Skip to main content
Article
Viscosity of Bacterial Suspensions: Hydrodynamic Interactions and Self-induced Noise
Physical Review E
  • Shawn D. Ryan, Cleveland State University
  • Brian M. Haines, Pennsylvania State University
  • Leonid Berlyand, Pennsylvania State University
  • Falko Ziebert, UMR CNRS
  • Igor S. Aranson, Argonne National Laboratory
Document Type
Article
Publication Date
5-16-2011
Disciplines
Abstract

The viscosity of a suspension of swimming bacteria is investigated analytically and numerically. We propose a simple model that allows for efficient computation for a large number of bacteria. Our calculations show that long-range hydrodynamic interactions, intrinsic to self-locomoting objects in a viscous fluid, result in a dramatic reduction of the effective viscosity. In agreement with experiments on suspensions of Bacillus subtilis, we show that the viscosity reduction is related to the onset of large-scale collective motion due to interactions between the swimmers. The simulations reveal that the viscosity reduction occurs only for relatively low concentrations of swimmers: Further increases of the concentration yield an increase of the viscosity. We derive an explicit asymptotic formula for the effective viscosity in terms of known physical parameters and show that hydrodynamic interactions are manifested as self-induced noise in the absence of any explicit stochasticity in the system.

Comments

I.A. was supported by the US DOE BES, Division of Materials Science and Engineering, under contract no. DE AC02-06CH11357. S.D.R., B.M.H., and L.B. were supported by the DOE Grant No. DE-FG02-08ER25862 and NSF Grant No. DMS-0708324.

DOI
10.1103/PhysRevE.83.050904
Version
Publisher's PDF
Citation Information
Shawn D. Ryan, Brian M. Haines, Leonid Berlyand, Falko Ziebert, et al.. "Viscosity of Bacterial Suspensions: Hydrodynamic Interactions and Self-induced Noise" Physical Review E Vol. 83 (2011)
Available at: http://works.bepress.com/shawn-ryan/15/