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Diffraction effects in single-
and two-laser photothermal lens spectroscopy

Stephen E. Bialkowski and Agnès Chartier

A simple method for calculating the effects of optical geometry on photothermal lens signals is shown.
This method is based on calculating cumulative electric-field phase shifts produced by a series of
Gaussian refractive-index perturbations produced by the photothermal effect. Theoretical results are
found for both pulsed-laser and continuous Gaussian laser excitation sources and both single- and
two-laser apparatuses commonly employed in photothermal lens spectroscopy. The effects of apparatus
geometry on the resulting signal are shown. Analytical time-dependent signal results are found for
small signals. Analytical pump–probe focus geometry results allow direct optimization for certain
conditions. The calculations indicate that the photothermal lens signal is, in general, optimized for
near-field detection-plane geometries. © 1997 Optical Society of America
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1. Introduction

In thermal lens spectroscopy, the heat deposited in
the medium after absorption of the energy from a
Gaussian laser beam by a sample creates a radially
dependent temperature distribution that, in turn,
produces a refractive-index gradient. In most con-
densed phases, because of a decrease in density with
increasing temperature, the variation of the refrac-
tive index with temperature is negative and the me-
dium behaves as a diverging lens. During lens
formation, the propagation of the Gaussian beam
through the sample cell is distorted and expanded.
This latter effect is commonly probed by the measure-
ment in the far field of the changes in the laser’s
center intensity. The probe beam can be the excita-
tion laser itself or another continuous-wave laser.
In the first theoretical treatments,1,2 the thermally
induced refractive index was assumed to be approx-
imately parabolic near the beam axis and to behave
as an ideal thin lens. These models, mostly devel-
oped for the single-laser apparatus, assume that the
laser beam size remains constant as the laser beam
passes through the sample cell. As the photother-
mal lens signal cannot be found from the Gaussian

beam propagation through the sample cell, Sheldon
et al.3 have developed a model that takes into account
the aberrant nature of the thermal lens. The ther-
mal refractive index was approximated as a linear
shift, and a diffraction integral was used to solve for
the signal obtained for the single-laser photothermal
lens. Approximations made in the derivations are
similar to those of Fresnel or even Fraunhofer dif-
fraction and results are valid only for the far-field
detection plane or pinhole aperture placement. Re-
sults obtained from these two models were later an-
alyzed,4,5 and the parabolic model was found to be
less accurate for a highly absorbing sample. The
parabolic model was corrected to take into account
the refractive shape of the lens.4 The difference be-
tween the beam geometries when the parabolic ap-
proximation was used and those obtained with
diffraction is significant, a factor 1 versus 31y2.

The ABCD rule for Gaussian beam propagation has
also been used to find the radial power distribution
for Gaussian refractive-index perturbations under
mode-matched conditions.6,7 The same approach
was used to describe the probe-beam-waist depen-
dence on the thermal lens signal8,9 relative to its
position in the sample for dual-beam pulsed-laser ex-
citation. Most recently, the phase-shift method has
been used to calculate probe-laser irradiance profiles
and photothermal thermal lens signals for nonlinear
multiphoton absorption by use of the z-scan tech-
nique.10 Similar calculations were performed by
means of Fresnel diffraction integrals to find the
probe-laser radial power distribution.11–13 More re-
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cently Shen et al.14 used the Fresnel diffraction ap-
proach to calculate the photothermal lens signal
obtained with the two-laser, mode-mismatched opti-
cal apparatus for continuous excitation. As in the
work of Sheldon et al.,3 Shen et al. approximated the
exponential phase shift in linear terms. However,
the latter is the most general of the continuous-
excitation-laser results because it can be used to pre-
dict the optimum beam conditions for the two-laser
apparatus.

All these reports use the same general procedure.
First, the complex transmission is determined from
the temperature change and the resulting refractive-
index change. Second, the effect of the passage of
the Gaussian probe beam through the sample is
found by multiplication by the complex transmission
function. Implicit here is the assumption that the
sample cell is thin enough that the probe-beam ra-
dius does not change significantly as the beam passes
through the sample. In diffraction, this assumption
is valid when the distance between the sample cell
and the detection plane is much greater than the
optical path length through the cell. Third, the per-
turbed probe beam is progressed to the detection
plane by either a diffraction integral or Gaussian
beam propagation equations.

The purpose of this paper is to illustrate a straight-
forward method for determining the effect that a
Gaussian refractive-index perturbation has on the
propagation of a Gaussian probe-laser beam. The
refractive-index perturbation is cast as a complex
transmission element. The electric field of the
probe-laser beam is found first by multiplication by
the complex transmission and then modification of
the complex beam parameter to account for free-
space propagation. The method is simpler than us-
ing Fresnel diffraction integrals, although the results
are almost equivalent. Results obtained with this
method are equivalent to those obtained by the solu-
tion of Fresnel diffraction integrals to within a linear
phase-shift term.15 In this paper, a single model is
developed that describes photothermal lens signals
produced by both pulsed and continuous-wave

excitation-laser sources. The magnitude and the
time dependence of the thermal lens signal are stud-
ied relative to sample cell distance to the detection
plane, and optimum beam geometries are predicted.
Enhancement factors obtained under pulsed and
continuous-wave excitation are also compared. The
geometry of Twarowski and Kliger16 is used to facil-
itate comparison with refraction theory results. The
symbols used in this paper are given in Table 1.

