the
90% confidence distribution for the active ligands in HAR4
acrossG values of 0.05 and 0.01 (a.u.)2/eV. Alternatively, a
charge requirement defined as –0.298 to –0.233 a.u. (based on
the 90% confidence limit ranges in Table 3) could be used as
an absolute electronic site requirement. In our previous study

with androgen ligands, an atomic charge requirement of
–0.322 to –0.300 a.u. was determined (Mekenyanet al., 1997,
1999), which indicates that active ER ligands in this training
set have significantly less negative atomic sites than androgen
receptor ligands.

Conformers which had EHOMO values of less than –9.95 eV,
electronegative sites not meeting the specified donor delocal-
izability, or steroids not conforming to stereochemical require-
ments of the natural enantiomer, were assigned a 0% proba-
bility to bind to hERa with a RBA . 0.1% (Fig. 7).
Conformers that passed these absolute requirements were then
compared to the EHOMO, interatomic distance and charge or
delocalizability screens associated with HAR1. Using the sim-
plified binary screening approach described in the Methods, the
identification of a ligand with a binding affinity within a RBA
range requires that at least one conformer meets all three
specified parameter ranges. If a compound was not identified as
having an RBA. 150%, it was then screened to determine if
it had an RBA between 10 and 100% (HAR2) and so on (Fig.
7). Thus, the decision reflected a sequential ordering of the
reactivity patterns derived from HAR1, HAR2, HAR3, and
HAR4.

With the goal of minimizing the number of false negative
identifications, the EHOMO rules used for the different RBA

FIG. 7. A decision tree for identification of estrogen ligands with RBA values greater than 0.1%. The decision tree is based on a pre-screen followed by
a sequence of rules based on reactivity patterns derived from ligands with RBA values. 150%, between 10 and 100%, between 1 and 10%, and between 0.1
and 1%.
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TABLE 4
Predicted RBA Ranges Based on the Decision Tree Described in the Text

No. Ligand Measured RBA (%)

Predicted RBA ranges (%)a

.150 100. RBA . 10 10. RBA . 1 1 . RBA . 0.1 RBA , 0.1

1 Hexestrol .150 x
2 Diethylstilbestrol .150 x
3 Dienestrol .150 x
4 4–OH–Tamoxifen .150 x
5 E2 100. RBA . 10 x
6 Coumestrol 100. RBA . 10 x
7 ICI–164,384 100. RBA . 10 x
8 Estrone 100. RBA . 10 x
9 17a–Estradiol 100. RBA . 10 [x x] b

10 Nafoxidine 100. RBA . 10 x
11 Moxestrol 100. RBA . 10 x
12 Clomifene 100. RBA . 10 x
13 b–Zearalanol 100. RBA . 10 x
14 Estriol 100. RBA . 10 x
15 4–OH–Estradiol 100. RBA . 10 x
16 2–OH–Estradiol 10. RBA . 1 x
17 5–Androstenediol 10. RBA . 1 x
18 Tamoxifen 10. RBA . 1 x
19 Genistein 10. RBA . 1 x
20 3b–Androstanediol 10. RBA . 1 x
21 Estrone 10. RBA . 1 x
22 HPTE 10. RBA . 1 x
23 Estrone–3–sulfate 1. RBA . 0.1 x
24 Norethynodrel 1. RBA . 0.1 x
25 4–Androstenediol 1. RBA . 0.1 x
26 o,p9–DDT 1 . RBA . 0.1 [x x] c

27 4–nonylphenol 1. RBA . 0.1 x
28 4–t–octylphenol 1. RBA . 0.1 x
29 Kepone 1. RBA . 0.1 x
30 Norethindrone 0.1. RBA . 0.01 x
31 3a–Androstanediol 0.1. RBA . 0.01 x
32 p,p9–DDT 0.1. RBA . 0.01 x
33 Bisphenol A 0.1. RBA . 0.01 x
34 Dehydroepiandrosterone 0.1. RBA . 0.01 x
35 5a–Dihydrotestosterone 0.1. RBA . 0.01 x
36 BBP 0.1. RBA . 0.01 x
37 Methoxychlor 0.1. RBA . 0.01 x
38 4–Androstenedione 0.01. RBA . 0.00 x
39 5b–Androstanedione 0.01. RBA . 0.00 x
40 Testosterone 0.01. RBA . 0.00 x
41 5a–Androstanedione 0.01. RBA . 0.00 x
42 19–Nortestosterone 0.01. RBA . 0.00 x
43 Dieldrin 0.01. RBA . 0.00 x
44 b-Sitosterol 0.01. RBA . 0.00 x
45 Corticosterone 0.01. RBA . 0.00 x
46 Progesterone 0.01. RBA . 0.00 x

