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ABSTRACT

Black-box modeling for system identification and control can be constrained by the geometric scale
of a plant. Those constrains arise from a technical or economical issue in obtaining input-output data
sets for training purposes. A solution is sequential adaptation, which must be achieved in real time in the
case of control systems, because a prescribed level of performance is required while external excitations
are occurring. A major challenge is the proper selection of inputs that would lead to a quick and optimal
adaptation.

This paper proposes a new method for selection of inputs in black-box modeling. The method,
termed the Self-Organizing Inputs (SOI) algorithm, consists of organizing the input space sequentially
and in real-time. This self-organization leads to an enhanced representation of the system dynamics,
which improves adaptation convergence and performance. The algorithm is designed based on time
series analysis, and on the theory that dynamic systems can be topologically reconstructed using a single
observation delayed in time, provided the choice of time delay and embedding dimension is appropriate.
The SOI feature sequentially identifies the proper time delay and dimension, and adapts the required
dynamic inputs for the black-box model. That allows a representation to self-organize, self-adapt, and
identify or control by utilizing the essential dynamics of the plant captured via limited state measurement.

The SOI algorithm is applied to an adaptive neurocontroller to simulate control of an existing struc-
ture located in Boston, Massachusetts. The performance of the SOI neurocontroller is assessed for accel-
eration mitigation of harmonic and wind excitations, using a semi-active control strategy. Results show
that the proposed neurocontroller performs well at vibration mitigation for both strategies, using lim-
ited acceleration measurements and limited knowledge about the dynamic properties of the large-scale
structure. Its performance is similar to a fixed inputs strategy in the case of the harmonic excitation, and
better in the case of a wind mitigation. In both cases, the SOI algorithm results in a significantly smaller
network. It is also demonstrated that the proposed method can be used for nonstationary processes.

1 INTRODUCTION

The level of uncertainty relative to the fundamental dynamic properties increases with the geomet-
ric scale of the controlled plant. Large members, static loads, and connections can be modeled, but the
construction process of large civil and mechanical systems results in dynamic uncertainties of signifi-
cant ranges. Moreover, there exists sources of nonlinearity and measurement noises that might not be
modeled, such as the actuator dynamics, sensor inaccuracies, and time delays induced in the control loop
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[1, 2, 3]. The scale of such systems results in technically challenging and economically nonviable system
identification schemes. Adaptive control strategies have been proposed to cope with large uncertainties
[4, 5, 6]. Intelligent controllers, such as fuzzy logic systems and neural networks, are a special class of
adaptive controllers. They are characterized by their capacity to create a functional representation based
on training from input-output data sets. The main challenge is to collect those sets, and to use an ap-
propriate training algorithm to ensure a quick convergence of the controlled system for a required level
of performance. When such data sets are not available and a control performance is necessary, which is
often the case for civil structures exposed to random wind loads and earthquake excitations, a sequential
and real-time learning strategy is required.

During sequential training for a multi degree-of-freedom (MDOF) system, the available inputs can be
quite large, and the challenge is to select the appropriate inputs that will be fed in the black-box model.
The problem of input selection for black-box modeling has been overlook for a long time [7]. Intuitively,
the selected inputs need to contain the essential dynamics of a system by selecting the appropriate states,
time delay, and embedding dimension [8]. It follows that the selection of inputs for an uncertain systems
is achieved arbitrarily, which may lead to a sub-optimal control system. A strategy has to be developed
in order to obtain a better representation of the system dynamics from the inputs.

This paper presents a strategy for sequential and real-time input selection for black-box systems.
The algorithm, termed the self-organizing inputs (SOI) algorithm, studies a sliding window of the time
series of a single input and output, decides on the optimal dynamic inputs, and adapts the black-box
input space. It results that the black-box model itself is optimized, as the system essential dynamics are
optimally represented in real-time. Moreover, such strategy allows the model to be more responsive to
local changes in the system dynamics. It is based on Takens embedding theorem [9], which states that
the delayed time measurements of a single observation can define an entire autonomous dynamic system.