2. Experimental Section

A 66-MHz 80486 PC with symbolic algebra software
~MACSYMA, Symbolics, Inc.! is used to derive the ana-
lytical photothermal lens signals. The detailed cal-
culation steps were recorded and stored in MACSYMA

batch files to facilitate derivation and model testing.
Results from symbolic derivations are written as C
language code, which is easily incorporated into the
graphics generation code, also written in C. Simu-
lations are calculated with programs written in C
language. Each simulation consists of a 200 3 200
signal magnitude versus parameter grid and takes
;10 s to calculate with the analytical expressions.
Surface contour shading uses cosine normal weight-
ing for gray-tone generation. The shaded contours
are plotted on a PostScript printer. Copies of the
MACSYMA batch files and C language graphics code can
be obtained from the authors.

3. Probe-Laser Diffraction Effects for Instantaneous
Pulsed Excitation

Photothermal lens signals are calculated by first find-
ing the time-dependent temperature change result-
ing from instantaneous sample excitation. Next,
the radially dependent optical phase shift produced
by this temperature change is found. The phase
shift is subsequently used to find the effect on the
probe-laser beam. The temporal impulse response
is subsequently used to determine the photothermal
lens signals produced from continuous excitation.
This is accomplished by the integration of the impulse
response over the time the continuous-excitation laser
is operating. The usual assumptions used to calcu-

Table 1. Symbols Used in this Paper

Symbol Definition ~Units! Symbol Definition ~Units!

a Absorption coefficient ~m21! r Radius ~m!
Cp Heat capacity ~J kg21K21! r Density ~kg m23!
d Sample-to-detector distance ~m! S Photothermal lens signal

DT Thermal diffusion coefficient ~W m22! t Time ~s!
E Electric field ~W1y2m21! t~r, t! Transmission
E Photothermal enhancement factor tc Characteristic time constant ~s!
df Optical phase shift ~rad! T Temperature ~K!
f On-axis phase shift ~rad! w Gaussian beam-waist radius ~m!
H Integrated irradiance ~Jym2! wp Probe-laser Gaussian beam waist ~m!
k Probe-laser wave vector ~m21! YH Heat yield
k Thermal conductivity ~W m21K21! z Spatial coordinate ~m!
l Sample path length ~m! z9 Probe focus-to-sample distance ~m!

lp Probe-laser wavelength ~m! z0 Confocal parameter ~m!
q Complex beam parameter ~m21! z0,p Probe-laser confocal parameter ~m!
Q Energy ~J!
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late the instantaneous photothermal lens signal are
used here.16 In particular, it is assumed that the ex-
citation pulse is of short duration relative to the time
that the signal is monitored, that excited-state energy
transfer is instantaneous, and that energy transfer
instantly produces a density change that is inversely
proportional to the temperature change. The acous-
tic wave generated by rapid expansion of the heated
sample is not accounted for with these assumptions
nor is the acoustic-relaxation-limited signal rise time.
However, finite excited-state relaxation rates may be
accounted for by convolution of the impulse response
with the time rate of heat production.

The case of a pulsed-laser-excited sample probed
with a continuous laser is examined first. The ra-
dial intensity distribution of a TEM00 Gaussian exci-
tation beam can be expressed as

H~r! 5
2Q
pw2 expS22r2

w2 D , (1)

where H~r! ~in joules times inverse square meters! is
the integrated irradiance, Q ~in joules! is the pulse
energy, w ~in meters! is the excitation-beam electric-
field radius, and r is the radial distance from the
beam center. The instantaneous heat generated per
unit length between r and r 1 dr is

Q~r, t! 5 2pd~t!aH~r!rdr (2)

where a ~in inverse meters! is the exponential absorp-
tion coefficient and d~t! is the delta function. The
expression for the temperature change in the sample
as a function of radius and time can be obtained by
the solution of the heat transfer equation for an in-
stantaneous source17:

rCp

d
dt

@dT~r, t!# 2 k¹2@dT~r, t!# 5 Q~r, t!, (3)

where r ~in kilograms times inverse cubic meters!, Cp
~in joules times inverse kilograms times inverse de-
grees Kelvin!, and k ~in joules times inverse meters
times inverse seconds times inverse degrees Kelvin!
are density, specific heat, and thermal conductivity of
the sample, respectively. Equation ~3! has a solu-
tion given by

dT~r, t! 5 *
0

t

*
0

`

Q~r9, t 2 t9!G~r, r9, t9!dr9 dt9, (4)

where

G~r, r9, t! 5
1

4pkt9
expF2~r2 1 r92!

4DTt9 GI0S rr9

2DTt9D (5)

is the Green’s function for radial symmetric diffusion,
DT 5 kyrCp ~in watts times inverse square meters! is
thermal diffusivity, and I0 ~ ! is the modified zero-

order Bessel’s function. After the integration is per-
formed, the time-dependent temperature change is

dT~r, t! 5
2aQYH

pw2~t!rCp
expF22r2

w2~t!G , (6)

where YH is the amount of energy converted to heat,
w2~t! 5 w2~1 1 2tytc! ~in square meters! is the time-
dependent radius of the temperature change, and tc
5 w2y4DT is a characteristic thermal time constant of
the medium.