Note.Chemicals are assigned to the highest RBA range predicted and not further evaluated by patterns associated with lower RBA ranges.
aDerived from decision tree described in Figure 7, where the highest predicted range is based on at least one conformer meeting all required EHOMO, Q(R)/SE(R),

and d(R_R) screens. Patterns are described in the text section “Derivation of hERa Ligand Reactivity Patterns.”
bUsing the rules described in Figure 7, compound 9 is predicted to have an RBA of 1 to 0.1%. If additional d(R_R) screens of 10.38 to 10.51 Å and 11.50

to 11.80 Å are employed (see section “Derivation of hERa Ligand Reactivity Patterns”), the predicted RBA value for compound 9 is between 100 and 10%.
cUsing the rules described in Figure 7, compound 26 is predicted to have an RBA, 0.1%. If an additional SE(R) screen of 0.300 to 0.330 a.u./(eV)2 is

employed (see section “Derivation of hERa Ligand Reactivity Patterns”), the predicted RBA value for compound 26 is between 0.1 and 1%.
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ranges were based on the minimal electron donating ability
noted for each binding affinity range. Thus, EHOMO rules were
“one-sided” and required that a minimal electron donating
capability be met (i.e., –8.99 eV, EHOMO, for HAR1; –9.44
eV , EHOMO, for HAR2; –9.87 eV, EHOMO, for HAR3, and
–9.95 eV, EHOMO, for HAR4).

The distance patterns require that at least one of the hetero-
atoms meet a previously specified charge or donor-delocaliz-
ability requirement. The distance and delocalizability/charge
requirements of the pattern are described in terms of the least
restrictive screens based on confidence limits$ 90% around
the most probable values determined in the respective distri-
butions.

Application of the decision tree to the data set used in this
study is summarized in Table 4. In general, most predictions
were within an order of magnitude of observed RBA values.
Consistent with the conservative bias in selection of reactivity
patterns, the majority of predictions that were not within an
order of magnitude of the observed RBA values over-predicted
binding potential.

For the 15 chemicals within observed RBA values$ 10%,
only 17a-estradiol (9) was incorrectly predicted to have 0.1,
RBA , 1%. However, this was corrected if additional d(R_R)
screens of 10.38 to 10.51 Å and 11.5 to 11.80 Å are used. Two
chemicals, 2-OH-estradiol (16; RBA5 7%), and potentially
estrone (8 and 21; RBA5 60 or 2.1%) were incorrectly
predicted as having an RBA. 10%. Thus, of those compounds
with the greatest binding affinity and most specific reactivity
patterns there was only one false negative, while two (poten-
tially only one) additional chemicals were falsely predicted to
have RBA. 10%.

For compounds with observed RBA values between 1 and
10%, the false negative predictions were for tamoxifen (18;
RBA 5 5.1%) predicted to have an RBA between 0.1 and 1%
and 3b-androstanediol (20; RBA5 3%) predicted to have
RBA values less than 0.1%. False positive identifications for
the RBA range between 1 and 10% included estrone-3-sulfate
(23), norethynodrel (24), 4-androstenediol (25), dehydroepi-
androsterone (34), and methoxychlor (37), with measured RBA
values of 1, 0.7, 0.5, 0.04, and 0.012%, respectively.

Kepone (29; RBA5 0.2%) was the only false negative
identification in the range of 0.1 to 1%, whereas 4 compounds
were false positive identifications for binding affinity, in this
range, having measured RBA values of 0.045 (33), 0.015 (36),
0.003 (43), and, 0.001% (44).

As depicted in Table 4, the accuracy of predictions was
greatest for RBA values exceeding 10%. This observation is
consistent with the specificity of the associated reactivity pat-
terns and the high degree of biological similarity, in terms of
RBA values, for the compounds in this portion of the data set.
Thus, the exploratory prioritization scheme, based on the cur-
rent knowledge base, appears to provide a reasonably robust
means to identify hERa ligands whose binding affinities are at
least 10% of E2. Within the current data set, the specificity of

reactivity patterns decreases as RBA values fall below 10% of
E2, which is consistent with expectations; i.e., as compounds
become less similar to E2 in terms of binding affinity, one
would expect a decreased basis for establishing chemical sim-
ilarity to the natural ligand. Several chemicals with low bind-
ing affinity are of concern, however, due to their ubiquity. To
accurately predict activity for these types of chemicals requires
development of models based on a restricted congeneric series.
The COREPA approach, in fact, has been used successfully to
predict the estrogenicity of alkylphenolic chemicals, a group of
relatively weak, but important, environmental estrogens
(Schmiederet al., 2000).