The delay embedding theorem has been applied in many fields for model prediction, system identi-
fication, control, and more specifically, for input selection of neural networks. Principe et al. [10] used
local nonlinear embedding maps with a self-organizing mapping neural network, and applied it to system
identification and control. Plagianakos & Tzanaki [11] used a neural network to predict an earthquake
excitation selecting inputs based on the embedding theorem. Walker et al. [12] utilized the same strategy
to design a radial-basis model for modeling of an electronic circuit with dynamic effect. Leung et al. [13]
used a radial basis function network whose topology was optimized using the cross-validated subspace
method. Széliga et al. [14] used a neural network to model a slowly varying nonstationary system. Shen
et al. [15] proposed a predictive control scheme for chaotic systems using a neural network to make pre-
dictions. daSilva et al. [7] forecasted short term electricity loads, and noted the paramount importance
of a proper input selection for short-term forecast. Zolock & Greif [16] used a time-delay neural network
to predict wheel/rail responses of rail vehicles.

In this paper, it is demonstrated that the SOI algorithm can be applied online, and also to nonstation-
ary systems. The SOI algorithm is applied in the context of an adaptive neurocontroller. The proposed
method has the powerful advantage of taking the input selection out of the black-box design process, and
it can be applied sequentially and in real time.

The paper is organized as follows. Section 2 describes the SOI algorithm. In that section, the embed-
ding theorem is reviewed, and extended to nonstationary and MDOF systems shown. Section 3 describes
the adaptive neurocontroller to be used along with the SOI algorithm in the simulations. A simple track-
ing example of a nonlinear function is shown. Section 4 simulates the algorithm on an existing structure
located in Boston, MA. Simulations include harmonic and wind excitations controlled with a semi-active
device. It is also demonstrated that the assumption of local stationarity holds. Section 5 concludes the
paper.



2 SELF-ORGANIZING INPUTS ALGORITHM

Consider the following dynamic system:

x(k + 1) = f (x(k), u(k))

u(k + 1) = g(x(k), u(k))

y(k) = h(x(k), u(k))

(1)

where x is a state, u is an input, y is an observation, k is a discrete time step, and f , g , h are func-
tions. A black-box model aims at finding an approximate representation of a function using measurable
observations. This functional representation can be achieved using numerous system identification tools,
such as fuzzy logic, neural networks (including radial basis function and wavelet networks), polynomial
models, and rational models [17, 18]. For instance, the representation of the state dynamics f in (1) can
be approximated in term of a single-layer wavelet neural network [19]:

Ψ(x(k), u(k)) =
h∑
i=1

αiφi(x(k), u(k)) (2)

where h is the number of nodes in the network, α are the nodal weights, and φ is a wavelet function.
This representation is designed or trained based on input-output data sets, and is therefore dependant on
the selection of those data. Some systems do not have sets that are available a priori. In that case, training
can be achieved sequentially. When sequential training is utilized, the choice of outputs is often trivial,
as it corresponds to a precise identification or control objective. However, the choice of inputs can be
more complex. Some dynamic systems are characterized by a significant number of degree-of-freedoms
or measurable states, and the system designer must decide, prior to the training period, which available
inputs should be used in the input-output sets for the training process. This paper proposes a solution
for the input selection, the SOI algorithm. The algorithm has been designed to sequentially select the
inputs of adaptive black-box controllers, where the representation g̃(y(k), u(k)) is adaptive and maps the
required force output in function of the observations of the dynamic system:

u(k + 1) = g̃(y(k), u(k, t)) (3)

The SOI algorithm is inspired by Takens Embedding Theorem [9]. The Embedding Theorem states
that the phase space of autonomous dynamic systems can be diffeomorphically mapped to another phase
space constructed from the time delayed measurements of a single observation. This theorem is applica-
ble offline, because a study of the output time series is necessary to select the proper time delay of the
observation, along with its appropriate embedding dimension. It what follows, the Embedding theorem
is reviewed and its extension to nonautonomous stationary systems explained. It will be demonstrated
that the SOI algorithm is applicable for nonstationary multi degree-of-freedom (MDOF) systems.

2.1 The Embedding Theorem

Takens [9] showed in 1980 that the phase-space of an autonomous dynamic system x(k + 1) =
f (x(k)) in a manifold M can be diffeomorphically mapped to another phase-space constructed from a
single measurement. In other terms, a one-to-one map exists between both phase-space, and all of the
coordinate-independent properties are preserved. Fig. 1 illustrates the concept. In the figure, the phase-
space reconstructed from the measurements of the unknown system is geometrically equivalent to the
phase-space of the unknown system.