In pulsed, TEM00 laser excitation, the refractive-
index perturbation is radially symmetric and of
Gaussian form. Assuming that the excitation-laser
and the probe-laser beam waists do not change sig-
nificantly through the sample, the time-dependent
complex transmission t~r, t! is a function of only the
radius and the sample path length. The complex
transmission is exponentially related to the time- and
radial-dependent phase shift df~r, t!. The phase
shift, in turn, is the time-dependent temperature
change multiplied by the thermo-optical coefficient
~dnydT! ~in inverse degrees Kelvin! and the sample
path length l ~in meters!. Thus

t~r, t! 5 exp@idf~r, t!# < expFiklSdn
dTDdT~r, t!G,

t~r, t! < expHk Sdn
dTD 2alQYH

pw2~t!rCp
exp@22r2yw2~t!#J, (7)

where df~r! is the radial-dependent phase shift, i is
the square root of 21, k 5 2pylp ~in inverse meters!
is the probe-laser wave vector, and lp ~in meters! is
the probe-laser wavelength.

A schematic of the geometry used to define the
theoretical signal is shown in Fig. 1. The equation
that describes the probe-laser electric field, focused at
a distance z9 ~in meters! in front of the sample cell, is
that of a Gaussian beam at distance z9 from the focus.

Without the longitudinal phase terms, the electric
field of a probe laser is

E~r, z9! 5 E0

q~0!

q~z9!
expF2ikr2

2q~z9!G . (8)

Fig. 1. Geometry that was used to define the theoretical photo-
thermal lens signal. The probe laser enters from the left and is
focused to a minimum spot radius of w0 at a distance z9 before the
sample cell. It has a beam-waist radius of w1 at the sample and
w2 at the pinhole aperture before the detector. The pinhole ap-
erture is a distance d after the sample cell. Probe beams focused
beyond the sample are indicated by negative z9.
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The longitudinal or z-axis phase terms do not affect
the probe-beam power and are neglected here in
favor of simplicity. q~z9! 5 iz0,p 1 z9, z0,p 5 pw0,p

2ylp
is the probe-laser confocal parameter, q~z9! is the
complex beam parameter at z9 that is normally
found with the inverse relationship 1yq~z9! 5 1y
Rp~z9! 2 i2ykwp

2~z9!, where subscript p is used to
indicate probe-laser parameters, Rp~z9! is the radius
of curvature of the wave front,18 and wp

2 is the probe-
beam radius. The electric field is E~r, z9!t~r, t! after
passing through and just beyond the sample.

In diffraction theory, we find the electric field in the
detection plane, placed a distance d past the sample,
by performing the integrations or Fourier transforms
required in Fresnel diffraction calculations. For the
rather complicated form of the phase-shift term pro-
duced by the Gaussian temperature change, integra-
tion requires some type of simplification. This
simplification is accomplished by expansion of the
exponential transmission in a series, as shown by
Weaire et al.6:

t~r, t! 5 exp@idf~r!# 5 (
m50

` @if~t!#m

m!
expF22mr2

w2~t! G ,

f~t! 5 2k Sdn
dTD 2alQYH

prCpw
2~t!

. (9)

With this definition, the negative photothermal lens
generated in most samples results in a positive on-
axis phase shift f. Because the series expansion is
a sum over Gaussian terms and because the product
of two Gaussians is also a Gaussian, the electric field
in the detector plane can be found by simple modifi-
cation of the complex beam parameter of each Gauss-
ian series term by use of the ABCD method for
Gaussian beam propagation.18 When the electric
field is multiplied by the transmission, the electric
field just past the sample cell is the sum

E~r, z9! 5 E0

q~0!

q~z9! (
m50

` @if~t!#m

m!
expF2ikr2

2qm~t!G . (10)

The complex beam parameter qm~t! is a function of
both excitation- and probe-laser beam waists:

1
qm~t!

5
1

Rp~z9!
2 i

2
kwm

2 ,

1
wm

2 5
1

wp
2~z9!

1
2m

w2~t!
, (11)

where Rp~z9! 5 ~z0,p
2 1 z92!yz9 and kwp

2~z9!y2 5 ~z0,p
2

1 z92!yz0,p are the Gaussian beam parameter defini-
tions of the unperturbed probe laser, and the complex
beam parameter for the mth series term is 1yqm~t! 5
1yq~z9! 2 i@4mykw2~t!#. Because the effect of a lens
on the propagation of a Gaussian beam is found from
1yq 2 1yf, the Gaussian probe-laser beam apparently
experiences a series of complex lenses of focal lengths
f 5 2ikw2~t!y4m. When the ABCD method is used,
the complex beam parameter that describes the elec-
tric field in the detection plane some distance d past

the sample cell is qm~t! 1 d. With this rule applied
to each of the terms in the series, the resulting elec-
tric field in the detection plane is

E~r, d! 5 E0

q~0!

q~z9! (
m50

` @if~t!#m

m!

3 F qm~t!
qm~t! 1 dGexpH 2ikr2

2@qm~t! 1 d#J . (12)

The power of the probe laser is found from the square
of the electric field, F~r, d! } uE~r, d!u2. This result
shows that the electric field in the detection plane is
a series of Gaussian beams, each with a different
beam-waist radius and phase. The first term in the
series describes the unperturbed probe-laser beam.
Subsequent terms reflect the corrections due to the
photothermal perturbation. The series will con-
verge rapidly for small f~t!. Retaining only the first
two terms is probably sufficient for describing most
small photothermal lens signals.