Prospectus

Development of quantitative chemical similarity and struc-
ture-activity models requires well defined biological and/or
toxicological effect data from chemicals representative of the
diversity of structures for which predictions are to be made.
The data used in the current study are all based on RBA values
of hERa derived from 2 laboratories using similar experimen-
tal techniques (Bolgeret al., 1998; Kuiperet al., 1997). As
noted previously, only estrone RBA values differed signifi-
cantly between the 2 studies. While these RBA values repre-
sent a broad range of structures, additional data from a more
diverse set of structures would improve the basis for evaluating
the reactivity patterns and the prioritization scheme for the
ranges of RBA values modeled in the present investigation. Of
particular concern is whether the reactivity patterns, and asso-
ciated decision tree, have been over-specified to the training
set. To the extent this may be the case, the results of this study
need to be interpreted with caution in terms of immediate use
in hazard identification.

In our companion paper (Mekenyanet al., 2000), the accu-
racy of the reactivity patterns for ER binding affinity are
explored by comparing predicted values to observed RBAs
using receptors obtained from rodents and MCF7 cells. Use of
data from outside the hERa training set allows a more com-
plete evaluation of the reactivity patterns and decision tree in
terms of the its applicability to a more diverse chemical struc-
ture space. Inclusion of this additional data “enriches” the
chemical structure space for defining chemical similarity in
specified RBA ranges, while seemingly providing minimal
cross-species variability that could confound the interpretation.
The companion paper also discusses how a “mammalian” ER
binding affinity chemical prioritization scheme, based on the
COREPA–C algorithm, could be applied to chemical data sets
reflecting existing inventories in the United States and Europe.

APPENDIX

COREPA-C Parameters

Cutoff(AP/NAP): The portion of the non-active pattern ex-
ceeded by the maximum of the active pattern (3-D similarity
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measure between reactivity patterns of active and non-active
chemicals)

G (gamma): Corresponds to the half-width of a gamma
function

HAP: High activity pattern, i.e., the reactivity pattern based
on the learning set of active chemicals

HAR: High activity range
HAT: High activity threshold, used to define the “learning”

set of active chemicals
MaxPk

A(x): Value of parameterx with the maximum proba-
bility of occurrence based on the distribution of the training set
of active chemicals

MaxPk
NA(x): Value of parameter x with the maximum prob-

ability of occurrence based on the distribution of the training
set of non-active chemicals

NAP: Non-active pattern, i.e., the reactivity pattern based on
the learning set of non-active chemicals

NAR: Non-active range
NAT: Non-active threshold, used to define the “learning” set

of non-active chemicals
Pi(x): Gamma function (probabilistic) distribution of I-th

conformer across the axis of molecular descriptor x (single or
multiple descriptor values are associated with the conformer
when x is a global or local molecular parameter, respectively)

Pk(x): Gamma function distribution for all conformers of
chemicalk across the axis of the molecular descriptorx

Pk
A (x): Probabilistic distribution for the training set of active

chemicals across the axis of the molecular descriptorx
Pk

NA(x): Overall probabilistic distribution for the training set
of non-active chemicals across the axis of the molecular de-
scriptorx

S(AP/NAP): 3-D similarity between reactivity patterns of
active and non-active chemicals with respect to the molecular
descriptor x (overlap of distributions of chemicals within each
training set)

S(k/AP): 3-D similarity between a chemicalk and the active
pattern with respect to the molecular descriptorx (overlap
between conformer distribution of the chemical and the distri-
bution of the chemicals from the active training set)

S(k/NAP): 3-D similarity between a chemical k and the
non-active pattern with respect to the molecular descriptor x
(overlap between conformer distribution of the chemical and
the distribution of the chemicals from the non-active training
set)

Syz(x): 3-D similarity between two chemicals,y andz, with
respect to the molecular descriptorx (i.e., the overlap between
conformer distributions of two chemicals acrossx)

QSAR Descriptors

d(O_O): Interatomic distances between oxygen atoms (Å)
d(R_R): Interatomic distances between all heteroatoms (Å)
Egap: Electronic gap (EHOMO-ELUMO) (eV)
EHOMO: Energy of highest occupied molecular orbital (eV)

ELUMO: Energy of lowest unoccupied molecular orbital (eV)
EN: Electronegativity
GW: Sum of geometric distances
m: Dipole moment (D)
Max distance: The greatest interatomic distance
Planarity: The normalized sum of torsion angles in a mole-

cule
Q(O): Charges of oxygen atoms (a.u.)
Q(R): Charges of all heteroatoms (a.u.)
RBA: Relative binding affinity to human ERa (hERa) ex-

pressed as percent relative to 17b-estradiol5 100%
RMS: Root mean square
SE(O): Donor delocalizabilities of oxygen atoms

((a.u.)2/eV)
SE(R): Donor delocalizabilities of all heteroatoms

((a.u.)2/eV)
SN(O): Acceptor delocalizabilities of oxygen atoms
SN(R): Acceptor delocalizabilities of all heteroatoms
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