Figure 1: Illustration of the phase-space reconstruction.

The challenge is to form a vector ν, termed the delay vector, that will form the new phase-space. The
delay vector is constructed using a time delay τ and embedding dimension d of a single measurement y:

ν(k) =
[
y(k) y(k − τ) y(k − 2τ) ... y(k − (d− 1)τ)

]
= Φ(x(k))

(4)

where Φ : M → Rd. Several techniques exist to select an appropriate time delay τ and embedding
dimension d. Intuitively, τ has to be large enough such that y(k− τ) gives additional information on the
dynamics. For instant, if τ = 1, the phase-space is collapsed on a 45◦ line, and y(k) ≈ y(k − 1). Thus,
τ has to be large enough to unfold the phase-space, but not too large as the phase-space will fold back.
The embedding d has to encompass all of the essential dynamics. However, a large d may contain too
much redundant information, and might result in a degradation of precision. Techniques selected for the
SOI algorithm will be discussed later.

Using (4), the functional f can be written:

f̃ = Φ ◦ f ◦ Φ−1 (5)

where ◦ denotes function composition. Applying (4) to (5):

f̃ (ν(k)) = Φ ◦ f ◦ Φ−1(ν(k))

= Φ ◦ f ◦ Φ−1 (Φ(x(k)))

= Φ ◦ f (x(k))

= Φ(x(k + 1))

= ν(k + 1)

(6)

shows the equivalence between f and f̃ , and that the coordinate-independent properties are preserved.
In essence, the theorem states that, given the observation y(k), it is possible to predict future observations
using a map constructed from ν(k).

In the last decade, the embedding theorem has been extended to a general class of nonautonomous
systems with deterministic forcing [20], state-dependant forcing [21], and stochastic forcing [22]. Those
theorems address nonautonomous systems by expending the phase-space sufficiently until the system
becomes autonomous. The forcing u is allowed to evolve on its own space u ∈ Σ, where Σ is a shift
space associated with a shift map σ : Σ→ Σ such that:

σ(u(k)) = u(k + 1) (7)

Thus, the new system evolves in the skew product T : M × Σ→ M × Σ:

T (x(k), u(k)) = (f(x(k), u(0)), σ(u(k))) (8)



The main implication of such transformation is that the phase-space can become infinite dimensional
if ν depends solely on M . Therefore, a restriction on the map Φ is imposed. This restriction is the
inclusion of the inputs u along with the observations y, where ν becomes:

ν = [ y(k) y(k − τ) y(k − 2τ) ... y(k − (d− 1)τ)

u(k) u(k − τ) u(k − 2τ) ... u(k − (d− 1)τ) ]

= Φ(x(k), u(k))

(9)

with Φ : T → R2d. Monroig et al. [23] showed that multivariate observations could be used if inputs
were to be unknown.

The embedding theorems previously described for general systems of the form (1) do not apply to
nonstationary systems. The next subsections discusses how the SOI algorithm is used for nonstationary
systems, and its application to MDOF systems.

2.2 Extension to Nonstationary Systems

The use of an adaptive controller inherently transforms systems of the form (1) into nonstationary
systems:

x(k + 1) = f (x(k), u(k, t))

u(k + 1) = g(x(k), u(k, t))

y(k) = h(x(k), u(k, t))

(10)

This subsection discusses how the embedding theorem is adapted to use Φ as inputs for nonstationary
representations.

Nonstationarity systems in the context of the embedding theorem have been studied for the last
decade. Strategies include overembedding the delay vector [24, 25], using nonuniform embedding for
multivariate time series [26], and using local maps for locally varying dynamics [27]. Here, the technique
of local maps is used, with the assumption that each of those local maps are stationary or quasi-stationary.
A map f can be written as the union of several local maps fq for q = 1, ..., Q [10]:

f =
⋃

q=1,...,Q

fq (11)

It is assumed that an adaptive representation f̃ (x(k), u(k), t) can be divided into local stationary
maps:

f̃ =
⋃

q=1,...,Q

f̃q(x(k), u(k)) (12)

The output can then be represented by another shift map ξ modified from (7) where ξ : Σ×Ξ→ Σ×Ξ
with:

ξ(u(k), t) = (u(k + 1), t) (13)