The electric-field result shown above is similar to
that obtained by Weaire et al.,6 Bialkowski,8 and
Kozich et al.10 However, in these studies, only the
real part of the inverse complex beam parameter is
retained. Here the complex electric-field amplitude
is retained for each Gaussian beam so that the elec-
tric fields may cancel in the superposition. The lin-
ear phase-shift term is also neglected. Recall that
there are actually two parts to the longitudinal phase
shift, a linear term that depends on only the z-axis
distance and a tangent term that depends on the
z-axis distance and also on the confocal distance z0.18

Previous derivations6,8,10 included both longitudinal
phase-shift terms, in keeping with the Gaussian
beam propagation solution to Maxwell’s equations.
With the tangent phase term, the real part of the
pre-exponential term, 5$@1 1 dyqm~t!#21%, is used.

The electric-field result is also nearly identical to
that obtained with a Fresnel diffraction integral.11,13

Again, the main difference is the linear longitudinal
phase term. In fact, our approach does not explicitly
account for linear longitudinal phase shift. The
electric field calculated by this method can be
amended to include the longitudinal phase shift by
multiplication by exp@2i~z9 1 d!# if the phase of the
electric field is important, e.g., for calculating photo-
thermal interferometry signals. The longitudinal
phase-shift term cancels in the probe power calcula-
tion used below.

Although exact, this result does not lend itself to
easy interpretation. In addition to the dependence
on the probe focus z9 and detection plane d positions
and the time-dependent photothermal perturbation
strength f~t!, the diffraction result is a function of
the radial offset in the detection plane r and
excitation-laser and probe-laser beam-waist radii
w~t! and w0,p. There is no simple way to analyze
these data. We calculate the probe-laser power in
the detection plane by first performing the sum over
the electric field component and then by taking the
complex square of the field. A discussion of the
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probe-laser beam profile changes is found in Ref. 13.
The discussions below are restricted to the results
obtained with a pinhole aperture to monitor the
thermal lens signal.

4. Beam-Waist and Position Effects

Insight into how experimental geometry affects the
maximum and time-dependent signals can be gained
through an approximate analytical expression for the
diffractive photothermal lens signal.3 The first two
terms in the series, e.g., m 5 0 and m 5 1, may be
used to approximate the probe-laser power passing
through the pinhole aperture in the detection plane.
This is equivalent to approximating the exponential
phase shift by exp~idf! ' 1 1 idf.3,14 The higher-
order expansion terms are necessary for accurate sig-
nal prediction only in highly absorbing samples or
when high-power excitation sources are used. Shel-
don et al.3 argue that because the induced phase shift
in most photothermal lens experiments is much less
than 1, higher-order series approximations are not
necessary. Using this approximation allows an an-
alytical expression for the probe-laser power trans-
mitted through the pinhole aperture. When only
the first two terms in the series are used and terms
up to only the first order in the photothermal phase
shift are retained, the relative time-dependent probe-
laser power is

where F~t! ~in watts! is the probe-laser power passing
through a pinhole aperture at r 5 0.

5. Far-Field Detection Plane

If the detector–pinhole plane is in the far field, then

lim
d3`

F~t!yF~`! < 1 2 f~t!

3
8kw2~t!z9

k2w4~t! 1 8kw2~t!z0,p 1 16~z0,p
2 1 z92!

. (14)

The photothermal lens signal is calculated from the
power ratio. A simple expression for the time-
dependent signal is found with the assumption that
fz9 ,, z0,p and uz9u ,, uz0,pu in the denominator of the
signal expression. With these assumptions, the
photothermal lens signal16 is

Spulsed~t! 5
F~t! 2 F~`!

F~t!

<
2z9

fpulsed ~0!

1
~1 1 2w0,p

2yw2 1 2tytc!
2 , (15)

where 1yfpulsed~0! 5 4f~0!ykw2 is the definition for
the initial pulsed-laser photothermal lens focal
length predicted from refractive optics theory:

fpulsed
1~0! 5 Sdn

dTD 8alYHQ
pw4rCp

. (16)

This approximate result is similar to that predicted
with refraction optics under the same conditions, 2z9y
fpulsed~0!~1 1 2tytc!

2. In fact, when the probe-laser
beam waist w0,p is much smaller than that of the
excitation source, the diffraction and refraction meth-
ods yield equivalent results. This may be expected
because the probe laser passes through the index
perturbation near the axis when w0,p ,, w and the
refractive lens is based on the on-axis, i.e., r 5 0,
curvature of the perturbation.1 For finite probe-
beam radii, the maximum t 5 0 signal will be a factor
of w2y~w2 1 2w0,p

2! smaller than that predicted by
refraction. These results are in keeping with our
earlier diffraction-optics-based signal calculations.8

The probe-laser beam focus position resulting in
optimum signal can be obtained by the maximization
of the initial photothermal lens signal with respect to
z9. The resulting optimum focus position is z9opt 5
6z0,p~1 1 w2y2w0,p

2!. The optimum initial photo-
thermal lens signal can be found when this result is
substituted into the signal equation and the terms

that are linear in f are retained:

Spulsed,opt~t! 5 6Sdn
dTD 8alQYH

lprCp

3
~2w0,p

2 1 w2!

@2w0,p
2 1 w2~1 1 2tytc!#

2 1 ~2w0,p
2 1 w2!2 ,

(17)
and the zero-time ~maximum! signal is

Spulsed,opt~0! 5 6Sdn
dTD 4alQYH

lprCp~2w0,p
2 1 w2!

. (18)

This result explicitly shows how the probe-laser
beam-waist radius affects the photothermal lens sig-
nal. The signal is apparently maximized as both the
excitation and the probe-laser beams are more tightly
focused. Also of interest is that the maximum opti-
mum signal is predicted to be inversely proportional
to w2, not w4 as in the refraction result. The maxi-
mum is also inversely proportional to lp. Thus
tightly focused short-wavelength probe lasers should
be used with a far-field detection-plane apparatus.
The refraction optics approach predicts that decreas-
ing the excitation-laser beam waist always increases
the signal. The results obtained above show that

F~t!yF~`! < 1 2 f~t!
8dkw2~t!~z0,p

2 1 z92 1 dz9!

k2w4~t!~z0,p
2 1 z92 1 2dz9 1 d2! 1 8kw2~t!d2z0,p 1 16d2~z0,p

2 1 z92!
, (13)
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this is true only to a point. If the excitation-laser
beam waist is smaller than that of the probe, then no
further signal improvement will be obtained.

6. Near-field detection plane

A detector-plane position is found by maximization of
approximation ~13! with respect to d by use of differ-
ential methods. This results in an optimum
detection-plane position of dopt 5 kw2~z0,p

2 1 z92!y
@4z0,p

2 1 kw2~z0,p 2 z9! 1 4z92#. Substitution of dopt
into the initial photothermal equation, followed by z9
optimization, yields z9 5 0. The optimum photother-
mal lens signal obtained for this geometry is
and the maximum zero-time signal is

Spulsed,opt~0! 5 Sdn
dTD 8alQYH

lprCp

w0,p
2

w2

1
~2w0,p

2 1 w2!
. (20)

Although similar to that obtained for the far-field
detection plane, the near-field signal is optimized for
w ,, w0,p, i.e., for small excitation-beam-waist radi-
uses. This trend was previously deduced from nu-
merical simulations based on the Fresnel diffration
integral approach.13 However, it is difficult to find
optimum geometries with a numerical simulation ap-
proach. The results obtained here explicitly show
the conditions for optimization and give the resulting
time-dependent signal. For a small excitation-laser
beam radius,

lim
w30

Spulsed,opt~0! 5 Sdn
dTD 4alQYH

lprCpw
2 . (21)

This is in contrast to the far-field signal, which is
maximized when both the excitation-laser and the
probe-laser beam waists are minimized.

7. Model Calculations and Experimental Optimization

Optimum geometries obtained with differential
methods must be checked to ensure that the maxima
are indeed found. The signal can also change dra-
matically with small errors in the optical design if the
optimum is sought. In either case, it is important to
examine the signal as a function of the geometric
parameters in order to gain insight into the optimum
apparatus geometry. It is also difficult to compare
signal magnitudes of the far- and the near-field de-

tection planes from the analytical equations alone
because the ratio of the respective optimum theoret-
ical signals is proportional to a ratio of excitation- and
probe-beam radii, SnearySfar 5 2w0,p

2yw2. Either
detection geometry can be optimized relative to the
other. Of primary concern are the effects of the rel-
ative distances of the probe-laser focus, the distance
to the detection plane, and the relative probe-laser
beam-waist radii.

First, photothermal lens signals calculated for an
excitation-beam waist greater than approximately
five probe-beam waists are identical to those pre-
dicted by the refraction equation.16 Only when the
probe-laser beam waist becomes of the order of, or
greater than, the pump waist does diffraction theory
need to be used. Shown in Fig. 2 are results of a
calculation for the relative photothermal lens signal
for such a case. In this plot the pulsed-laser
excitation-beam radius is w 5 20 mm and a probe-
laser beam waist is w0,p 5 100 mm. These beam-
waist radii will favor near-field detection. The
probe-laser wavelength is 632.8 nm and the confocal
distance is z0,p 5 5 cm. A photothermal phase shift
of f~t! 5 1025 is used because most samples have
negative thermo-optical coefficients. For the plots
shown here, the series was summed up to the twen-
tieth power term. This is not usually necessary be-
cause convergence typically occurs with two to three
terms. The plot is oriented with the detection-plane
distance increasing toward the viewer. The probe-
laser focus position varies across the surface. The
d 5 0 point was not plotted. The theoretical signal
is found to be zero at this point, independent of the z9
distance. In addition, near-field points with d # wp
are of questionable value because of the small-angle
approximation implicit in these results.

The signal behavior predicted by this example cal-
culation is clearly different from that predicted by the
refractive lens theory. In refraction theory, the sig-
nal levels off with increasing detection-plane dis-

Fig. 2. Pulsed-laser-excited photothermal lens signal predicted
from diffraction theory as a function of the probe-laser beam ge-
ometry. The excitation-laser beam waist was 20 mm in the sam-
ple. The minimum 632.8-nm probe-laser beam radius was 100
mm. The photothermal perturbation was small, and the signal
was defined in the usual fashion.

Spulsed,opt~t! 5 Sdn
dTD 8alQYH

lprCp

w0,p
2

w2

~2w0,p
2 1 w2!

~1 1 2tytc!
2~2w0,p

4 1 2w2w0,p
2 1 w4! 1 2~2tytc 1 1!w2w0,p

2 1 2w0,p
4 , (19)
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tance. In contrast, the signal calculated with the
equations derived here decreases with detection-
plane distance. With the detection plane near the
sample cell, the signal is initially positive for negative
z9, indicating a decrease in probe-laser power with
the formation of the photothermal lens. This is only
because the focus position of the probe beam is be-
yond the detection plane. In fact, the same behavior
can be seen in Fig. 2 for the refractive lens theory.
For detection-plane distances far from the sample
cell, the signal exhibits a sigmoidal dependence on
probe-laser beam focus position. This is in contrast
to the refraction theory in which the signal is approx-
imately proportional to z at large d. The sigmoidal
dependence is similar to that observed by Berthoud et
al.,19 although they used a chopped excitation laser.
However, the maximum calculated diffraction signal
occurs at z9 ' z0, not ;=3z0 for this set of calculation
parameters.