Let the manifold M be discretized locally following (11) such that M =
⋃
q=1,...,Q Mq. The map ξ

is assumed to be smooth and compact, as adaptive representations are also assumed to be smooth and



compact. The system is now allowed to evolved over the manifold W where W is globally defined as the
skew product W : M × Σ× Ξ→ M × Σ× Ξ, or locally defined as:

W :
⋃

q=1,...,Q

{M × Σ}q (14)

Note that as Q→∞, Σ×Ξ→ Ξ. Hence, for a large number of local maps Q, the same delay vector
as (9) can be used to embed W , given that the map Φ is allowed to smoothly evolved with time to follow
the translation in Ξ:

ν(k) = Φ(x(k), u(k), t) (15)

with Φ : W → R2d.
The assumption of local stationarity of quasi-stationarity will be assessed in Section 4 in the context

of a nonstationary wind excitation. There exists many methods that aim at determining stationarity of a
time series, but in the case of a finite time series, most methods can be unclear and ambiguous [28]. The
responses of a MDOF system subjected to a wind excitation can be assumed to be mutually independent
Gaussian stationary processes [29]. Since an adaptive controller is used, if one can show that within the
last n observations that are used to create a local map q the variation of the controller is small such that
f̃t=0 ≈ f̃t=n so that (3) can be written:

u(k + 1) ≈ f̃ (x(k), u(k)) (16)

within a map q, then (10) can be assumed to be stationary. Hence, to determine the level of stationarity
of local maps q, a map will be declare stationary if the variation of the representation f̃ within a map q
is below a certain threshold. The percentage of stationary maps in function of the threshold will be the
stationarity index.

2.3 MDOF systems

This subsection reviews design considerations for MDOF systems, and shows that the embedding
theorem holds given the condition that the observation is not taken at the null point of a dominant node.
MDOF systems have several measurable nodes and states. Multivariate observations can be included in
the delay vector to represent a dynamic system. This is achieved by scaling inputs that represent different
states. Scaling prevents some states from having more importance in the neural network than others, and
also leads to a numerically more robust network with improved convergence [8].

Nevertheless, implementing several output observations may result in a high dimensional space, and
some black-box systems such as wavelet networks are not suited for such problems [30]. In the case of a
system where the state being identified or controlled, here termed the objective state xk, is different than
the observed state xj , the available measurements must be topologically equivalent to the objective state.
Modal decomposition can be used to show that a map exits between two different degree-of-freedoms of a
system, provided that they are not null point nodes. The response of a MIMO system can be decomposed
into modes:

ẋ =

n∑
i=1

˙̃qi(t)ψ̃i (17)



where n is the number of degree-of-freedom, ˙̃q is the modal coordinate, and ψ̃i is the ithmodal shape
vector. Thus, the response of a single observation can written:

ẋj =
n∑
i=1

˙̃qi(t)ψ̃j,i (18)

where ψ̃j,• is the vector of the jthcomponents of the modal shape vector. Assuming that the degree-
of-freedoms being mapped are not stationary nodes, a map g exists such that ψ̃k,• = g(ψ̃j,•) where k is
another component of the modal shapes. Hence, the response of another state can be obtained:

ẋk =
n∑
i=1

˙̃qi(t)ψ̃k,i

=
n∑
i=1

˙̃qi(t)g(ψ̃j,i)

=

n∑
i=1

gi

(
˙̃qi(t)ψ̃j,i

)
= g (f(xj))

(19)

Therefore, if a map exists such that a state xk can be mapped from the state xj , then there exist a
map from the delayed vector Φ(xj) to the state xk. In other words, provided that the observed state xj
and the objective state xk are not null point nodes, then the objective state xk can be represented using a
delayed vector constructed from the observations on xj .

Consequently, one needs to ensure that the measurement is not taken at the null point of a dominant
mode. In practice, that measurement should be taken at the maximum value of a node node if possi-
ble. For instance, in the case of cantilever-like civil structures, where masses are installed in series and
separated by stiffness and dashpot elements, it is known that the response is dominated by the first few
modes. Typically, an observation taken at the top floor would satisfy the requirements mentioned above.

2.4 SOI algorithm

The SOI algorithm sequentially studies the last time series composed of the last n measurements of
a single observation, and determines the delay vector (15) that would encompass the essential dynamics
of the system. In other words, the inputs for the black-box representation are composed of the delayed
measurements of the observations of an input and an output, with the time delay τ and embedding
dimension d selected in real-time, based on the study of the time series of a measurement. This sequential
and real-time selection is done smoothly, over a small map q, to agree with the above conditions for
constructing (15).