Figures 3~a! and 3~b! illustrate the effect of the
relative probe-laser beam waist on the theoretical

pulsed-laser-excited photothermal lens signal. In
this case the detection plane is fixed at a distance of
10 m, i.e., far field, and the probe-laser focus position
is in front of the sample. The relative minimum
probe-laser beam-waist radius varies logarithmically
from a factor of 0.1–10 of that of the excitation beam.
The excitation-beam-waist radius is 100 mm, the
probe-laser wavelength is 632.8 nm, and the phase
shift is 1025. The figures span a range from that
adequately predicted by refraction theory to a range
within which diffraction must be used. It is inter-
esting to note that the diffraction result reproduced
the trends predicted from refractive optics in the ap-
propriate region. A maximum in signal strength ap-
pears for probe-beam-waist radii slightly less than
that of the excitation source. Whether or not this
indicates a trend can be addressed only by examina-
tion of the effects of detection-plane position. Fig-
ures 3~a! and 3~b! also show that there is no single
probe-laser beam focus position that optimizes the
signal. Apparently there is no best z9yz0 for pulsed-
laser-excited photothermal lens signals predicted by
diffraction.

Figure 4 shows the calculated photothermal lens
signal response for the near-field condition of d 5 5
cm. Of interest here is the apparent flat signal re-
gion for a large probe-beam waist. In combination
with the trends shown in Fig. 2, in which it is shown
that the signal increases with decreasing sample-to-
detection-plane distance, it would seem that a stable
optical configuration for pulsed-laser-excited photo-
thermal lensing is one in which a relatively large
probe laser is focused several z0,p in front of the sam-
ple and the detection plane is close to the sample.
The latter can be accomplished when the unfocused
probe laser is placed close to the sample.13 However,
this configuration does not result in the maximum
signal. Figure 4 shows that the maximum signal is
obtained for probe beams focused outside the sample
cell and for wp slightly smaller than w.

Fig. 3. ~a! Far-field diffraction theory predictions for the pulsed-
laser-excited photothermal lens signal as a function of the relative
probe-laser beam-waist radius and focus position. The detector
plane was at d 5 10 m, the excitation beam radius was 100 mm in
the sample, and the perturbation was small ~1025!. ~b! The con-
ditions are the same as in ~a!. This view is given to allow inspec-
tion of the predicted surface. The line on the right-hand side is
equivalent to that predicted from refractive optics.

Fig. 4. Near-field diffraction theory predictions for the pulsed-
laser-excited photothermal lens signal as a function of the relative
probe-laser beam-waist radius and focus position. The detection
plane is at d 5 5 cm in this case. All other parameters are the
same as those in Fig. 3.
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8. Probe-Laser Diffraction Effects for Continuous
Excitation

The time integral of the Green’s function result for a
pulsed Gaussian source yields the temperature
change produced for continuous-laser excitation
when the term d~t!H~t! is replaced with irradiance
E~t!. Because the photothermal phase shift is pro-
portional to temperature, the complex transmission
for continuous excitation can be obtained by time
integration of the phase-shift term in Eqs. ~9!:

t~r, t! 5 expFi*
0

t

df~r, t9!dt9G
5 (

m50

` im

m! H *
0

t

f~t9!expF22r2

w2~t9!Gdt9Jm

. (22)

The probe-laser beam electric field may be found in
the same fashion as in the pulsed-excitation case.
However, terms with m $ 2 are difficult to evaluate.
Again, the linear phase-shift approximation exp~idf!
' 1 1 idf is used to simplify the results. When
terms up to only first order in the photothermal phase
shift are retained, the electric field at the detector
plane is

E~r, d! < E0

q~0!

q~z9 1 d!

1 E0

q~0!

q~z9! *
0

t

if~t9! F q1~t9!
q1~t9! 1 dG

3 exp$2ikr22@q1~t9! 1 d#dt9%. (23)

For the pinhole detection scheme used in photother-
mal lens spectroscopy, the integral is tractable be-
cause the radius is zero and thus the exponential
term is unity. With a little algebra, the integrals
can be rewritten in terms of the integration variable
T 5 1 1 2tytc:

E~0, d! < E0

q~0!

q~z9 1 d!

1 E0

q~0!

q~z9!

tc

2
if~0! *

1

112tytc

3 T21 q~z9!T 2 i4ykw2

@q~z9! 1 d#T 2 i4ykw2 dT. (24)

The probe-laser power ratio is formulated before the
integration over time is performed:

F~t!
F~0!

2 1 <
tcf

2 *
1

112tytc Hiq~z9 1 d!

q~z9!

3 T21 q~z9!T 2 i4ykw2

@q~z9! 1 d#T 2 i4ykw2 1 c.c.J dT,

(25)

where c.c. is the complex conjugate of the first term.
The probe-laser power ratio for continuous excitation
is

F~t!
F~0!

< 1 1 tcf tan21Hkw2@z0,p
2 1 ~z9 1 d!2# 1 4d2z0,p

4d~z0,p
2 1 z92 1 dz9! J

2 tcf tan21

3 Hkw2~1 1 2tytc!@z0,p
2 1 ~z9 1 d!2# 1 4d2z0,p

4d~z0,p
2 1 z92 1 dz! J .