The time delay τ is selected using the mutual dependence method, theory presented by [31] based on
Shannon’s information theory. Given a measurement y(k), a second measurement y(k− τ) is taken, and
the information gained from the new measurement is evaluated. The value of τ that leads to the optimal
information is kept as the optimal τ . The embedding dimension d is selected using the false nearest
neighbor (FNN) method. In the FNN method, a point that is a nearest neighbor in Euclidian term must
remain a nearest neighbor if the embedding dimension is increased. If it is not the case, then the point
is declared to be a false neighbor. The FNN strategy is thus to increase the embedding dimension until
the percentage of FNN is below a satisfactory threshold. The algorithm presented by [32] is used for the
selection of d.



Fig. 2 illustrates the SOI algorithm for the case of an adaptive controller. The time window memory is
a sliding window using the last n observation of a state output, the signal, and the force output. The value
for n is kept small to ensure quick computation time. The SOI algorithm takes those last n observations,
and select τ and d as mentioned above. The delay vector ν is adapted accordingly, at each time step,
in the neighborhoods τ ∈ [τ − 1, τ + 1] and d ∈ [d − 1, d + 1] to ensure robustness of the black-box
representation.

Figure 2: Schematic of the SOI algorithm.

3 ADAPTIVE WAVELET NEUROCONTROLLER

This section describes the black-box system to be used in the simulations, an adaptive wavelet neu-
rocontroller. It consists of an adaptive single layer feedforward wavelet neural network of the form (2)
where Phi returns the required force output. The wavelet functions φ are mexican hat wavelets:

φ(x, t) =

(
1− ‖ν(t)− µ‖2

σ2

)
e−
‖ν(t)−µ‖2

σ2 (20)

where ‖·‖ denotes the Euclidean norm of the vector, and µ and σ are the center and bandwidth of the
function respectively. The hidden layer is self-organizing. Following Kohonen’s self-organizing input
(SOM) theory [33], it has the capacity of adding and pruning nodes. Nodes are added if the Euclidean
distance of the new inputs to the closest node center is beyond a threshold. When a node is added, its
center is at the new input, the weight at zero, and the bandwidth in function of the distance to the closest
node and predetermined resolution coefficient. Fig. 3a illustrates a mexican hat wavelet. Fig. 3b shows
a single-layer feed-forward wavelet neural network.

The controller has been proposed for control of civil structures, and is therefore specialized for semi-
active control. Three regions of force reachability are defined: the entire actuation force set C, the
reachable force set Cd (in function of the semi-active device dynamics), and the transition layer Ct that
acts as a smooth transition outside Cd. Thus, C ⊃ Ct ⊃ Cd. The wavelet nodes are allowed to be
adapted when the control force u ∈ Cd, the adaption is smoothed using a function mc for u ∈ Ct, and
the adaptation is stopped for u ∈ C. Moreover, a sliding mode controller is included to account for the
error between the required and the applied force. In this case, the objective state is used for the back-
propagating error (regulatory control problem). The nodal parameters (centers, bandwidths, weights) are
sequentially adapted at each time step following a back-propagation algorithm:

α̇ = −(1−mc)(Γαφ)BTP T s

φ̇ = −(1−mc)(Γφα)BTP T s
(21)



(a) (b)

Figure 3: Illustration of: a) a mexican hat wavelet with µ = 0 and σ = 0.01; and b) a wavelet neural
network.

where mc ∈ [0, 1], Γ is the adaptation weights matrix,B is the control weight matrix conform to the
state-space formulation to be defined later for completeness, P is the error weights on the sliding surface
s, with the target sliding surface being s = 0. In other terms, P T s is the back-propagation error. In the
case of limited measurements, the error weights will take values of 0 where the states are unavailable.
The dimension of the nodal parametersµ andσ are adapted when the dimension of the input ν is updated
based on the SOI algorithm. The addition and suppression of nodal dimensions is done smoothly.