(26)

Sheldon et al.3 calculated only the far-field result.
The above result gives the relative power change for
any set of experimental parameters. In continuous-
laser-excited photothermal lens spectrometry, the
maximum signal is reached for a long irradiation
time. Taking the limit as time approaches infinity
and calculating the signal in the usual fashion result
in the signal expression

Scw~`! 5
F~0! 2 F~`!

F~`!

<
1

1 2 tcf tan21H 4d~z0,p
2 1 z92 1 dz9!

kw2@z0,p
2 1 ~z9 1 d!2# 1 4d2z0,p

J
2 1. (27)

The signal magnitude is a function of the tcf product.
This product can be represented in several forms:

2tcf 5
w2rCp

4k
kSdn

dTD 2alF0YH

prCpw
2

5 Sdn
dTD alF0YH

lpk

5
l

lp

z0

fcw~`!
, (28)

where fcw~`! is the focal length of the thermal lens at
infinite time, produced by continuous-laser excitation
and calculated in the usual fashion, i.e., from the
second derivative of radial refractive-index change
distribution with respect to r. The last expression
shows the relationship to the inverse focal length
calculated from refractive optics theory. This con-
nection may be used to make adjustments to the re-
sult, for example, in the case in which the effective
sample path length is limited by the beam divergence
of the excitation laser.

The continuous-laser-excited photothermal lens
signal magnitude is plotted in Fig. 5 for a case in
which the probe-laser beam waist is much larger
than that of the excitation source. Parameters used
to generate this plot are the same as those of Fig. 2,
with the exception that here the magnitude term is
tcf 5 2~dnydT!ayF0YHylpk. Signals above the
plane correspond to a decrease in probe power and
those below correspond to an increase in power. For
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detector-plane positions near the sample, only posi-
tive signals result. This is because the negative fo-
cal length of the thermal lens causes blooming of the
probe beam. As the detector plane is moved away
from the sample, the signal can be positive or nega-
tive, depending on whether the probe laser was fo-
cused in front of or beyond the sample. Within the
range of parameters used in this model calculation, a
maximum signal occurs for near-field conditions, e.g.,
d 5 z0,p and z9 5 65z0,p. When this plot is compared
with that for pulsed-laser excitation, it is apparent
that the signal varies more slowly with z9 in the far
field. In fact, the behavior is similar to that predicted
by refraction theory for probe focus positions within
6z0,p. The reason for this may be that the
continuous-laser-excited photothermal perturbation is
broader than the initial perturbation generated with a
pulsed source. One final feature of this plot that
should be noted is the apparent lack of a signal max-
imum with respect to z9 position. This is confirmed by
examination of the differential with respect to z9. Ap-
parently the continuous-laser-excited photothermal
lens signal is optimized for large probe-beam focus
positions, but there is no one best probe-laser focus
position.

The relative power resulting from probe-beam dif-
fraction may also be compared with the previous
studies of diffraction effects in two-laser, continuous-
excitation photothermal lens spectroscopy. To com-
pare this with previous results, the detection plane is
taken to be far from the sample cell. For this geom-
etry the resulting power is

lim
d3`

F~t!
F~0!

< 1 1 tcf tan21Skw2 1 4z0,p

4z9 D
2 tcf tan21Fkw2~1 1 2tytc! 1 4z0,p

4z9 G . (29)

This result also leads to a compact expression for the
maximum probe-laser power change that would occur

for infinitely long excitation-laser irradiation times.
In this case,

F~`!

F~0!
2 1 < 2tc f tan21 F 4z9

k~w2 1 2w0,p
2!G . (30)

It is interesting that the two-laser apparatus appears
to be linear in absorbed energy tcf when the photo-
thermal lens signal is defined by @F~`! 2 F~0!#yF~0!.
This expression also shows the signal dependence on
the excitation-laser and probe-laser beam-waist ra-
dii. Decreasing either of these will enhance the pho-
tothermal lens signal detected in far field for a given
z9, with the caveat that decreasing the excitation-
laser beam waist may decrease the effective path
length through the sample.

9. Diffraction Effects for a Single-Laser Photothermal
Lens

Diffraction results for a single-laser photothermal ap-
paratus can be found from the continuous-excitation
two-laser case by simply equating excitation-laser
and probe-laser beam parameters. Sheldon et al.3
introduced a different way to define the continuous-
laser-excited photothermal lens signal that yields a
more compact result for diffraction theory. They de-
fined the time-dependent signal as a ratio of the
power change to that which occurs at infinite time.
With this definition, the time-dependent photother-
mal lens signal obtained in the far field is

Scw~t! 5
F~t! 2 F~`!

F~`!

5

tcf tan21F 4z9

kw2~1 1 2tytc! 1 4z0
G

1 2 tcf tan21S 4z9

kw2 1 4z0
D . (31)

z0 is used here because there is no distinction between
the excitation and the probe lasers in the single-laser
photothermal lens apparatus. For the mode-matched
conditions of a single-laser experiment, w and z0 are
related. By first substituting w0

2~1 1 z92yz0
2! for w2,

where w0 is the minimum beam-waist radius of the
Gaussian excitation source, then using the definition
for z0 5 kw0

2y2, we find that the far-field signal for the
single-laser apparatus is

Scw~t! 5

tcf tan21H 2z9yz0

~z9yz0!
2 1 3 1 2@~z9yz0!

2 1 1#tytc
J

1 2 tcf tan21F 2z9yz0

~z9yz0!
2 1 3G

.