3.1 Example

A first simple example is showed here to demonstrate the performance of the proposed SOI adaptive
controller. In this example, the neurocontroller is used for an active tracking problem of the following
nonlinear function:

f(x, ẋ, u) =

[
1−

(
(x− 0.1)2

0.12
+

(ẋ− 0.05)2

0.052

)]
e

(
− (x−0.1)2

0.12
+

(ẋ−0.05)2

0.052

)
+ u (22)

with x = 0.2 sin 0.05t, where the tracking objective is:

f∗ = 0.02 sin 0.01t (23)

The control force u is provided by an ideal actuator, and the function is sampled at 100 Hz. The ideal
actuator is herein defined as a device that can instantaneously apply a required force. Fig. 4a shows a
quick convergence of the response to the tracking objective. It is compared with the performance of the
same network with fixed values for τ and d that has been selected based on the study of the complete
time series. It demonstrates that the SOI algorithm results in a significantly better tracking. Fig. 4b
demonstrates that the control error stays within the prescribed control bounds. Fig. 4c is a plot of the
embedding dimension d and delay τ against time, showing the sequential adaptation of the input space
topology.



(a) (b)

(c)

Figure 4: Performance of the SOI adaptive controller. a) time series performance against fixed inputs
(τ = 20; d = 2); b) error metric; and c) evolution of τ and d.

4 SIMULATIONS

A 39-story office tower located in downtown Boston, Massachusetts, as described in [34] and shown
in Fig. 5, is loaded in the X-direction in order to assess the performance of the proposed SOI adaptive
controller. The building was equipped in the 1990’s with fluid dampers in order to mitigate excessive
acceleration levels produced by the proximity of an existing 52-story tower. Dampers are installed every
other story from the 5thfloor up to the 34thfloor. The viscous dampers in the X-direction have a capacity
of 1350 kN (300 kips) with a damping coefficient of 52550 kN·s/m (300 kips·s/in) below the 26th floor,
and a capacity of 900 kN (200 kips) with a damping coefficient of 35000 kN·s/m (200 kips·s/in) from the
26th floor and above. In the simulation, viscous dampers have been replaced by variable friction devices
of similar capacities installed at the same locations. The friction devices consist of a variable Coulomb
friction element, a viscous element, and a stiffness element installed in parallel. The equation of motion
of the system can be written in the form of:

Ẋ = AX +Buu+Bww (24)



Figure 5: Simulated structure in the X-direction.

where A is the state-space matrix, B is the control force incidence vector with subscripts u and w
referring to actuation and wind inputs respectively, and w is the wind excitation input, with:

A =

[
O I

−M−1K −M−1C

]
X =

[
x
ẋ

]
Bu =

[
O

−M−1F

]
Bw =

[
O

−M−1E

]
where M ∈ Rn×n,C ∈ Rn×n, and K ∈ Rn×n are the mass, damping, and stiffness matrices

respectively, I ∈ Rn×n is the identity matrix, F ∈ Rn×a is the damper location matrix, E ∈ Rn×1 is a
vector of ones, n is the number of states, a is the number of actuators, and 0 are compatible zero matrices
such thatA ∈ R2n×2n,Bu ∈ R2n×a,Bw ∈ Rn×1,X ∈ R2n×1, u ∈ Ra×1, and w ∈ Rn×1.

Two simulations are conducted. The first one consists of an harmonic excitation to show convergence
of the SOI algorithm with respect to a classical approach of fixed inputs. An analysis is also conducted
on the sensitivity with respect to the predefined network resolution. The second simulation looks at
the performance of the controller for wind mitigation to compare with the fixed inputs case, along with
results from [34] where viscous dampers are utilized.

For all simulations, decentralized control is used for each semi-active device installed between the
(i + 1)thand the ithfloor. The assumed available measurements are inter-story displacements xi+1 − xi,
inter-story velocity ẋi+1 − ẋi, acceleration ẍi and force input ui at the device locations. The sliding
surface P is constructed accordingly. The force inputs for all simulations are scaled by a factor of 10−2

with respect to acceleration inputs.



4.1 Harmonic Excitation

A first set simulation is conducted using a harmonic excitation at the fundamental frequency acting
on every floor: W (t) = 5 sin 1.19t. Results from the SOI algorithm are compared with classical fixed
parameter strategies. Several fixed parameters have been attempted, and results show the optimal result
using τ = 20, and d = 3. The controller non-adaptive parameters are kept constant for both the SOI
and fixed parameter cases. Fig. 6a shows the convergence of the acceleration of the 37thfloor for both
cases. The convergence speed and final accelerations are similar. Fig. 6b shows the force-velocity
plot of the 10thcontrol device for the last 10 seconds of simulation. Both cases converged to a similar
actuation dynamics. Fig. 6c shows the size of the hidden layer for the 10thcontrol device, for both SOI
and fixed inputs cases. The network size corresponds to the number of nodes. The SOI clearly achieved
a representation using about a third of the nodes.

(a)

(b) (c)

Figure 6: Performance of the SOI adaptive controller. a) time series performance against fixed inputs; b)
force-velocity plot; and c) evolution of network sizes.



4.2 Wind Excitation

This simulation is conducted using a wind load such that the building responses under the uncon-
trolled case and the passive viscous cases compare with the responses reported in [34]. The wind load is
simulated over 200 seconds. It is repeated 5 consecutive times to verify the performance of the algorithm
over training periods. Results from the SOI algorithm are compared against the fixed inputs case. The
fixed input vector case is constructed using a time delay τ = 10 and embedding dimension d = 3. The
control objective is acceleration mitigation of the 37thfloor, which coincides with the largest acceleration
among the occupied floors. Results are also compared against mitigation from the full voltage and the
linear-quadratic regulator (LQR) cases. The full voltage case refers to the semi-active device utilized
with full damping capacity, while the LQR case is a LQR controller designed with full knowledge of the
structure.

Fig. 7a shows the performance of the SOI algorithm against various control strategies. Results
show that the controller outperforms the fixed input case, and that the general performance of the neu-
rocontroller improves with training periods. It is also better than the full voltage strategy, but does not
outperform an LQR controller with full parametric knowledge, as one would expect. Fig. 7b shows the
evolution of the network sizes for the 10thsemi-active device. It is shown that the SOI algorithm can
outperform the fixed inputs case with significantly less network nodes, and that the network size keeps
evolving with respect to time. The result is representative of other control devices. Table 1 summarizes
performance of the controller after one training period against various control strategies.

(a) (b)

Figure 7: Performance of the SOI adaptive controller against the fixed inputs case. a) acceleration miti-
gation; and b) network size.



Table 1: Maximum acceleration at the 37thfloor after one training period, wind excitation.

maximum acceleration reduction
control strategy ẍ37 (mg) (%)
uncontrolled 70.1
viscous dampers 45.2 35.5
full voltage 35.6 49.2
no voltage 67.5 3.71
SOI 32.7 53.4
fixed inputs 33.3 52.5
LQR 29.1 58.5

4.2.1 Stationarity of Local Maps

The level of stationarity of local maps is evaluated following the technique described in Section 2.2.
Fig. 8a shows the wind excitation on the 5thfloor over the period 100-200 sec. The level of stationarity
is evaluated after the initial adaptation (100 sec) assumed to be already achieved. The excitation is
representative of the excitations on the other floors. Fig. 8b shows the level of stationary maps in
function of the percentage variation of f̃ . The figure illustrates that 46.5% of maps showed 0% variation
in f̃ . This level quickly raise to 64.3% for 1% variation, and then to 69.9% at 5% variation. The degree at
which the assumption of local stationary or quasi-stationary maps holds depends on the acceptable level
of quasi-stationarity. In this case, a level of 5% is taken as acceptable, and a level close to 70% stationary
maps is interpreted as sufficient for the assumption to hold.

(a) (b)

Figure 8: a) wind excitation; and b) stationarity index

5 CONCLUSION

A method for sequentially organizing the input space of a black-box representation, the SOI al-
gorithm, has been proposed. The algorithm analyzes a sliding window of the last observations, and
determines which inputs would optimally represent the system dynamics. It is based on the embedding
theorem. The SOI algorithm has the powerful advantage to take the input selection out of the black-box



design process, and can be applied sequentially and in real time to nonautonomous nonstationary MDOF
systems.

The algorithm has been applied in the context of an adaptive neurocontroller. Simulations on an
existing 39-story building show that the SOI strategy can perform as well as a fixed input strategy in
the case of an harmonic excitation, with only a third of the network size. Moreover, it is capable of
outperforming a fixed strategy under a wind excitation, with a significantly leaner network. It was also
demonstrated that the algorithm can be used with nonstationary systems.
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