(32)

With this signal definition, the maximum power
change is

Scw~0! 5
1

1 2 tcf tan21F 2z9yz0

~z9yz0!
2 1 3G

2 1. (33)

Fig. 5. Continuous-laser-excited photothermal lens signal pre-
dicted from diffraction theory. The signal magnitude is defined
by @F~`! 2 F~0!#yF~0!. The excitation-laser beam waist is 20 mm
and the 632.8-nm laser beam waist is 100 mm. The signal is
apparently maximum at small detection-plane distances.
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It is straightforward to show by derivative methods
that the maximum signal will occur when z9 5
6=3z0.

10. Effect of Diffraction on the Thermal Lens
Enhancement Factor

The photothermal lens enhancement factor intro-
duced by Dovichi and Harris20 is a figure of merit that
may be used to gauge photothermal spectroscopy to
conventional absorption spectrophotometry. It is
the ratio of the photothermal lens signal to the
change in power observed by use of absorption spec-
trophotometry for small absorbance samples. The
enhancement factor is equal to the signal-to-noise
ratio improvement ~or degradation! obtained with
photothermal lens spectroscopy, assuming that both
spectroscopies are limited by equivalent noise
sources. For small optical absorbance, the exponen-
tial power dependence F 5 F0 exp~2al !, where F0 is
the power at the sample and F is the transmitted
power, may be approximated by a Taylor series.
With the first two series terms retained, F . F0~1 2
al ! and the power ratio is ~F0 2 F!yF0 . al. This
absorption spectrophotometry signal is similar in
form to that defining the photothermal lens spectros-
copy signal, i.e., a relative power change. The pho-
tothermal lens enhancement factor is thus equal to
the photothermal lens signal divided by the al prod-
uct.

The pulsed-laser-excited diffraction results can be
used to determine the theoretical photothermal lens
enhancement factor for a variety of excitation-laser
and probe-laser focusing geometries. The enhance-
ment based on the far-field result can be compared
with that obtained with the refraction-based theory,
as the enhancement is usually calculated for large d
in this case. For example, optimizing with respect to
probe-laser focus position z9 5 6z0,p~1 1 w2y2w0,p

2!
gives an optimum enhancement factor of

Epulsed,opt 5 USdn
dTDU 4QYH

lprCp~2w0,p
2 1 w2!

. (34)

The enhancement is a function of the minimum
beam-waist radius of both lasers. However, the en-
hancement factor is inversely proportional to the
probe-laser wavelength.

If the optics of the apparatus are restrained to have
excitation-laser and probe-laser beam waists equal at
the focus, i.e., mode matched, then the enhancement
found from approximation ~14! is

Epulsed < USdn
dTDU 31y2QYH

lw2rCp
. (35)

This result can be directly compared with the theo-
retical enhancement obtained with refraction optics
for mode-matched beams: Both are inversely pro-
portional to the excitation-laser wavelength. The
diffraction result shown above is a factor of 1y3 less
than that previously reported, which was obtained
with a refractive optics approach.21

The optimum near-field detector-plane pulsed-
laser enhancement is readily found:

Epulsed,opt 5 USdn
dTDU 8QYH

lprCp

w0,p
2

w2

1
~2w0,p

2 1 w2!
. (36)

As with the mode-matched geometry result, the en-
hancement increases with decreasing excitation-
beam-waist radius.

When the two-laser continuous-excitation signal
for the detector plane placed in the far-field is defined
as in approximation ~29! and the optical phase-shift
term is substituted, the maximum signal found for
long times is

Scw~`! 5 Sdn
dTD alF0YH

lpk
tan21F 4z9

k~w2 1 2w0,p
2G . (37)

As implied by the results illustrated in Fig. 5, this
signal does not exhibit an optimum z9. A maximum
signal occurs when the argument of the arctangent
function is infinite. Assuming that z9 .. k~w2 1
2w0,p

2!, the arctangent function is ;py2 and the pho-
tothermal lens enhancement factor is

Ecw~`! 5 USdn
dTDU pF0YH

2lpk
. (38)

The implication here is that the excitation laser is
focused into the sample in order to obtain a negligibly
small beam radius and that z9 .. z0,p.

The enhancement for single-laser excitation is eas-
ier to predict since the beam geometry for optimum
signal is fixed. The optimum single-laser photother-
mal lens signal shown in Section 9 for far-field detec-
tion is

Scw,max 5
F~0! 2 f~`!

f~`!
5

p

6
tcf

1 2
p

6
tcf

. (39)

For small thermal perturbations, the term ptcfy6 is
much less than 1 and can be neglected in the denom-
inator. The continuous, single-laser photothermal
lens enhancement factor Ecw is

Ecw 5

p

6
tcf

al
5 USdn

dTDU pF0YH

6lk
, (40)

which is a factor of py6 ' 0.523 of the enhancement
factor obtained from refractive optics theory. Before
the development of the diffraction theory, experimen-
tal determination of the enhancement factor fell short
of that predicted by refraction. The diffraction the-
ory result explains why this was observed.5

11. Summary

In summary, a convenient method for determining dif-
fraction effects in photothermal lens spectroscopy has
been outlined in this paper. Using the ABCD method
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for propagation of Gaussian beams resulting from the
aberrant photothermal lens results in signal equations
that are equivalent to those obtained with the more
complicated diffraction approach. These results are
explored in terms of how they affect the design of a
photothermal lens apparatus for a number of different
experiment designs. The method can be used to pre-
dict the optimum optical geometries for both pulsed-
laser and continuous-excitation-laser experiments.
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